def test_incremental_classifier_weight_update(self): model = IncrementalClassifier(in_features=10) optimizer = SGD(model.parameters(), lr=1e-3) criterion = CrossEntropyLoss() scenario = self.scenario strategy = Naive(model, optimizer, criterion, train_mb_size=100, train_epochs=1, eval_mb_size=100, device='cpu') strategy.evaluator.loggers = [TextLogger(sys.stdout)] # train on first task w_old = model.classifier.weight.clone() b_old = model.classifier.bias.clone() # adaptation. Increase number of classes dataset = scenario.train_stream[4].dataset model.adaptation(dataset) w_new = model.classifier.weight.clone() b_new = model.classifier.bias.clone() # old weights should be copied correctly. assert torch.equal(w_old, w_new[:w_old.shape[0]]) assert torch.equal(b_old, b_new[:w_old.shape[0]]) # shape should be correct. assert w_new.shape[0] == max(dataset.targets) + 1 assert b_new.shape[0] == max(dataset.targets) + 1
def test_incremental_classifier(self): model = SimpleMLP(input_size=6, hidden_size=10) model.classifier = IncrementalClassifier(in_features=10) optimizer = SGD(model.parameters(), lr=1e-3) criterion = CrossEntropyLoss() scenario = self.scenario strategy = Naive(model, optimizer, criterion, train_mb_size=100, train_epochs=1, eval_mb_size=100, device='cpu') strategy.evaluator.loggers = [TextLogger(sys.stdout)] print("Current Classes: ", scenario.train_stream[0].classes_in_this_experience) print("Current Classes: ", scenario.train_stream[4].classes_in_this_experience) # train on first task strategy.train(scenario.train_stream[0]) w_ptr = model.classifier.classifier.weight.data_ptr() b_ptr = model.classifier.classifier.bias.data_ptr() opt_params_ptrs = [ w.data_ptr() for group in optimizer.param_groups for w in group['params'] ] # classifier params should be optimized assert w_ptr in opt_params_ptrs assert b_ptr in opt_params_ptrs # train again on the same task. strategy.train(scenario.train_stream[0]) # parameters should not change. assert w_ptr == model.classifier.classifier.weight.data_ptr() assert b_ptr == model.classifier.classifier.bias.data_ptr() # the same classifier params should still be optimized assert w_ptr in opt_params_ptrs assert b_ptr in opt_params_ptrs # update classifier with new classes. old_w_ptr, old_b_ptr = w_ptr, b_ptr strategy.train(scenario.train_stream[4]) opt_params_ptrs = [ w.data_ptr() for group in optimizer.param_groups for w in group['params'] ] new_w_ptr = model.classifier.classifier.weight.data_ptr() new_b_ptr = model.classifier.classifier.bias.data_ptr() # weights should change. assert old_w_ptr != new_w_ptr assert old_b_ptr != new_b_ptr # Old params should not be optimized. New params should be optimized. assert old_w_ptr not in opt_params_ptrs assert old_b_ptr not in opt_params_ptrs assert new_w_ptr in opt_params_ptrs assert new_b_ptr in opt_params_ptrs
def test_periodic_eval(self): model = SimpleMLP(input_size=6, hidden_size=10) model.classifier = IncrementalClassifier(model.classifier.in_features) benchmark = get_fast_benchmark() optimizer = SGD(model.parameters(), lr=1e-3) criterion = CrossEntropyLoss() curve_key = "Top1_Acc_Stream/eval_phase/train_stream/Task000" ################### # Case #1: No eval ################### # we use stream acc. because it emits a single value # for each eval loop. acc = StreamAccuracy() strategy = Naive( model, optimizer, criterion, train_epochs=2, eval_every=-1, evaluator=EvaluationPlugin(acc), ) strategy.train(benchmark.train_stream[0]) # eval is not called in this case assert len(strategy.evaluator.get_all_metrics()) == 0 ################### # Case #2: Eval at the end only and before training ################### acc = StreamAccuracy() evalp = EvaluationPlugin(acc) strategy = Naive( model, optimizer, criterion, train_epochs=2, eval_every=0, evaluator=evalp, ) strategy.train(benchmark.train_stream[0]) # eval is called once at the end of the training loop curve = strategy.evaluator.get_all_metrics()[curve_key][1] assert len(curve) == 2 ################### # Case #3: Eval after every epoch and before training ################### acc = StreamAccuracy() strategy = Naive( model, optimizer, criterion, train_epochs=2, eval_every=1, evaluator=EvaluationPlugin(acc), ) strategy.train(benchmark.train_stream[0]) curve = strategy.evaluator.get_all_metrics()[curve_key][1] assert len(curve) == 3 ################### # Case #4: Eval in iteration mode ################### acc = StreamAccuracy() strategy = Naive( model, optimizer, criterion, train_epochs=2, eval_every=100, evaluator=EvaluationPlugin(acc), peval_mode="iteration", ) strategy.train(benchmark.train_stream[0]) curve = strategy.evaluator.get_all_metrics()[curve_key][1] assert len(curve) == 5