##################################### params = tune_window_preprocessing_params(audio_dirs, params) ################################################### # 2) Train a generative model on these syllables. # ################################################### partition = get_window_partition(audio_dirs, roi_dirs, 1) partition['test'] = partition['train'] num_workers = min(7, os.cpu_count() - 1) loaders = get_fixed_window_data_loaders(partition, params, \ num_workers=num_workers, batch_size=128) loaders['test'] = loaders['train'] model = VAE(save_dir=root) model.train_loop(loaders, epochs=101, test_freq=None) ######################## # 3) Plot and analyze. # ######################## from ava.plotting.tooltip_plot import tooltip_plot_DC from ava.plotting.latent_projection import latent_projection_plot_DC from ava.plotting.trace_plot import warped_trace_plot_DC loaders['test'].dataset.write_hdf5_files(spec_dirs[0], num_files=1000) latent_projection_plot_DC(dc, alpha=0.25, s=0.5) tooltip_plot_DC(dc, num_imgs=2000) if __name__ == '__main__': pass ###
model = VAE(save_dir=root) model.train_loop(loaders, epochs=101, save_freq=20, test_freq=None) ############# # 3) Plot . # ############# from ava.plotting.tooltip_plot import tooltip_plot_DC from ava.plotting.latent_projection import latent_projection_plot_DC # Write random spectrograms into a single directory. loaders['test'].dataset.write_hdf5_files(spec_dirs[0], num_files=1000) # Redefine the DataContainer so it only looks in that single directory. temp_dc = DataContainer(projection_dirs=proj_dirs[:1], \ audio_dirs=audio_dirs[:1], spec_dirs=spec_dirs[:1], plots_dir=root, \ model_filename=model_filename) latent_projection_plot_DC(temp_dc, alpha=0.25, s=0.5) tooltip_plot_DC(temp_dc, num_imgs=2000) ################################ # 4) The world is your oyster. # ################################ latent = dc.request('latent_means') pass if __name__ == '__main__': pass ###