示例#1
0
from avera.feature_generators.CompositeGenerator import CompositeGenerator
from avera.datamanagement.SymbolDataManager import SymbolDataManager
from avera.datamanagement.SymbolDataUpdater import SymbolDataUpdater

symbol = "EURUSD_i"
timeframe = "H1"
obsFeatList = ["open", "close"]

#terminal = MT5Terminal()
#dataUpdater = SymbolDataUpdater()
dataManager = SymbolDataManager()

#dataUpdater.fullUpdate(terminal, symbol, timeframe, startDate="2015-01-01 00:00:00")
df = SymbolDataManager().getData(
    symbol, timeframe)  #, normalizeNames=True, normalizeDateTime=True)
df = df.tail(1000)

openerScaleGen = ScalerGenerator(featureList=obsFeatList,
                                 nPoints=50,
                                 flatStack=True,
                                 fitOnStep=False)
openerDiffGen = DiffGenerator(featureList=obsFeatList,
                              nDiffs=1,
                              nPoints=50,
                              flatStack=True,
                              fitOnStep=False)
openerFeatureFactory = CompositeGenerator(
    genList=[openerScaleGen, openerDiffGen])
buyerScaleGen = ScalerGenerator(featureList=obsFeatList,
                                nPoints=50,
                                flatStack=True,
示例#2
0
from avera.feature_generators.DiffGenerator import DiffGenerator
from avera.feature_generators.FeatureScaler import FeatureScaler
from avera.datamanagement.SymbolDataManager import SymbolDataManager
from matplotlib import pyplot as plt
from dateutil import parser

featureList = ["open", "close"]
df = SymbolDataManager().getData("TEST",
                                 "H1",
                                 normalizeDateTime=True,
                                 normalizeNames=True)
df.set_index("datetime", drop=True, inplace=True)
featureScaler = DiffGenerator(featureList=featureList,
                              nDiffs=1,
                              nPoints=4,
                              flatStack=True)
featureScaler = featureScaler.globalFit(df)

print(df.tail(1))
lastDt = list(df.tail(1).index)[0]
print(lastDt)
print(df.loc[lastDt])
print(featureScaler.getFeatByDatetime(lastDt, df))

featureScaler = FeatureScaler()
df = featureScaler.extractFeature(df, featureList)
print(df.loc[lastDt])
                        startDeposit=300, lotSize=0.01, lotCoef=100000, renderFlag=True)
# get size of state and action from environment
openerAgent = DQNAgent(trainEnv.observation_space["opener"], trainEnv.action_space["opener"].n,
                        memorySize=500, batch_size=100, train_start=200, epsilon_min=0.01, epsilon=1, epsilon_decay=0.9993)
buyerAgent = DQNAgent(trainEnv.observation_space["buyer"], trainEnv.action_space["buyer"].n,
                        memorySize=1000, batch_size=200, train_start=300, epsilon_min=0.01, epsilon=1, epsilon_decay=0.9999)
sellerAgent = DQNAgent(trainEnv.observation_space["seller"], trainEnv.action_space["seller"].n,
                        memorySize=1000, batch_size=200, train_start=300, epsilon_min=0.01, epsilon=1, epsilon_decay=0.9999)
agent = CompositeAgent(openerAgent, buyerAgent, sellerAgent)
agent.fit_agent(env=trainEnv, nEpisodes=20, nWarmUp = 1, uniformEps = False, plotScores=True, saveBest=True, saveFreq=2)"""

###############################
# use agent
###############################
#testDf = df.copy()#[int(len(df)*0.9):]
testDf = df.tail(222)  #check scaling at test env
#testDf = testDf[int(len(testDf)*0.8):]

openerEnergyScalerGenerator = W2VScaleGenerator(
    featureList=energyFeatList).loadGenerator("./w2vEnergyScaleGen.pkl")
buyerEnergyScalerGenerator = W2VScaleGenerator(
    featureList=energyFeatList).loadGenerator("./w2vEnergyScaleGen.pkl")
sellerEnergyScalerGenerator = W2VScaleGenerator(
    featureList=energyFeatList).loadGenerator("./w2vEnergyScaleGen.pkl")

openerEnergyDiffGenerator = W2VDiffGenerator(
    featureList=energyFeatList).loadGenerator("./w2vEnergyDiffGen.pkl")
buyerEnergyDiffGenerator = W2VDiffGenerator(
    featureList=energyFeatList).loadGenerator("./w2vEnergyDiffGen.pkl")
sellerEnergyDiffGenerator = W2VDiffGenerator(
    featureList=energyFeatList).loadGenerator("./w2vEnergyDiffGen.pkl")
示例#4
0
                        startDeposit=300, lotSize=0.01, lotCoef=100000, renderFlag=True)
# get size of state and action from environment
openerAgent = DQNAgent(trainEnv.observation_space["opener"], trainEnv.action_space["opener"].n,
                        memorySize=500, batch_size=100, train_start=200, epsilon_min=0.01, epsilon=1, epsilon_decay=1)
buyerAgent = DQNAgent(trainEnv.observation_space["buyer"], trainEnv.action_space["buyer"].n,
                        memorySize=1000, batch_size=200, train_start=300, epsilon_min=0.01, epsilon=1, epsilon_decay=1)
sellerAgent = DQNAgent(trainEnv.observation_space["seller"], trainEnv.action_space["seller"].n,
                        memorySize=1000, batch_size=200, train_start=300, epsilon_min=0.01, epsilon=1, epsilon_decay=1)
agent = CompositeAgent(openerAgent, buyerAgent, sellerAgent)
agent.fit_agent(env=trainEnv, nEpisodes=50, nWarmUp = 0, uniformEps = True, plotScores=True, saveBest=True, saveFreq=2)"""

###############################
# use agent
###############################
#testDf = df.copy()#[int(len(df)*0.9):]
testDf = df.tail(5000)  #check scaling at test env
#testDf = testDf[int(len(testDf)*0.8):]

openerPriceScalerGenerator = W2VScaleGenerator(
    featureList=priceFeatList).loadGenerator("./w2vPriceScaleGen.pkl")
buyerPriceScalerGenerator = W2VScaleGenerator(
    featureList=priceFeatList).loadGenerator("./w2vPriceScaleGen.pkl")
sellerPriceScalerGenerator = W2VScaleGenerator(
    featureList=priceFeatList).loadGenerator("./w2vPriceScaleGen.pkl")

openerPriceDiffGenerator = W2VDiffGenerator(
    featureList=priceFeatList).loadGenerator("./w2vPriceDiffGen.pkl")
buyerPriceDiffGenerator = W2VDiffGenerator(
    featureList=priceFeatList).loadGenerator("./w2vPriceDiffGen.pkl")
sellerPriceDiffGenerator = W2VDiffGenerator(
    featureList=priceFeatList).loadGenerator("./w2vPriceDiffGen.pkl")
from avera.datamanagement.SymbolDataUpdater import SymbolDataUpdater
from avera.terminal.MT5Terminal import MT5Terminal
from avera.mods.HeikenAshiMod import HeikenAshiMod

symbol = "EURUSD_i"
timeframe = "M15"
hkFeatList = ["open", "close", "low", "high"]
volumeFeatList = ["tick_volume"]

#terminal = MT5Terminal()
#dataUpdater = SymbolDataUpdater("../../data/raw/")
dataManager = SymbolDataManager("../../data/raw/")

#dataUpdater.fullUpdate(terminal, symbol, timeframe, startDate="2015-01-01 00:00:00")
df = SymbolDataManager().getData(symbol, timeframe)
df = df.tail(10000)

########
#df = df.tail(10000)
#print("applying heiken ashi mod...")
#enMod = HeikenAshiMod()
#df = enMod.modHistory(df)
#enMod.checkQuality(df)
########
"""priceDiffGenerator = W2VRelativeDiffGenerator(featureList=hkFeatList, nDiffs=1, nPoints = 21, flatStack = False, fitOnStep = False,
                 nIntervals = 10000, w2vSize=32, window=3, iter=100, min_count=0, sample=0.0, sg=0)
volumeDiffGenerator = W2VRelativeDiffGenerator(featureList=volumeFeatList, nDiffs=1, nPoints = 21, flatStack = False, fitOnStep = False,
                 nIntervals = 10000, w2vSize=32, window=3, iter=100, min_count=0, sample=0.0, sg=0)

priceDiffGenerator.setFitMode(True)
priceDiffGenerator = priceDiffGenerator.globalFit(df)
# train agent
################################
openerPriceDiffGenerator = W2VDiffGenerator(featureList=hkFeatList).loadGenerator("./w2vPriceDiffGen.pkl")
buyerPriceDiffGenerator = W2VDiffGenerator(featureList=hkFeatList).loadGenerator("./w2vPriceDiffGen.pkl")
sellerPriceDiffGenerator = W2VDiffGenerator(featureList=hkFeatList).loadGenerator("./w2vPriceDiffGen.pkl")

openerVolumeDiffGenerator = W2VDiffGenerator(featureList=volumeFeatList).loadGenerator("./w2vVolumeDiffGen.pkl")
buyerVolumeDiffGenerator = W2VDiffGenerator(featureList=volumeFeatList).loadGenerator("./w2vVolumeDiffGen.pkl")
sellerVolumeDiffGenerator = W2VDiffGenerator(featureList=volumeFeatList).loadGenerator("./w2vVolumeDiffGen.pkl")

openerCompositeGenerator = W2VCompositeGenerator( [openerPriceDiffGenerator, openerVolumeDiffGenerator], flatStack=False)
buyerCompositeGenerator = W2VCompositeGenerator( [buyerPriceDiffGenerator, buyerVolumeDiffGenerator], flatStack=False)
sellerCompositeGenerator = W2VCompositeGenerator( [sellerPriceDiffGenerator, sellerVolumeDiffGenerator], flatStack=False)

#trainDf = df[:int(len(df)*0.9)]
trainDf = df.tail(2044).head(1022)
#trainDf = trainDf[:int(len(trainDf)*0.5)]
trainEnv = CompositeEnv(trainDf, openerCompositeGenerator, buyerCompositeGenerator, sellerCompositeGenerator,
                        startDeposit=300, lotSize=0.1, lotCoef=100000, renderFlag=True)
# get size of state and action from environment
openerAgent = DQNAgent(trainEnv.observation_space["opener"], trainEnv.action_space["opener"].n,
                        memorySize=500, batch_size=100, train_start=200, epsilon_min=0.05, epsilon=1, epsilon_decay=0.9994)
buyerAgent = DQNAgent(trainEnv.observation_space["buyer"], trainEnv.action_space["buyer"].n,
                        memorySize=1000, batch_size=200, train_start=300, epsilon_min=0.05, epsilon=1, epsilon_decay=0.9999)
sellerAgent = DQNAgent(trainEnv.observation_space["seller"], trainEnv.action_space["seller"].n,
                        memorySize=1000, batch_size=200, train_start=300, epsilon_min=0.05, epsilon=1, epsilon_decay=0.9999)
agent = CompositeAgent(openerAgent, buyerAgent, sellerAgent)
agent.fit_agent(env=trainEnv, nEpisodes=15, nWarmUp = 0, uniformEps = False, plotScores=True, saveBest=True, saveFreq=2)

###############################
# use agent
示例#7
0
sellerVolumeDiffGenerator = W2VDiffGenerator(
    featureList=volumeFeatList).loadGenerator("./w2vVolumeDiffGen.pkl")

openerCompositeGenerator = W2VCompositeGenerator(
    [openerPriceDiffGenerator, openerVolumeDiffGenerator], flatStack=False)
buyerCompositeGenerator = W2VCompositeGenerator(
    [buyerPriceDiffGenerator, buyerVolumeDiffGenerator], flatStack=False)
sellerCompositeGenerator = W2VCompositeGenerator(
    [sellerPriceDiffGenerator, sellerVolumeDiffGenerator], flatStack=False)

print("data updated")
print("start train")
################################
# train agent
################################
trainDf = df.tail(6200).head(5200)
trainEnv = CompositeEnv(trainDf,
                        openerCompositeGenerator,
                        buyerCompositeGenerator,
                        sellerCompositeGenerator,
                        startDeposit=300,
                        lotSize=0.1,
                        lotCoef=100000,
                        spread=18,
                        spreadCoef=0.00001,
                        renderFlag=True)
backTestDf = df.tail(7200).head(1200)
backTestEnv = CompositeEnv(backTestDf,
                           openerCompositeGenerator,
                           buyerCompositeGenerator,
                           sellerCompositeGenerator,