def test_highlevel():
    array = ak.Array([[3.3, 1.1, 5.5, 1.1, 4.4], [4.4, 2.2, 1.1, 6.6],
                      [2.2, 3.3, -1.1]])
    assert ak.argmin(array) == 11
    assert ak.argmax(array) == 8
    assert ak.to_list(ak.argmin(array, axis=0)) == [2, 0, 2, 0, 0]
    assert ak.to_list(ak.argmax(array, axis=0)) == [1, 2, 0, 1, 0]
    assert ak.to_list(ak.argmin(array, axis=1)) == [1, 2, 2]
    assert ak.to_list(ak.argmax(array, axis=1)) == [2, 3, 1]
示例#2
0
def test_argmin_argmax():
    array = ak.Array(
        [
            [
                [
                    np.datetime64("2022"),
                    np.datetime64("2023"),
                    np.datetime64("2025")
                ],
                [],
                [np.datetime64("2027"),
                 np.datetime64("2011")],
                [np.datetime64("2013")],
            ],
            [],
            [[np.datetime64("2017"),
              np.datetime64("2019")], [np.datetime64("2023")]],
        ],
        check_valid=True,
    )
    assert ak.argmin(array) == 4
    assert ak.argmax(array) == 3
    assert ak.to_list(ak.argmin(array, axis=0)) == [[1, 1, 0], [1], [0, 0],
                                                    [0]]
    assert ak.to_list(ak.argmax(array, axis=0)) == [[0, 0, 0], [1], [0, 0],
                                                    [0]]
    assert ak.to_list(ak.argmin(array, axis=1)) == [[3, 2, 0], [], [0, 0]]
    assert ak.to_list(ak.argmax(array, axis=1)) == [[2, 0, 0], [], [1, 0]]

    array = ak.from_iter(
        [
            [[
                np.datetime64("2021-01-20"),
                np.datetime64("2021-01-10"),
                np.datetime64("2021-01-30"),
            ]],
            [[]],
            [None, None, None],
            [[
                np.datetime64("2021-01-14"),
                np.datetime64("2021-01-15"),
                np.datetime64("2021-01-16"),
            ]],
        ],
        highlevel=False,
    )
    assert ak.to_list(array.argmin(axis=2)) == [[1], [None],
                                                [None, None, None], [0]]
示例#3
0
def run_deltar_matching(store,
                        target,
                        drname='deltaR',
                        radius=0.4,
                        unique=False,
                        sort=False):
    """
  Running a delta R matching of some object collection "store" of dimension NxS
  with some target collection "target" of dimension NxT, The return object will
  have dimension NxSxT' where objects in the T' contain all "target" objects
  within the delta R radius. The delta R between the store and target object will
  be stored in the field `deltaR`. If the unique flag is turned on, then objects
  in the target collection will only be associated to the closest object. If the
  sort flag is turned on, then the target collection will be sorted according to
  the computed `deltaR`.
  """
    _, target = ak.unzip(ak.cartesian([store.eta, target], nested=True))
    target[drname] = delta_r(store, target)
    if unique:  # Additional filtering
        t_index = ak.argmin(target[drname], axis=-2)
        s_index = ak.local_index(store.eta, axis=-1)
        _, t_index = ak.unzip(ak.cartesian([s_index, t_index], nested=True))
        target = target[s_index == t_index]

    # Cutting on the computed delta R
    target = target[target[drname] < radius]

    # Sorting according to the computed delta R
    if sort:
        idx = ak.argsort(target[drname], axis=-1)
        target = target[idx]
    return target
示例#4
0
def match(first, second, **kwargs):
    if 'dR_cutoff' not in kwargs:
        raise Exception("Please specify dR cutoff for matching!")
    dR_cutoff = kwargs.pop('dR_cutoff', 0.3)
    return_match_properties = kwargs.pop('return_match_properties', False)
    etas = ak.cartesian({
        'first': first.eta,
        'second': second.eta
    },
                        axis=1,
                        nested=True)
    phis = ak.cartesian({
        'first': first.phi,
        'second': second.phi
    },
                        axis=1,
                        nested=True)
    dR, deta, dphi = delta_r(etas['first'], etas['second'], phis['first'],
                             phis['second'])
    min_idx = ak.argmin(dR, axis=2)
    match_properties = {
        'pt': second.pt[min_idx],
        'eta': second.eta[min_idx],
        'phi': second.phi[min_idx],
    }
    if return_match_properties:
        return ak.any(dR < dR_cutoff, axis=2), match_properties
    else:
        return ak.any(dR < dR_cutoff, axis=2)
    def process(self, events):
        events["Electron", "pdgId"] = -11 * events.Electron.charge
        events["Muon", "pdgId"] = -13 * events.Muon.charge
        events["leptons"] = ak.concatenate(
            [events.Electron, events.Muon],
            axis=1,
        )
        events = events[ak.num(events.leptons) >= 3]

        pair = ak.argcombinations(events.leptons, 2, fields=["l1", "l2"])
        pair = pair[(
            events.leptons[pair.l1].pdgId == -events.leptons[pair.l2].pdgId)]
        with np.errstate(invalid="ignore"):
            pair = pair[ak.singletons(
                ak.argmin(
                    abs((events.leptons[pair.l1] +
                         events.leptons[pair.l2]).mass - 91.2),
                    axis=1,
                ))]
        events = events[ak.num(pair) > 0]
        pair = pair[ak.num(pair) > 0][:, 0]

        l3 = ak.local_index(events.leptons)
        l3 = l3[(l3 != pair.l1) & (l3 != pair.l2)]
        l3 = l3[ak.argmax(events.leptons[l3].pt, axis=1, keepdims=True)]
        l3 = events.leptons[l3][:, 0]

        mt = np.sqrt(2 * l3.pt * events.MET.pt *
                     (1 - np.cos(events.MET.delta_phi(l3))))
        return (hist.Hist.new.Reg(
            100, 0, 200, name="mt",
            label=r"$\ell$-MET transverse mass [GeV]").Double().fill(mt))
 def process(self, events):
     jets = ak.zip(
         {k: getattr(events.Jet, k)
          for k in ["x", "y", "z", "t", "btag"]},
         with_name="LorentzVector",
         behavior=events.Jet.behavior,
     )
     trijet = ak.combinations(jets, 3, fields=["j1", "j2", "j3"])
     trijet["p4"] = trijet.j1 + trijet.j2 + trijet.j3
     trijet = ak.flatten(trijet[ak.singletons(
         ak.argmin(abs(trijet.p4.mass - 172.5), axis=1))])
     maxBtag = np.maximum(
         trijet.j1.btag,
         np.maximum(
             trijet.j2.btag,
             trijet.j3.btag,
         ),
     )
     return {
         "trijetpt":
         hist.Hist.new.Reg(100,
                           0,
                           200,
                           name="pt3j",
                           label="Trijet $p_{T}$ [GeV]").Double().fill(
                               trijet.p4.pt),
         "maxbtag":
         hist.Hist.new.Reg(
             100, 0, 1, name="btag",
             label="Max jet b-tag score").Double().fill(maxBtag),
     }
示例#7
0
def test_issue434():
    a = ak.Array([[0.0, 1.1, 2.2], [3.3, 4.4], [5.5]])
    b = ak.Array([[9.9, 8.8, 7.7], [6.6, 5.5], [4.4]])
    assert ak.to_list(b[ak.argmin(a, axis=1, keepdims=True)]) == [[9.9], [6.6],
                                                                  [4.4]]
    assert ak.to_list(b[ak.argmax(a, axis=1, keepdims=True)]) == [[7.7], [5.5],
                                                                  [4.4]]
示例#8
0
def mask_nearest(ref_eta, ref_phi, obj_eta, obj_phi, threshold=10):
    """
        This function returns the masking to the closest object in dR 
        among the "obj" wrt the "ref", satisfying a minimum threshold
    """
    d_eta = ref_eta - obj_eta
    d_phi = (ref_phi - obj_phi + PI) % (2 * PI) - PI
    drs = numpy.sqrt(d_eta**2 + d_phi**2)
    min_drs = awkward.argmin(drs, axis=1, keepdims=True)
    min_drs_mask = drs[min_drs] < threshold

    return min_drs_mask
示例#9
0
    def nearest(
        self,
        other,
        axis=1,
        metric=lambda a, b: a.delta_r(b),
        return_metric=False,
        threshold=None,
    ):
        """Return nearest object to this one

        Finds item in ``other`` satisfying ``min(metric(self, other))``.
        The two arrays should be broadcast-compatible on all axes other than the specified
        axis, which will be used to form a cartesian product. If axis=None, broadcast arrays directly.
        The return shape will be that of ``self``.

        Parameters
        ----------
            other : awkward.Array
                Another array with same shape in all but ``axis``
            axis : int, optional
                The axis to form the cartesian product (default 1). If None, the metric
                is directly evaluated on the input arrays (i.e. they should broadcast)
            metric : callable
                A function of two arguments, returning a scalar. The default metric is `delta_r`.
            return_metric : bool, optional
                If true, return both the closest object and its metric (default false)
            threshold : Number, optional
                If set, any objects with ``metric > threshold`` will be masked from the result
        """
        mval, (a, b) = self.metric_table(other,
                                         axis,
                                         metric,
                                         return_combinations=True)
        if axis is None:
            # NotImplementedError: awkward.firsts with axis=-1
            axis = other.layout.purelist_depth - 2
        mmin = awkward.argmin(mval, axis=axis + 1, keepdims=True)
        out = awkward.firsts(b[mmin], axis=axis + 1)
        metric = awkward.firsts(mval[mmin], axis=axis + 1)
        if threshold is not None:
            out = out.mask[metric <= threshold]
        if return_metric:
            return out, metric
        return out
def test_minmax():
    assert ak.min(ak.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]])) == 1 + 5j
    assert ak.max(ak.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]])) == 3 + 3j

    assert ak.min(ak.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]),
                  axis=1).tolist() == [
                      1 + 5j,
                      None,
                      3 + 3j,
                  ]
    assert ak.max(ak.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]),
                  axis=1).tolist() == [
                      2 + 4j,
                      None,
                      3 + 3j,
                  ]

    assert ak.argmin(ak.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]),
                     axis=1).tolist() == [0, None, 0]
    assert ak.argmax(ak.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]),
                     axis=1).tolist() == [1, None, 0]
示例#11
0
def test_IndexedOptionArray():
    content = ak.Array([1.1, 2.2, 3.3, 4.4, 5.5]).layout
    index = ak.layout.Index64(np.array([4, 2, -1, -1, 1, 0, 1]))
    array = ak.Array(ak.layout.IndexedOptionArray64(index, content))
    assert array.tolist() == [5.5, 3.3, None, None, 2.2, 1.1, 2.2]
    assert ak.min(array, axis=0) == 1.1
    assert ak.argmin(array, axis=0) == 5

    assert ak.argmin(ak.Array([[2.2, 1.1], [None, 3.3], [2.2, 1.1]]),
                     axis=-1).tolist() == [1, 1, 1]
    assert ak.argmin(ak.Array([[2.2, 1.1], [None, 3.3], [2.2, None, 1.1]]),
                     axis=-1).tolist() == [1, 1, 2]
    assert ak.argmin(ak.Array([[2.2, 1.1], [3.3, None], [2.2, None, 1.1]]),
                     axis=-1).tolist() == [1, 0, 2]

    assert ak.argmin(ak.Array([[2.2, 1.1, 0.0], [], [None, 0.5], [2, 1]]),
                     axis=0).tolist() == [3, 2, 0]
    assert ak.argmin(ak.Array([[2.2, 1.1, 0.0], [], [0.5, None], [2, 1]]),
                     axis=0).tolist() == [2, 3, 0]
    assert ak.argmin(ak.Array([[2.2, 1.1, 0.0], [0.5, None], [], [2, 1]]),
                     axis=0).tolist() == [1, 3, 0]
示例#12
0
    def process(self, events):
        # Dataset parameters
        dataset = events.metadata['dataset']
        year   = self._samples[dataset]['year']
        xsec   = self._samples[dataset]['xsec']
        sow    = self._samples[dataset]['nSumOfWeights' ]
        isData = self._samples[dataset]['isData']
        datasets = ['SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon', 'DoubleElectron']
        for d in datasets: 
          if d in dataset: dataset = dataset.split('_')[0] 

        # Inittialize objects
        met = events.GenMET
        e = events.GenPart[abs(events.GenPart.pdgId)==11]
        mu = events.GenPart[abs(events.GenPart.pdgId)==13]
        tau = events.GenPart[abs(events.GenPart.pdgId)==15]
        j = events.GenJet

        leading_mu = mu[ak.argmax(mu.pt,axis=-1,keepdims=True)]

        leading_e = e[ak.argmax(e.pt,axis=-1,keepdims=True)]

        nElec = ak.num(e)
        nMuon = ak.num(mu)
        nTau  = ak.num(tau)

        twoLeps   = (nElec+nMuon) == 2
        threeLeps = (nElec+nMuon) == 3
        twoElec   = (nElec == 2)
        twoMuon   = (nMuon == 2)
        e0 = e[ak.argmax(e.pt,axis=-1,keepdims=True)]
        m0 = mu[ak.argmax(mu.pt,axis=-1,keepdims=True)]
        elecs = e[ak.argsort(e.pt, ascending=False)]
        muons = mu[ak.argsort(mu.pt, ascending=False)]
        e1 = elecs
        e2 = elecs
        m1 = muons
        m2 = muons

        # Jet selection

        jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt'
        njets = ak.num(j)
        ht = ak.sum(j.pt,axis=-1)
        jets = j[ak.argsort(j.pt, ascending=False)]
        j0 = j[ak.argmax(j.pt,axis=-1,keepdims=True)]
        j1 = jets
        j2 = jets
        j3 = jets
        nbtags = ak.num(j[abs(j.hadronFlavour)==5])

        ##################################################################
        ### 2 same-sign leptons
        ##################################################################

        # emu
        singe = e [(nElec==1)&(nMuon==1)&(e .pt>-1)]
        singm = mu[(nElec==1)&(nMuon==1)&(mu.pt>-1)]
        em = ak.cartesian({"e":singe,"m":singm})
        emSSmask = (em.e.pdgId*em.m.pdgId>0)
        emSS = em[emSSmask]
        nemSS = len(ak.flatten(emSS))

        year = 2018
        lepSF_emSS = GetLeptonSF(mu.pt, mu.eta, 'm', e.pt, e.eta, 'e', year=year)

        # ee and mumu
        # pt>-1 to preserve jagged dimensions
        ee = e [(nElec==2)&(nMuon==0)&(e.pt>-1)]
        mm = mu[(nElec==0)&(nMuon==2)&(mu.pt>-1)]

        eepairs = ak.combinations(ee, 2, fields=["e0","e1"])
        eeSSmask = (eepairs.e0.pdgId*eepairs.e1.pdgId>0)
        eeonZmask  = (np.abs((eepairs.e0+eepairs.e1).mass-91.2)<10)
        eeoffZmask = (eeonZmask==0)

        mmpairs = ak.combinations(mm, 2, fields=["m0","m1"])
        mmSSmask = (mmpairs.m0.pdgId*mmpairs.m1.pdgId>0)
        mmonZmask = (np.abs((mmpairs.m0+mmpairs.m1).mass-91.2)<10)
        mmoffZmask = (mmonZmask==0)

        eeSSonZ  = eepairs[eeSSmask &  eeonZmask]
        eeSSoffZ = eepairs[eeSSmask & eeoffZmask]
        mmSSonZ  = mmpairs[mmSSmask &  mmonZmask]
        mmSSoffZ = mmpairs[mmSSmask & mmoffZmask]
        neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ))
        nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ))

        lepSF_eeSS = GetLeptonSF(eepairs.e0.pt, eepairs.e0.eta, 'e', eepairs.e1.pt, eepairs.e1.eta, 'e', year=year)
        lepSF_mumuSS = GetLeptonSF(mmpairs.m0.pt, mmpairs.m0.eta, 'm', mmpairs.m1.pt, mmpairs.m1.eta, 'm', year=year)

        print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]'%(neeSS, nemSS, nmmSS))

        # Cuts
        eeSSmask   = (ak.num(eeSSmask[eeSSmask])>0)
        mmSSmask   = (ak.num(mmSSmask[mmSSmask])>0)
        eeonZmask  = (ak.num(eeonZmask[eeonZmask])>0)
        eeoffZmask = (ak.num(eeoffZmask[eeoffZmask])>0)
        mmonZmask  = (ak.num(mmonZmask[mmonZmask])>0)
        mmoffZmask = (ak.num(mmoffZmask[mmoffZmask])>0)
        emSSmask   = (ak.num(emSSmask[emSSmask])>0)


        ##################################################################
        ### 3 leptons
        ##################################################################

        # eem
        muon_eem = mu[(nElec==2)&(nMuon==1)&(mu.pt>-1)]
        elec_eem =  e[(nElec==2)&(nMuon==1)&( e.pt>-1)]
        ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"])

        ee_eemZmask     = (ee_eem.e0.pdgId*ee_eem.e1.pdgId<1)&(np.abs((ee_eem.e0+ee_eem.e1).mass-91.2)<10)
        ee_eemOffZmask  = (ee_eem.e0.pdgId*ee_eem.e1.pdgId<1)&(np.abs((ee_eem.e0+ee_eem.e1).mass-91.2)>10)
        ee_eemZmask     = (ak.num(ee_eemZmask[ee_eemZmask])>0)
        ee_eemOffZmask  = (ak.num(ee_eemOffZmask[ee_eemOffZmask])>0)

        eepair_eem  = (ee_eem.e0+ee_eem.e1)
        trilep_eem = eepair_eem+muon_eem #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem})

        lepSF_eem = GetLeptonSF(ee_eem.e0.pt, ee_eem.e0.eta, 'e', ee_eem.e1.pt, ee_eem.e1.eta, 'e', mu.pt, mu.eta, 'm', year)

        # mme
        muon_mme = mu[(nElec==1)&(nMuon==2)&(mu.pt>-1)]
        elec_mme =  e[(nElec==1)&(nMuon==2)&( e.pt>-1)]

        mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"])
        mm_mmeZmask     = (mm_mme.m0.pdgId*mm_mme.m1.pdgId<1)&(np.abs((mm_mme.m0+mm_mme.m1).mass-91.2)<10)
        mm_mmeOffZmask  = (mm_mme.m0.pdgId*mm_mme.m1.pdgId<1)&(np.abs((mm_mme.m0+mm_mme.m1).mass-91.2)>10)
        mm_mmeZmask     = (ak.num(mm_mmeZmask[mm_mmeZmask])>0)
        mm_mmeOffZmask  = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask])>0)

        mmpair_mme     = (mm_mme.m0+mm_mme.m1)
        trilep_mme     = mmpair_mme+elec_mme

        mZ_mme  = mmpair_mme.mass
        mZ_eem  = eepair_eem.mass
        m3l_eem = trilep_eem.mass
        m3l_mme = trilep_mme.mass

        lepSF_mme = GetLeptonSF(mm_mme.m0.pt, mm_mme.m0.eta, 'm', mm_mme.m1.pt, mm_mme.m1.eta, 'm', e.pt, e.eta, 'e', year)

        # eee and mmm
        eee =   e[(nElec==3)&(nMuon==0)&( e.pt>-1)] 
        mmm =  mu[(nElec==0)&(nMuon==3)&(mu.pt>-1)] 

        eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"])
        mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"])
        ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"])
        mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"])
        ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"])
        mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"])

        lepSF_eee = GetLeptonSF(eee_leps.e0.pt, eee_leps.e0.eta, 'e', eee_leps.e1.pt, eee_leps.e1.eta, 'e', eee_leps.e2.pt, eee_leps.e2.eta, 'e', year)
        lepSF_mmm = GetLeptonSF(mmm_leps.m0.pt, mmm_leps.m0.eta, 'm', mmm_leps.m1.pt, mmm_leps.m1.eta, 'm', mmm_leps.m2.pt, mmm_leps.m2.eta, 'm', year)

        mmSFOS_pairs = mm_pairs[(np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId)) & (mm_pairs.m0.pdgId != mm_pairs.m1.pdgId)]
        offZmask_mm = ak.all(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2)>10., axis=1, keepdims=True) & (ak.num(mmSFOS_pairs)>0)
        onZmask_mm  = ak.any(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2)<10., axis=1, keepdims=True)
      
        eeSFOS_pairs = ee_pairs[(np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId)) & (ee_pairs.e0.pdgId != ee_pairs.e1.pdgId)]
        offZmask_ee = ak.all(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2)>10, axis=1, keepdims=True) & (ak.num(eeSFOS_pairs)>0)
        onZmask_ee  = ak.any(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2)<10, axis=1, keepdims=True)

        # Create masks **for event selection**
        eeeOnZmask  = (ak.num(onZmask_ee[onZmask_ee])>0)
        eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee])>0)
        mmmOnZmask  = (ak.num(onZmask_mm[onZmask_mm])>0)
        mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm])>0)

        # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories)
        ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2),axis=1,keepdims=True)
        ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2),axis=1,keepdims=True)
  
        Zee = eeSFOS_pairs[ZeeMask]
        Zmm = mmSFOS_pairs[ZmmMask]
        eZ0= Zee.e0[ak.num(eeSFOS_pairs)>0]
        eZ1= Zee.e1[ak.num(eeSFOS_pairs)>0]
        eZ = eZ0+eZ1
        mZ0= Zmm.m0[ak.num(mmSFOS_pairs)>0]
        mZ1= Zmm.m1[ak.num(mmSFOS_pairs)>0]
        mZ = mZ0+mZ1
        mZ_eee  = eZ.mass
        mZ_mmm  = mZ.mass

        # And for the W boson
        ZmmIndices = mm_pairs_index[ZmmMask]
        ZeeIndices = ee_pairs_index[ZeeMask]
        eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1]
        mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1]

        triElec = eee_leps.e0+eee_leps.e1+eee_leps.e2
        triMuon = mmm_leps.m0+mmm_leps.m1+mmm_leps.m2
        m3l_eee = triElec.mass
        m3l_mmm = triMuon.mass
    
        # Triggers
        trig_eeSS = passTrigger(events,'ee',isData,dataset)
        trig_mmSS = passTrigger(events,'mm',isData,dataset)
        trig_emSS = passTrigger(events,'em',isData,dataset)
        trig_eee  = passTrigger(events,'eee',isData,dataset)
        trig_mmm  = passTrigger(events,'mmm',isData,dataset)
        trig_eem  = passTrigger(events,'eem',isData,dataset)
        trig_mme  = passTrigger(events,'mme',isData,dataset)

        # MET filters

        # Weights
        genw = np.ones_like(events['MET_pt']) if isData else events['genWeight']

        ### We need weights for: normalization, lepSF, triggerSF, pileup, btagSF...
        weights = {}
        for r in ['all', 'ee', 'mm', 'em', 'eee', 'mmm', 'eem', 'mme']:
          weights[r] = coffea.analysis_tools.Weights(len(events))
          weights[r].add('norm',genw if isData else (xsec/sow)*genw)

        weights['ee'].add('lepSF_eeSS', lepSF_eeSS)
        weights['em'].add('lepSF_emSS', lepSF_emSS)
        weights['mm'].add('lepSF_mmSS', lepSF_mumuSS)
        weights['eee'].add('lepSF_eee', lepSF_eee)
        weights['mmm'].add('lepSF_mmm', lepSF_mmm)
        weights['mme'].add('lepSF_mme', lepSF_mme)
        weights['eem'].add('lepSF_eem', lepSF_eem)

        # Extract the EFT quadratic coefficients and optionally use them to calculate the coefficients on the w**2 quartic function
        # eft_coeffs is never Jagged so convert immediately to numpy for ease of use.
        eft_coeffs = ak.to_numpy(events['EFTfitCoefficients']) if hasattr(events, "EFTfitCoefficients") else None
        eft_w2_coeffs = efth.calc_w2_coeffs(eft_coeffs,self._dtype) if (self._do_errors and eft_coeffs is not None) else None

        # Selections and cuts
        selections = PackedSelection()
        channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS']
        selections.add('eeSSonZ',  (eeonZmask)&(eeSSmask)&(trig_eeSS))
        selections.add('eeSSoffZ', (eeoffZmask)&(eeSSmask)&(trig_eeSS))
        selections.add('mmSSonZ',  (mmonZmask)&(mmSSmask)&(trig_mmSS))
        selections.add('mmSSoffZ', (mmoffZmask)&(mmSSmask)&(trig_mmSS))
        selections.add('emSS',     (emSSmask)&(trig_emSS))

        channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ']
        selections.add('eemSSonZ',   (ee_eemZmask)&(trig_eem))
        selections.add('eemSSoffZ',  (ee_eemOffZmask)&(trig_eem))
        selections.add('mmeSSonZ',   (mm_mmeZmask)&(trig_mme))
        selections.add('mmeSSoffZ',  (mm_mmeOffZmask)&(trig_mme))

        channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ']
        selections.add('eeeSSonZ',   (eeeOnZmask)&(trig_eee))
        selections.add('eeeSSoffZ',  (eeeOffZmask)&(trig_eee))
        selections.add('mmmSSonZ',   (mmmOnZmask)&(trig_mmm))
        selections.add('mmmSSoffZ',  (mmmOffZmask)&(trig_mmm))

        levels = ['base', '2jets', '4jets', '4j1b', '4j2b']
        selections.add('base', (nElec+nMuon>=2))
        selections.add('2jets',(njets>=2))
        selections.add('4jets',(njets>=4))
        selections.add('4j1b',(njets>=4)&(nbtags>=1))
        selections.add('4j2b',(njets>=4)&(nbtags>=2))

        # Variables
        invMass_eeSSonZ  = ( eeSSonZ.e0+ eeSSonZ.e1).mass
        invMass_eeSSoffZ = (eeSSoffZ.e0+eeSSoffZ.e1).mass
        invMass_mmSSonZ  = ( mmSSonZ.m0+ mmSSonZ.m1).mass
        invMass_mmSSoffZ = (mmSSoffZ.m0+mmSSoffZ.m1).mass
        invMass_emSS     = (emSS.e+emSS.m).mass

        varnames = {}
        varnames['met'] = met.pt
        varnames['ht'] = ht
        varnames['njets'] = njets
        varnames['nbtags'] = nbtags
        varnames['invmass'] = {
          'eeSSonZ'   : invMass_eeSSonZ,
          'eeSSoffZ'  : invMass_eeSSoffZ,
          'mmSSonZ'   : invMass_mmSSonZ,
          'mmSSoffZ'  : invMass_mmSSoffZ,
          'emSS'      : invMass_emSS,
          'eemSSonZ'  : mZ_eem,
          'eemSSoffZ' : mZ_eem,
          'mmeSSonZ'  : mZ_mme,
          'mmeSSoffZ' : mZ_mme,
          'eeeSSonZ'  : mZ_eee,
          'eeeSSoffZ' : mZ_eee,
          'mmmSSonZ'  : mZ_mmm,
          'mmmSSoffZ' : mZ_mmm,
        }
        varnames['m3l'] = {
          'eemSSonZ'  : m3l_eem,
          'eemSSoffZ' : m3l_eem,
          'mmeSSonZ'  : m3l_mme,
          'mmeSSoffZ' : m3l_mme,
          'eeeSSonZ'  : m3l_eee,
          'eeeSSoffZ' : m3l_eee,
          'mmmSSonZ'  : m3l_mmm,
          'mmmSSoffZ' : m3l_mmm,
        }
        varnames['e0pt' ] = e0.pt
        varnames['e0eta'] = e0.eta
        varnames['m0pt' ] = m0.pt
        varnames['m0eta'] = m0.eta
        varnames['e1pt' ] = e1
        varnames['e1eta'] = e1
        varnames['e2pt' ] = e2
        varnames['e2eta'] = e2
        varnames['m1pt' ] = m1
        varnames['m1eta'] = m1
        varnames['m2pt' ] = m2
        varnames['m2eta'] = m2
        varnames['j0pt' ] = j0.pt
        varnames['j0eta'] = j0.eta
        varnames['j1pt']  = j1
        varnames['j1eta'] = j1
        varnames['j2pt']  = j2
        varnames['j2eta'] = j2
        varnames['j3pt']  = j3
        varnames['j3eta'] = j3
        varnames['counts'] = np.ones_like(events.GenMET.pt)

        # fill Histos
        hout = self.accumulator.identity()
        normweights = weights['all'].weight().flatten() # Why does it not complain about .flatten() here?
        hout['SumOfEFTweights'].fill(sample=dataset, SumOfEFTweights=varnames['counts'], weight=normweights, eft_coeff=eft_coeffs, eft_err_coeff=eft_w2_coeffs)

        for var, v in varnames.items():
         for ch in channels2LSS+channels3L:
          for lev in levels:
            weight = weights[ ch[:3] if (ch.startswith('eee') or ch.startswith('mmm') or ch.startswith('eem') or ch.startswith('mme')) else ch[:2]].weight()
            cuts = [ch] + [lev]
            cut = selections.all(*cuts)
            weights_flat = weight[cut].flatten() # Why does it not complain about .flatten() here?
            weights_ones = np.ones_like(weights_flat, dtype=np.int)
            eft_coeffs_cut = eft_coeffs[cut] if eft_coeffs is not None else None
            eft_w2_coeffs_cut = eft_w2_coeffs[cut] if eft_w2_coeffs is not None else None
            if var == 'invmass':
              if   ch in ['eeeSSoffZ', 'mmmSSoffZ']: continue
              elif ch in ['eeeSSonZ' , 'mmmSSonZ' ]: continue #values = v[ch]
              else                                 : values = ak.flatten(v[ch][cut])
              hout['invmass'].fill(eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, sample=dataset, channel=ch, cut=lev, invmass=values, weight=weights_flat)
            elif var == 'm3l': 
              if ch in ['eeSSonZ','eeSSoffZ', 'mmSSonZ', 'mmSSoffZ','emSS', 'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ' , 'mmmSSonZ']: continue
              values = ak.flatten(v[ch][cut])
              hout['m3l'].fill(sample=dataset, channel=ch, cut=lev, m3l=values, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
            else:
              values = v[cut]
              if   var == 'ht'    : hout[var].fill(ht=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'met'   : hout[var].fill(met=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'njets' : hout[var].fill(njets=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'nbtags': hout[var].fill(nbtags=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'counts': hout[var].fill(counts=values, sample=dataset, channel=ch, cut=lev, weight=weights_ones)
              elif var == 'j0eta' : 
                if lev == 'base': continue
                values = ak.flatten(values)
                #values=np.asarray(values)
                hout[var].fill(j0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'e0pt'  : 
                if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ']: continue
                values = ak.flatten(values)
                #values=np.asarray(values)
                hout[var].fill(e0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) 
              elif var == 'm0pt'  : 
                if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ']: continue
                values = ak.flatten(values)
                #values=np.asarray(values)
                hout[var].fill(m0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'e0eta' : 
                if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ']: continue
                values = ak.flatten(values)
                #values=np.asarray(values)
                hout[var].fill(e0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'm0eta':
                if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ']: continue
                values = ak.flatten(values)
                #values=np.asarray(values)
                hout[var].fill(m0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'j0pt'  : 
                if lev == 'base': continue
                values = ak.flatten(values)
                #values=np.asarray(values)
                hout[var].fill(j0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'j1pt':
                if lev == "base": continue
                values = values.pt[:,1]
                #values = ak.flatten(values)
                hout[var].fill(j1pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var =='j1eta':
                if lev == 'base': continue
                values = values.eta[:,1]
                hout[var].fill(j1eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'j2pt':
                if lev in ['base', "2jets"]: continue
                values = values.pt[:,2]
                hout[var].fill(j2pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'j2eta':
                if lev in ['base', "2jets"]: continue
                values = values.eta[:,2]
                hout[var].fill(j2eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'j3pt':
                if lev in ['base', "2jets"]: continue
                values = values.pt[:,3]
                hout[var].fill(j3pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'j3eta':
                if lev in ['base', "2jets"]: continue
                values = values.eta[:,3]
                hout[var].fill(j3eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'e1pt':
                if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ', 'mmeSSonZ', 'mmeSSoffZ', 'emSS']: continue
                values = values.pt[:,1]
                hout[var].fill(e1pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'e1eta':
                if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ', 'mmeSSonZ', 'mmeSSoffZ', 'emSS']: continue
                values = values.eta[:,1]
                hout[var].fill(e1eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'e2pt':
                if ch in ['eeeSSonZ', 'eeeSSoffZ']:
                  values = values.pt[:,2]
                  hout[var].fill(e2pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'e2eta':
                if ch in ['eeeSSonZ', 'eeeSSoffZ']:
                  values = values.eta[:,2]
                  hout[var].fill(e2eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'm1pt':
                if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ', 'eemSSonZ', 'eemSSoffZ', 'emSS']: continue
                values = values.pt[:,1]
                hout[var].fill(m1pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'm1eta':
                if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ', 'eemSSonZ', 'eemSSoffZ', 'emSS']: continue
                values = values.eta[:,1]
                hout[var].fill(m1eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'm2pt':
                if ch in ['mmmSSonZ', 'mmmSSoffZ']:
                  values = values.pt[:,2]
                  hout[var].fill(m2pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
              elif var == 'm2eta':
                if ch in ['mmmSSonZ', 'mmmSSoffZ']:
                  values = values.eta[:,2]
                  hout[var].fill(m2eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut)
        return hout
示例#13
0
    def process(self, events):

        # Initialize accumulator
        out = self.accumulator.identity()
        dataset = sample_name
        # events.metadata['dataset']

        # Stop processing if there is no event remain
        if len(events) == 0:
            return out

        # Cut flow
        cut0 = np.zeros(len(events))

        # <----- Helper functions ------>#

        # Sort by PT helper function
        def sort_by_pt(ele, pho, jet):
            ele = ele[ak.argsort(ele.pt, ascending=False, axis=1)]
            pho = pho[ak.argsort(pho.pt, ascending=False, axis=1)]
            jet = jet[ak.argsort(jet.pt, ascending=False, axis=1)]

            return ele, pho, jet

        # Lorentz vectors
        from coffea.nanoevents.methods import vector

        ak.behavior.update(vector.behavior)

        def TLorentz_vector(vec):
            vec = ak.zip(
                {
                    "x": vec.x,
                    "y": vec.y,
                    "z": vec.z,
                    "t": vec.t
                },
                with_name="LorentzVector",
            )
            return vec

        def TLorentz_vector_cylinder(vec):

            vec = ak.zip(
                {
                    "pt": vec.pt,
                    "eta": vec.eta,
                    "phi": vec.phi,
                    "mass": vec.mass,
                },
                with_name="PtEtaPhiMLorentzVector",
            )

            return vec

        # Cut-based ID modification
        @numba.njit
        def PhotonVID(vid, idBit):
            rBit = 0
            for x in range(0, 7):
                rBit |= (1 << x) if ((vid >> (x * 2)) & 0b11 >= idBit) else 0
            return rBit

        # Inverse Sieie and upper limit
        @numba.njit
        def make_fake_obj_mask(Pho, builder):

            # for eventIdx,pho in enumerate(tqdm(Pho)):   # --Event Loop
            for eventIdx, pho in enumerate(Pho):
                builder.begin_list()
                if len(pho) < 1:
                    continue

                for phoIdx, _ in enumerate(pho):  # --Photon Loop

                    vid = Pho[eventIdx][phoIdx].vidNestedWPBitmap
                    vid_cuts1 = PhotonVID(vid, 1)  # Loose photon
                    vid_cuts2 = PhotonVID(vid, 2)  # Medium photon
                    vid_cuts3 = PhotonVID(vid, 3)  # Tight photon

                    # Field name
                    # |0|0|0|0|0|0|0|
                    # |IsoPho|IsoNeu|IsoChg|Sieie|hoe|scEta|PT|

                    # 1. Turn off cut (ex turn off Sieie
                    # |1|1|1|0|1|1|1| = |1|1|1|0|1|1|1|

                    # 2. Inverse cut (ex inverse Sieie)
                    # |1|1|1|1|1|1|1| = |1|1|1|0|1|1|1|

                    # if (vid_cuts2 & 0b1111111 == 0b1111111): # Cut applied
                    # if vid_cuts2 & 0b1111111 == 0b1110111:  # Inverse Sieie
                    if (vid_cuts2 & 0b1110111 == 0b1110111):  # Without Sieie
                        builder.boolean(True)
                    else:
                        builder.boolean(False)

                builder.end_list()

            return builder

        # Golden Json file
        if self._year == "2018":
            injson = "/x5/cms/jwkim/gitdir/JWCorp/JW_analysis/Coffea_WZG/Corrections/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt.RunABCD"

        if self._year == "2017":
            injson = "/x5/cms/jwkim/gitdir/JWCorp/JW_analysis/Coffea_WZG/Corrections/Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt"

        # --- Selection
        Initial_events = events
        # Good Run ( Golden Json files )
        from coffea import lumi_tools

        lumi_mask_builder = lumi_tools.LumiMask(injson)
        lumimask = ak.Array(
            lumi_mask_builder.__call__(events.run, events.luminosityBlock))
        events = events[lumimask]
        # print("{0}%  of files pass good-run conditions".format(len(events)/ len(Initial_events)))

        # Stop processing if there is no event remain
        if len(events) == 0:
            return out

        ##----------- Cut flow1: Passing Triggers

        # double lepton trigger
        is_double_ele_trigger = True
        if not is_double_ele_trigger:
            double_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
        else:
            double_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
            for path in self._doubleelectron_triggers[self._year]:
                if path not in events.HLT.fields:
                    continue
                double_ele_triggers_arr = double_ele_triggers_arr | events.HLT[
                    path]

        # single lepton trigger
        is_single_ele_trigger = True
        if not is_single_ele_trigger:
            single_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
        else:
            single_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
            for path in self._singleelectron_triggers[self._year]:
                if path not in events.HLT.fields:
                    continue
                single_ele_triggers_arr = single_ele_triggers_arr | events.HLT[
                    path]

        events.Electron, events.Photon, events.Jet = sort_by_pt(
            events.Electron, events.Photon, events.Jet)

        # Apply cut1
        Initial_events = events
        # events = events[single_ele_triggers_arr | double_ele_triggers_arr]
        events = events[double_ele_triggers_arr]

        cut1 = np.ones(len(events))

        # Set Particles
        Electron = events.Electron
        Muon = events.Muon
        Photon = events.Photon
        MET = events.MET
        Jet = events.Jet

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out

        #  --Muon ( only used to calculate dR )
        MuSelmask = ((Muon.pt >= 10)
                     & (abs(Muon.eta) <= 2.5)
                     & (Muon.tightId)
                     & (Muon.pfRelIso04_all < 0.15))
        # Muon = ak.mask(Muon,MuSelmask)
        Muon = Muon[MuSelmask]

        ##----------- Cut flow2: Electron Selection

        EleSelmask = ((Electron.pt >= 20)
                      & (np.abs(Electron.eta + Electron.deltaEtaSC) < 1.479)
                      & (Electron.cutBased > 2)
                      & (abs(Electron.dxy) < 0.05)
                      & (abs(Electron.dz) < 0.1)) | (
                          (Electron.pt >= 20)
                          &
                          (np.abs(Electron.eta + Electron.deltaEtaSC) > 1.479)
                          & (np.abs(Electron.eta + Electron.deltaEtaSC) <= 2.5)
                          & (Electron.cutBased > 2)
                          & (abs(Electron.dxy) < 0.1)
                          & (abs(Electron.dz) < 0.2))

        Electron = Electron[EleSelmask]

        # apply cut 2
        Tri_electron_mask = ak.num(Electron) >= 2
        Electron = Electron[Tri_electron_mask]
        Photon = Photon[Tri_electron_mask]
        Jet = Jet[Tri_electron_mask]
        MET = MET[Tri_electron_mask]
        Muon = Muon[Tri_electron_mask]
        events = events[Tri_electron_mask]

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out

        cut2 = np.ones(len(Photon)) * 2

        ##----------- Cut flow3: Photon Selection

        # Basic photon selection
        isgap_mask = (abs(Photon.eta) < 1.442) | ((abs(Photon.eta) > 1.566) &
                                                  (abs(Photon.eta) < 2.5))
        Pixel_seed_mask = ~Photon.pixelSeed
        PT_mask = Photon.pt >= 20

        # dR cut with selected Muon and Electrons
        dr_pho_ele_mask = ak.all(Photon.metric_table(Electron) >= 0.5,
                                 axis=-1)  # default metric table: delta_r
        dr_pho_mu_mask = ak.all(Photon.metric_table(Muon) >= 0.5, axis=-1)

        # Photon basic mask
        PhoSelmask = (PT_mask
                      & isgap_mask
                      & Pixel_seed_mask
                      & dr_pho_ele_mask
                      & dr_pho_mu_mask)
        Photon = Photon[PhoSelmask]
        # Apply cut 3
        A_photon_mask = ak.num(Photon) > 0
        Electron = Electron[A_photon_mask]
        Photon = Photon[A_photon_mask]
        Jet = Jet[A_photon_mask]
        Muon = Muon[A_photon_mask]
        MET = MET[A_photon_mask]
        events = events[A_photon_mask]

        # ID for fake photon
        Photon_template_mask = make_fake_obj_mask(
            Photon, ak.ArrayBuilder()).snapshot()

        Photon = Photon[Photon_template_mask]
        # Apply cut -Fake Photon -
        A_photon_mask = ak.num(Photon) > 0
        Electron = Electron[A_photon_mask]
        Photon = Photon[A_photon_mask]
        Jet = Jet[A_photon_mask]
        Muon = Muon[A_photon_mask]
        MET = MET[A_photon_mask]
        events = events[A_photon_mask]

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out

        cut3 = np.ones(len(Photon)) * 3

        ##-----------  Cut flow4:  Select 2 OSSF electrons from Z
        @numba.njit
        def find_2lep(events_leptons, builder):
            for leptons in events_leptons:

                builder.begin_list()
                nlep = len(leptons)
                for i0 in range(nlep):
                    for i1 in range(i0 + 1, nlep):
                        if leptons[i0].charge + leptons[i1].charge != 0:
                            continue

                        if nlep == 2:
                            builder.begin_tuple(2)
                            builder.index(0).integer(i0)
                            builder.index(1).integer(i1)
                            builder.end_tuple()

                        else:
                            for i2 in range(nlep):
                                if len({i0, i1, i2}) < 3:
                                    continue
                                builder.begin_tuple(3)
                                builder.index(0).integer(i0)
                                builder.index(1).integer(i1)
                                builder.index(2).integer(i2)
                                builder.end_tuple()
                builder.end_list()
            return builder

        ossf_idx = find_2lep(Electron, ak.ArrayBuilder()).snapshot()

        # OSSF cut
        ossf_mask = ak.num(ossf_idx) >= 1
        ossf_idx = ossf_idx[ossf_mask]
        Electron = Electron[ossf_mask]
        Photon = Photon[ossf_mask]
        Jet = Jet[ossf_mask]
        MET = MET[ossf_mask]

        Double_electron = [Electron[ossf_idx[idx]] for idx in "01"]
        from coffea.nanoevents.methods import vector

        ak.behavior.update(vector.behavior)

        Diele = ak.zip({
            "lep1":
            Double_electron[0],
            "lep2":
            Double_electron[1],
            "p4":
            TLorentz_vector(Double_electron[0] + Double_electron[1]),
        })

        bestZ_idx = ak.singletons(
            ak.argmin(abs(Diele.p4.mass - 91.1876), axis=1))
        Diele = Diele[bestZ_idx]

        cut4 = np.ones(len(Electron)) * 4

        ##-----------  Cut flow 5: Event Selection

        def make_leading_pair(target, base):
            return target[ak.argmax(base.pt, axis=1, keepdims=True)]

        leading_pho = make_leading_pair(Photon, Photon)

        # Mee cut
        Mee_cut_mask = ak.firsts(Diele.p4.mass) > 4

        # Electron PT cuts
        Elept_mask = ak.firsts((Diele.lep1.pt >= 25) & (Diele.lep2.pt >= 20))

        # MET cuts
        MET_mask = MET.pt > 20

        # --------Mask -------#
        Event_sel_mask = Mee_cut_mask & Elept_mask & MET_mask
        Diele_sel = Diele[Event_sel_mask]
        leading_pho_sel = leading_pho[Event_sel_mask]
        Jet_sel = Jet[Event_sel_mask]
        MET_sel = MET[Event_sel_mask]

        cut5 = np.ones(len(Diele)) * 5

        # Photon  EE and EB
        isEE_mask = leading_pho.isScEtaEE
        isEB_mask = leading_pho.isScEtaEB
        Pho_EE = leading_pho[isEE_mask & Event_sel_mask]
        Pho_EB = leading_pho[isEB_mask & Event_sel_mask]

        # -------------------- Flatten variables ---------------------------#

        # -- Ele1 --#
        Ele1_PT = ak.flatten(Diele_sel.lep1.pt)
        Ele1_Eta = ak.flatten(Diele_sel.lep1.eta)
        Ele1_Phi = ak.flatten(Diele_sel.lep1.phi)

        # -- Ele2 --#
        Ele2_PT = ak.flatten(Diele_sel.lep2.pt)
        Ele2_Eta = ak.flatten(Diele_sel.lep2.eta)
        Ele2_Phi = ak.flatten(Diele_sel.lep2.phi)

        # -- Pho -- #
        Pho_PT = ak.flatten(leading_pho_sel.pt)
        Pho_Eta = ak.flatten(leading_pho_sel.eta)
        Pho_Phi = ak.flatten(leading_pho_sel.phi)

        # -- Pho EB --#
        Pho_EB_PT = ak.flatten(Pho_EB.pt)
        Pho_EB_Eta = ak.flatten(Pho_EB.eta)
        Pho_EB_Phi = ak.flatten(Pho_EB.phi)
        Pho_EB_Isochg = ak.flatten(Pho_EE.pfRelIso03_chg)
        Pho_EB_Sieie = ak.flatten(Pho_EE.sieie)

        # -- Pho EE --#
        Pho_EE_PT = ak.flatten(Pho_EE.pt)
        Pho_EE_Eta = ak.flatten(Pho_EE.eta)
        Pho_EE_Phi = ak.flatten(Pho_EE.phi)
        Pho_EE_Isochg = ak.flatten(Pho_EE.pfRelIso03_chg)
        Pho_EE_Sieie = ak.flatten(Pho_EE.sieie)

        # --Kinematics --#
        Diele_mass = ak.flatten(Diele_sel.p4.mass)
        eeg_vec = Diele_sel.p4 + leading_pho_sel
        eeg_mass = ak.flatten(eeg_vec.mass)

        leading_ele, subleading_ele = ak.flatten(
            TLorentz_vector_cylinder(Diele_sel.lep1)), ak.flatten(
                TLorentz_vector_cylinder(Diele_sel.lep2))
        dR_e1pho = ak.flatten(
            leading_ele.delta_r(leading_pho_sel))  # dR pho,ele1
        dR_e2pho = ak.flatten(
            subleading_ele.delta_r(leading_pho_sel))  # dR pho,ele2
        dR_jpho = ak.flatten(Jet_sel[:, 0].delta_r(leading_pho_sel))

        MET_PT = ak.to_numpy(MET_sel.pt)

        # -------------------- Sieie bins---------------------------#
        def make_bins(pt, eta, sieie, bin_range_str):

            bin_dict = {
                "PT_1_eta_1": (pt > 20) & (pt < 30) & (eta < 1),
                "PT_1_eta_2": (pt > 20) & (pt < 30) & (eta > 1) & (eta < 1.5),
                "PT_1_eta_3": (pt > 20) & (pt < 30) & (eta > 1.5) & (eta < 2),
                "PT_1_eta_4": (pt > 20) & (pt < 30) & (eta > 2) & (eta < 2.5),
                "PT_2_eta_1": (pt > 30) & (pt < 40) & (eta < 1),
                "PT_2_eta_2": (pt > 30) & (pt < 40) & (eta > 1) & (eta < 1.5),
                "PT_2_eta_3": (pt > 30) & (pt < 40) & (eta > 1.5) & (eta < 2),
                "PT_2_eta_4": (pt > 30) & (pt < 40) & (eta > 2) & (eta < 2.5),
                "PT_3_eta_1": (pt > 40) & (pt < 50) & (eta < 1),
                "PT_3_eta_2": (pt > 40) & (pt < 50) & (eta > 1) & (eta < 1.5),
                "PT_3_eta_3": (pt > 40) & (pt < 50) & (eta > 1.5) & (eta < 2),
                "PT_3_eta_4": (pt > 40) & (pt < 50) & (eta > 2) & (eta < 2.5),
                "PT_4_eta_1": (pt > 50) & (eta < 1),
                "PT_4_eta_2": (pt > 50) & (eta > 1) & (eta < 1.5),
                "PT_4_eta_3": (pt > 50) & (eta > 1.5) & (eta < 2),
                "PT_4_eta_4": (pt > 50) & (eta > 2) & (eta < 2.5),
            }

            binmask = bin_dict[bin_range_str]

            return ak.to_numpy(sieie[binmask])

        bin_name_list = [
            "PT_1_eta_1",
            "PT_1_eta_2",
            "PT_1_eta_3",
            "PT_1_eta_4",
            "PT_2_eta_1",
            "PT_2_eta_2",
            "PT_2_eta_3",
            "PT_2_eta_4",
            "PT_3_eta_1",
            "PT_3_eta_2",
            "PT_3_eta_3",
            "PT_3_eta_4",
            "PT_4_eta_1",
            "PT_4_eta_2",
            "PT_4_eta_3",
            "PT_4_eta_4",
        ]

        binned_sieie_hist = {}
        for name in bin_name_list:
            binned_sieie_hist[name] = make_bins(
                ak.flatten(leading_pho_sel.pt),
                ak.flatten(abs(leading_pho_sel.eta)),
                ak.flatten(leading_pho_sel.sieie),
                name,
            )

        # -------------------- Fill hist ---------------------------#

        # Initial events
        out["sumw"][dataset] += len(Initial_events)

        # print("cut5: ",len(cut5))

        # Cut flow loop
        for cut in [cut0, cut1, cut2, cut3, cut4, cut5]:
            out["cutflow"].fill(dataset=dataset, cutflow=cut)

        # --Ele1 -- #
        out["ele1pt"].fill(dataset=dataset, ele1pt=Ele1_PT)
        out["ele1eta"].fill(dataset=dataset, ele1eta=Ele1_Eta)
        out["ele1phi"].fill(dataset=dataset, ele1phi=Ele1_Phi)

        # --Ele2 -- #
        out["ele2pt"].fill(dataset=dataset, ele2pt=Ele2_PT)
        out["ele2eta"].fill(dataset=dataset, ele2eta=Ele2_Eta)
        out["ele2phi"].fill(dataset=dataset, ele2phi=Ele2_Phi)

        # --Photon-- #

        out["phopt"].fill(dataset=dataset, phopt=Pho_PT)

        out["phoeta"].fill(dataset=dataset, phoeta=Pho_Eta)
        out["phophi"].fill(dataset=dataset, phophi=Pho_Phi)

        # --Photon EB --#
        out["pho_EB_pt"].fill(
            dataset=dataset,
            pho_EB_pt=Pho_EB_PT,
        )
        out["pho_EB_eta"].fill(
            dataset=dataset,
            pho_EB_eta=Pho_EB_Eta,
        )
        out["pho_EB_phi"].fill(
            dataset=dataset,
            pho_EB_phi=Pho_EB_Phi,
        )
        out["pho_EB_sieie"].fill(
            dataset=dataset,
            pho_EB_sieie=Pho_EB_Sieie,
        )
        out["pho_EB_Iso_chg"].fill(dataset=dataset,
                                   pho_EB_Iso_chg=Pho_EB_Isochg)

        # --Photon EE --#
        out["pho_EE_pt"].fill(
            dataset=dataset,
            pho_EE_pt=Pho_EE_PT,
        )
        out["pho_EE_eta"].fill(
            dataset=dataset,
            pho_EE_eta=Pho_EE_Eta,
        )
        out["pho_EE_phi"].fill(
            dataset=dataset,
            pho_EE_phi=Pho_EE_Phi,
        )
        out["pho_EE_sieie"].fill(
            dataset=dataset,
            pho_EE_sieie=Pho_EE_Sieie,
        )
        out["pho_EE_Iso_chg"].fill(dataset=dataset,
                                   pho_EE_Iso_chg=Pho_EE_Isochg)

        # -- Kinematic variables -- #
        out["mass"].fill(dataset=dataset, Mee=Diele_mass)
        out["mass_eea"].fill(dataset=dataset, mass_eea=eeg_mass)
        out["met"].fill(dataset=dataset, met=MET_PT)
        out["dR_ae1"].fill(dataset=dataset, dR_ae1=dR_e1pho)
        out["dR_ae2"].fill(dataset=dataset, dR_ae2=dR_e2pho)
        out["dR_aj"].fill(dataset=dataset, dR_aj=dR_jpho)

        # test_target = binned_sieie_hist['PT_1_eta_1']
        # print("CheckAAA: ",test_target[test_target > 0.05])
        # print("CheckBBB: ",test_target[test_target > 0])

        # -- Binned sieie hist -- #

        if len(binned_sieie_hist["PT_1_eta_1"] > 0):
            out["PT_1_eta_1"].fill(dataset=dataset,
                                   PT_1_eta_1=binned_sieie_hist["PT_1_eta_1"])
        if len(binned_sieie_hist["PT_1_eta_2"] > 0):
            out["PT_1_eta_2"].fill(dataset=dataset,
                                   PT_1_eta_2=binned_sieie_hist["PT_1_eta_2"])
        if len(binned_sieie_hist["PT_1_eta_3"] > 0):
            out["PT_1_eta_3"].fill(dataset=dataset,
                                   PT_1_eta_3=binned_sieie_hist["PT_1_eta_3"])
        if len(binned_sieie_hist["PT_1_eta_4"] > 0):
            out["PT_1_eta_4"].fill(dataset=dataset,
                                   PT_1_eta_4=binned_sieie_hist["PT_1_eta_4"])
        if len(binned_sieie_hist["PT_2_eta_1"] > 0):
            out["PT_2_eta_1"].fill(dataset=dataset,
                                   PT_2_eta_1=binned_sieie_hist["PT_2_eta_1"])
        if len(binned_sieie_hist["PT_2_eta_2"] > 0):
            out["PT_2_eta_2"].fill(dataset=dataset,
                                   PT_2_eta_2=binned_sieie_hist["PT_2_eta_2"])
        if len(binned_sieie_hist["PT_2_eta_3"] > 0):
            out["PT_2_eta_3"].fill(dataset=dataset,
                                   PT_2_eta_3=binned_sieie_hist["PT_2_eta_3"])
        if len(binned_sieie_hist["PT_2_eta_4"] > 0):
            out["PT_2_eta_4"].fill(dataset=dataset,
                                   PT_2_eta_4=binned_sieie_hist["PT_2_eta_4"])
        if len(binned_sieie_hist["PT_3_eta_1"] > 0):
            out["PT_3_eta_1"].fill(dataset=dataset,
                                   PT_3_eta_1=binned_sieie_hist["PT_3_eta_1"])
        if len(binned_sieie_hist["PT_3_eta_2"] > 0):
            out["PT_3_eta_2"].fill(dataset=dataset,
                                   PT_3_eta_2=binned_sieie_hist["PT_3_eta_2"])
        if len(binned_sieie_hist["PT_3_eta_3"] > 0):
            out["PT_3_eta_3"].fill(dataset=dataset,
                                   PT_3_eta_3=binned_sieie_hist["PT_3_eta_3"])
        if len(binned_sieie_hist["PT_3_eta_4"] > 0):
            out["PT_3_eta_4"].fill(dataset=dataset,
                                   PT_3_eta_4=binned_sieie_hist["PT_3_eta_4"])
        if len(binned_sieie_hist["PT_4_eta_1"] > 0):
            out["PT_4_eta_1"].fill(dataset=dataset,
                                   PT_4_eta_1=binned_sieie_hist["PT_4_eta_1"])
        if len(binned_sieie_hist["PT_4_eta_2"] > 0):
            out["PT_4_eta_2"].fill(dataset=dataset,
                                   PT_4_eta_2=binned_sieie_hist["PT_4_eta_2"])
        if len(binned_sieie_hist["PT_4_eta_3"] > 0):
            out["PT_4_eta_3"].fill(dataset=dataset,
                                   PT_4_eta_3=binned_sieie_hist["PT_4_eta_3"])
        if len(binned_sieie_hist["PT_4_eta_4"] > 0):
            print("## show me the last bin: ", binned_sieie_hist["PT_4_eta_4"])
            out["PT_4_eta_4"].fill(dataset=dataset,
                                   PT_4_eta_4=binned_sieie_hist["PT_4_eta_4"])

        return out
    def process(self, events):

        # Initialize accumulator
        out = self.accumulator.identity()
        dataset = sample_name
        #events.metadata['dataset']

        # Data or MC
        isData = 'genWeight' not in events.fields

        #Stop processing if there is no event remain
        if len(events) == 0:
            return out

        # Golden Json file
        if (self._year == "2018") and isData:
            injson = "/x5/cms/jwkim/gitdir/JWCorp/JW_analysis/Coffea_WZG/Corrections/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt.RunABCD"

        if (self._year == "2017") and isData:
            injson = "/x5/cms/jwkim/gitdir/JWCorp/JW_analysis/Coffea_WZG/Corrections/Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt"

        # <----- Get Scale factors ------>#

        if not isData:

            # Egamma reco ID
            get_ele_reco_above20_sf = self._corrections[
                'get_ele_reco_above20_sf'][self._year]
            get_ele_medium_id_sf = self._corrections['get_ele_medium_id_sf'][
                self._year]
            get_pho_medium_id_sf = self._corrections['get_pho_medium_id_sf'][
                self._year]

            # DoubleEG trigger # 2016, 2017 are not applied yet
            if self._year == "2018":
                get_ele_trig_leg1_SF = self._corrections[
                    'get_ele_trig_leg1_SF'][self._year]
                get_ele_trig_leg1_data_Eff = self._corrections[
                    'get_ele_trig_leg1_data_Eff'][self._year]
                get_ele_trig_leg1_mc_Eff = self._corrections[
                    'get_ele_trig_leg1_mc_Eff'][self._year]
                get_ele_trig_leg2_SF = self._corrections[
                    'get_ele_trig_leg2_SF'][self._year]
                get_ele_trig_leg2_data_Eff = self._corrections[
                    'get_ele_trig_leg2_data_Eff'][self._year]
                get_ele_trig_leg2_mc_Eff = self._corrections[
                    'get_ele_trig_leg2_mc_Eff'][self._year]

            # PU weight with custom made npy and multi-indexing
            pu_weight_idx = ak.values_astype(events.Pileup.nTrueInt, "int64")
            pu = self._puweight_arr[pu_weight_idx]

        selection = processor.PackedSelection()

        # Cut flow
        cut0 = np.zeros(len(events))

        # <----- Helper functions ------>#

        #  Sort by PT  helper function
        def sort_by_pt(ele, pho, jet):
            ele = ele[ak.argsort(ele.pt, ascending=False, axis=1)]
            pho = pho[ak.argsort(pho.pt, ascending=False, axis=1)]
            jet = jet[ak.argsort(jet.pt, ascending=False, axis=1)]

            return ele, pho, jet

        # Lorentz vectors
        from coffea.nanoevents.methods import vector
        ak.behavior.update(vector.behavior)

        def TLorentz_vector(vec):
            vec = ak.zip({
                "x": vec.x,
                "y": vec.y,
                "z": vec.z,
                "t": vec.t
            },
                         with_name="LorentzVector")
            return vec

        def TLorentz_vector_cylinder(vec):

            vec = ak.zip(
                {
                    "pt": vec.pt,
                    "eta": vec.eta,
                    "phi": vec.phi,
                    "mass": vec.mass,
                },
                with_name="PtEtaPhiMLorentzVector",
            )

            return vec

        # Cut-based ID modification
        @numba.njit
        def PhotonVID(vid, idBit):
            rBit = 0
            for x in range(0, 7):
                rBit |= (1 << x) if ((vid >> (x * 2)) & 0b11 >= idBit) else 0
            return rBit

        # Inverse Sieie and upper limit
        @numba.njit
        def make_fake_obj_mask(Pho, builder):

            #for eventIdx,pho in enumerate(tqdm(Pho)):   # --Event Loop
            for eventIdx, pho in enumerate(Pho):
                builder.begin_list()
                if len(pho) < 1: continue

                for phoIdx, _ in enumerate(pho):  # --Photon Loop

                    vid = Pho[eventIdx][phoIdx].vidNestedWPBitmap
                    vid_cuts1 = PhotonVID(vid, 1)  # Loose photon
                    vid_cuts2 = PhotonVID(vid, 2)  # Medium photon
                    vid_cuts3 = PhotonVID(vid, 3)  # Tight photon

                    # Field name
                    # |0|0|0|0|0|0|0|
                    # |IsoPho|IsoNeu|IsoChg|Sieie|hoe|scEta|PT|

                    # 1. Turn off cut (ex turn off Sieie
                    # |1|1|1|0|1|1|1| = |1|1|1|0|1|1|1|

                    # 2. Inverse cut (ex inverse Sieie)
                    # |1|1|1|1|1|1|1| = |1|1|1|0|1|1|1|

                    #if (vid_cuts2 & 0b1111111 == 0b1111111): # Cut applied
                    #if (vid_cuts2 & 0b1111111 == 0b1110111): # Inverse Sieie
                    if (vid_cuts2 & 0b1110111 == 0b1110111):  # Without Sieie

                        builder.boolean(True)

                    else:

                        builder.boolean(False)

                builder.end_list()

            return builder

        # <----- Selection ------>#

        Initial_events = events
        # Good Run ( Golden Json files )
        from coffea import lumi_tools

        if isData:
            lumi_mask_builder = lumi_tools.LumiMask(injson)
            lumimask = ak.Array(
                lumi_mask_builder.__call__(events.run, events.luminosityBlock))
            events = events[lumimask]
            #print("{0}%  of files pass good-run conditions".format(len(events)/ len(Initial_events)))

        # Stop processing if there is no event remain
        if len(events) == 0:
            return out

        ##----------- Cut flow1: Passing Triggers

        # double lepton trigger
        is_double_ele_trigger = True
        if not is_double_ele_trigger:
            double_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
        else:
            double_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
            for path in self._doubleelectron_triggers[self._year]:
                if path not in events.HLT.fields: continue
                double_ele_triggers_arr = double_ele_triggers_arr | events.HLT[
                    path]

        # single lepton trigger
        is_single_ele_trigger = True
        if not is_single_ele_trigger:
            single_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
        else:
            single_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
            for path in self._singleelectron_triggers[self._year]:
                if path not in events.HLT.fields: continue
                single_ele_triggers_arr = single_ele_triggers_arr | events.HLT[
                    path]

        events.Electron, events.Photon, events.Jet = sort_by_pt(
            events.Electron, events.Photon, events.Jet)

        # Good Primary vertex
        nPV = events.PV.npvsGood
        if not isData: nPV = nPV * pu
        nPV_nw = nPV

        # Apply cut1
        events = events[double_ele_triggers_arr]
        if not isData: pu = pu[double_ele_triggers_arr]

        cut1 = np.ones(len(events))

        # Set Particles
        Electron = events.Electron
        Muon = events.Muon
        Photon = events.Photon
        MET = events.MET
        Jet = events.Jet

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out

        # --Gen Photon for dR
        genparts = events.GenPart
        pdgID_mask = (genparts.pdgId == 22)
        # mask2: isPrompt | fromHardProcess | isLastCopy
        mask2 = (1 << 0) | (1 << 8) | (1 << 13)
        # https://github.com/PKUHEPEWK/WGamma/blob/master/2018/wgRealPhotonTemplateModule.py

        status_mask = ((genparts.statusFlags & mask2) == mask2)
        gen_photons = genparts[pdgID_mask & status_mask]

        assert (ak.all(ak.num(gen_photons) == 1)
                )  # Raise error if len(gen_photon) != 1

        #  --Muon ( only used to calculate dR )
        MuSelmask = (Muon.pt >= 10) & (abs(
            Muon.eta) <= 2.5) & (Muon.tightId) & (Muon.pfRelIso04_all < 0.15)
        Muon = Muon[MuSelmask]

        ##----------- Cut flow2: Electron Selection

        EleSelmask = ((Electron.pt >= 20) & (np.abs(Electron.eta + Electron.deltaEtaSC) < 1.479)  &  (Electron.cutBased > 2) & (abs(Electron.dxy) < 0.05) & (abs(Electron.dz) < 0.1)) | \
           ((Electron.pt >= 20) & (np.abs(Electron.eta + Electron.deltaEtaSC) > 1.479) & (np.abs(Electron.eta + Electron.deltaEtaSC) <= 2.5) & (Electron.cutBased > 2) & (abs(Electron.dxy) < 0.1) & (abs(Electron.dz) < 0.2))

        Electron = Electron[EleSelmask]

        # apply cut 2
        Tri_electron_mask = ak.num(Electron) >= 2
        Electron = Electron[Tri_electron_mask]
        Photon = Photon[Tri_electron_mask]
        Jet = Jet[Tri_electron_mask]
        MET = MET[Tri_electron_mask]
        Muon = Muon[Tri_electron_mask]
        if not isData: pu = pu[Tri_electron_mask]
        events = events[Tri_electron_mask]
        gen_photons = gen_photons[Tri_electron_mask]

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out

        cut2 = np.ones(len(Photon)) * 2

        ##----------- Cut flow3: Photon Selection

        # Basic photon selection
        isgap_mask = (abs(Photon.eta) < 1.442) | ((abs(Photon.eta) > 1.566) &
                                                  (abs(Photon.eta) < 2.5))
        Pixel_seed_mask = ~Photon.pixelSeed
        PT_mask = Photon.pt >= 20

        # dR cut with selected Muon and Electrons
        dr_pho_ele_mask = ak.all(Photon.metric_table(Electron) >= 0.5,
                                 axis=-1)  # default metric table: delta_r
        dr_pho_mu_mask = ak.all(Photon.metric_table(Muon) >= 0.5, axis=-1)

        PhoSelmask = PT_mask & isgap_mask & Pixel_seed_mask & dr_pho_ele_mask & dr_pho_mu_mask
        Photon = Photon[PhoSelmask]

        # Apply cut 3
        A_photon_mask = ak.num(Photon) > 0
        Electron = Electron[A_photon_mask]
        Photon = Photon[A_photon_mask]
        Jet = Jet[A_photon_mask]
        Muon = Muon[A_photon_mask]
        MET = MET[A_photon_mask]
        if not isData: pu = pu[A_photon_mask]
        events = events[A_photon_mask]
        gen_photons = gen_photons[A_photon_mask]

        Photon_template_mask = make_fake_obj_mask(
            Photon, ak.ArrayBuilder()).snapshot()
        Photon = Photon[Photon_template_mask]

        # Apply cut 3
        A_photon_mask = ak.num(Photon) > 0
        Electron = Electron[A_photon_mask]
        Photon = Photon[A_photon_mask]
        Jet = Jet[A_photon_mask]
        Muon = Muon[A_photon_mask]
        MET = MET[A_photon_mask]
        if not isData: pu = pu[A_photon_mask]
        events = events[A_photon_mask]
        gen_photons = gen_photons[A_photon_mask]

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out

        cut3 = np.ones(len(Photon)) * 3

        ## --  Additional photon selection: Photon gen-matching

        # Choose Photons that dR(genPhoton,Photon) <= 0.1
        gen_match_photon_mask = ak.all(Photon.metric_table(gen_photons) <= 0.1,
                                       axis=-1)

        # Apply cut
        Photon = Photon[gen_match_photon_mask]
        gen_match_photon_evt_mask = ak.num(Photon) >= 1

        Electron = Electron[gen_match_photon_evt_mask]
        Photon = Photon[gen_match_photon_evt_mask]
        Jet = Jet[gen_match_photon_evt_mask]
        MET = MET[gen_match_photon_evt_mask]
        gen_photons = gen_photons[gen_match_photon_evt_mask]
        if not isData: pu = pu[gen_match_photon_evt_mask]
        events = events[gen_match_photon_evt_mask]

        ##-----------  Cut flow4:  Select 2 OSSF electrons from Z
        @numba.njit
        def find_2lep(events_leptons, builder):
            for leptons in events_leptons:

                builder.begin_list()
                nlep = len(leptons)
                for i0 in range(nlep):
                    for i1 in range(i0 + 1, nlep):
                        if leptons[i0].charge + leptons[i1].charge != 0:
                            continue

                        if nlep == 2:
                            builder.begin_tuple(2)
                            builder.index(0).integer(i0)
                            builder.index(1).integer(i1)
                            builder.end_tuple()

                        else:
                            for i2 in range(nlep):
                                if len({i0, i1, i2}) < 3: continue
                                builder.begin_tuple(3)
                                builder.index(0).integer(i0)
                                builder.index(1).integer(i1)
                                builder.index(2).integer(i2)
                                builder.end_tuple()
                builder.end_list()
            return builder

        ossf_idx = find_2lep(Electron, ak.ArrayBuilder()).snapshot()

        # OSSF cut
        ossf_mask = ak.num(ossf_idx) >= 1
        ossf_idx = ossf_idx[ossf_mask]
        Electron = Electron[ossf_mask]
        Photon = Photon[ossf_mask]
        Jet = Jet[ossf_mask]
        MET = MET[ossf_mask]
        events = events[ossf_mask]
        if not isData: pu = pu[ossf_mask]

        Double_electron = [Electron[ossf_idx[idx]] for idx in "01"]
        from coffea.nanoevents.methods import vector
        ak.behavior.update(vector.behavior)

        Diele = ak.zip({
            "lep1":
            Double_electron[0],
            "lep2":
            Double_electron[1],
            "p4":
            TLorentz_vector(Double_electron[0] + Double_electron[1])
        })

        bestZ_idx = ak.singletons(
            ak.argmin(abs(Diele.p4.mass - 91.1876), axis=1))
        Diele = Diele[bestZ_idx]

        # Stop processing if there is no event remain
        if len(Electron) == 0:
            return out
        cut4 = np.ones(len(Electron)) * 4

        leading_ele = Diele.lep1
        subleading_ele = Diele.lep2

        def make_leading_pair(target, base):
            return target[ak.argmax(base.pt, axis=1, keepdims=True)]

        leading_pho = make_leading_pair(Photon, Photon)

        # -- Scale Factor for each electron

        # Trigger weight helper function
        def Trigger_Weight(eta1, pt1, eta2, pt2):
            per_ev_MC =\
            get_ele_trig_leg1_mc_Eff(eta1,pt1) * get_ele_trig_leg2_mc_Eff(eta2,pt2) +\
            get_ele_trig_leg1_mc_Eff(eta2,pt2) * get_ele_trig_leg2_mc_Eff(eta1,pt1) -\
            get_ele_trig_leg1_mc_Eff(eta1,pt1) * get_ele_trig_leg1_mc_Eff(eta2,pt2)

            per_ev_data =\
            get_ele_trig_leg1_data_Eff(eta1,pt1) * get_ele_trig_leg1_SF(eta1,pt1) * get_ele_trig_leg2_data_Eff(eta2,pt2) * get_ele_trig_leg2_SF(eta2,pt2) +\
            get_ele_trig_leg1_data_Eff(eta2,pt2) * get_ele_trig_leg1_SF(eta2,pt2) * get_ele_trig_leg2_data_Eff(eta1,pt1) * get_ele_trig_leg2_SF(eta1,pt1) -\
            get_ele_trig_leg1_data_Eff(eta1,pt1) * get_ele_trig_leg1_SF(eta1,pt1) * get_ele_trig_leg1_data_Eff(eta2,pt2) * get_ele_trig_leg1_SF(eta2,pt2)

            return per_ev_data / per_ev_MC

        if not isData:

            ## -------------< Egamma ID and Reco Scale factor > -----------------##
            get_pho_medium_id_sf = get_pho_medium_id_sf(
                ak.flatten(leading_pho.eta), ak.flatten(leading_pho.pt))

            ele_reco_sf = get_ele_reco_above20_sf(
                ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta),
                ak.flatten(leading_ele.pt)) * get_ele_reco_above20_sf(
                    ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta),
                    ak.flatten(subleading_ele.pt))

            ele_medium_id_sf = get_ele_medium_id_sf(
                ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta),
                ak.flatten(leading_ele.pt)) * get_ele_medium_id_sf(
                    ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta),
                    ak.flatten(subleading_ele.pt))

            ## -------------< Double Electron Trigger Scale factor > -----------------##
            eta1 = ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta)
            eta2 = ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta)
            pt1 = ak.flatten(leading_ele.pt)
            pt2 = ak.flatten(subleading_ele.pt)

            # -- 2017,2016 are not applied yet
            if self._year == '2018':
                ele_trig_weight = Trigger_Weight(eta1, pt1, eta2, pt2)

        ##----------- Cut flow5: Event selection

        # Mee cut
        Mee_cut_mask = ak.firsts(Diele.p4.mass) > 4

        # Electron PT cuts
        Elept_mask = ak.firsts((Diele.lep1.pt >= 25) & (Diele.lep2.pt >= 20))

        # MET cuts
        MET_mask = MET.pt > 20

        # --------Mask -------#
        Event_sel_mask = Mee_cut_mask & Elept_mask & MET_mask
        Diele_sel = Diele[Event_sel_mask]
        leading_pho_sel = leading_pho[Event_sel_mask]
        Jet_sel = Jet[Event_sel_mask]
        MET_sel = MET[Event_sel_mask]

        # Photon  EE and EB
        isEE_mask = leading_pho.isScEtaEE
        isEB_mask = leading_pho.isScEtaEB
        Pho_EE = leading_pho[isEE_mask & Event_sel_mask]
        Pho_EB = leading_pho[isEB_mask & Event_sel_mask]

        #Stop processing if there is no event remain
        if len(leading_pho_sel) == 0:
            return out

        cut5 = np.ones(len(Diele)) * 5

        # -------------------- Flatten variables ---------------------------#

        # -- Ele1 --#
        Ele1_PT = ak.flatten(Diele_sel.lep1.pt)
        Ele1_Eta = ak.flatten(Diele_sel.lep1.eta)
        Ele1_Phi = ak.flatten(Diele_sel.lep1.phi)

        # -- Ele2 --#
        Ele2_PT = ak.flatten(Diele_sel.lep2.pt)
        Ele2_Eta = ak.flatten(Diele_sel.lep2.eta)
        Ele2_Phi = ak.flatten(Diele_sel.lep2.phi)

        # -- Pho -- #
        Pho_PT = ak.flatten(leading_pho_sel.pt)
        Pho_Eta = ak.flatten(leading_pho_sel.eta)
        Pho_Phi = ak.flatten(leading_pho_sel.phi)

        # -- Pho EB --#
        Pho_EB_PT = ak.flatten(Pho_EB.pt)
        Pho_EB_Eta = ak.flatten(Pho_EB.eta)
        Pho_EB_Phi = ak.flatten(Pho_EB.phi)
        Pho_EB_Isochg = ak.flatten(Pho_EE.pfRelIso03_chg)
        Pho_EB_Sieie = ak.flatten(Pho_EE.sieie)

        # -- Pho EE --#
        Pho_EE_PT = ak.flatten(Pho_EE.pt)
        Pho_EE_Eta = ak.flatten(Pho_EE.eta)
        Pho_EE_Phi = ak.flatten(Pho_EE.phi)
        Pho_EE_Isochg = ak.flatten(Pho_EE.pfRelIso03_chg)
        Pho_EE_Sieie = ak.flatten(Pho_EE.sieie)

        # --Kinematics --#
        Diele_mass = ak.flatten(Diele_sel.p4.mass)

        leading_ele, subleading_ele = ak.flatten(
            TLorentz_vector_cylinder(Diele_sel.lep1)), ak.flatten(
                TLorentz_vector_cylinder(Diele_sel.lep2))
        dR_e1pho = ak.flatten(
            leading_ele.delta_r(leading_pho_sel))  # dR pho,ele1
        dR_e2pho = ak.flatten(
            subleading_ele.delta_r(leading_pho_sel))  # dR pho,ele2
        dR_jpho = ak.flatten(Jet_sel[:, 0].delta_r(leading_pho_sel))

        MET_PT = ak.to_numpy(MET_sel.pt)

        # -------------------- Sieie bins---------------------------#
        def make_bins(pt, eta, sieie, bin_range_str):

            bin_dict = {
                'PT_1_eta_1': (pt > 20) & (pt < 30) & (eta < 1),
                'PT_1_eta_2': (pt > 20) & (pt < 30) & (eta > 1) & (eta < 1.5),
                'PT_1_eta_3': (pt > 20) & (pt < 30) & (eta > 1.5) & (eta < 2),
                'PT_1_eta_4': (pt > 20) & (pt < 30) & (eta > 2) & (eta < 2.5),
                'PT_2_eta_1': (pt > 30) & (pt < 40) & (eta < 1),
                'PT_2_eta_2': (pt > 30) & (pt < 40) & (eta > 1) & (eta < 1.5),
                'PT_2_eta_3': (pt > 30) & (pt < 40) & (eta > 1.5) & (eta < 2),
                'PT_2_eta_4': (pt > 30) & (pt < 40) & (eta > 2) & (eta < 2.5),
                'PT_3_eta_1': (pt > 40) & (pt < 50) & (eta < 1),
                'PT_3_eta_2': (pt > 40) & (pt < 50) & (eta > 1) & (eta < 1.5),
                'PT_3_eta_3': (pt > 40) & (pt < 50) & (eta > 1.5) & (eta < 2),
                'PT_3_eta_4': (pt > 40) & (pt < 50) & (eta > 2) & (eta < 2.5),
                'PT_4_eta_1': (pt > 50) & (eta < 1),
                'PT_4_eta_2': (pt > 50) & (eta > 1) & (eta < 1.5),
                'PT_4_eta_3': (pt > 50) & (eta > 1.5) & (eta < 2),
                'PT_4_eta_4': (pt > 50) & (eta > 2) & (eta < 2.5)
            }

            binmask = bin_dict[bin_range_str]

            return ak.to_numpy(sieie[binmask]), binmask

        bin_name_list = [
            'PT_1_eta_1', 'PT_1_eta_2', 'PT_1_eta_3', 'PT_1_eta_4',
            'PT_2_eta_1', 'PT_2_eta_2', 'PT_2_eta_3', 'PT_2_eta_4',
            'PT_3_eta_1', 'PT_3_eta_2', 'PT_3_eta_3', 'PT_3_eta_4',
            'PT_4_eta_1', 'PT_4_eta_2', 'PT_4_eta_3', 'PT_4_eta_4'
        ]

        binned_sieie_hist = {}
        binmask_dict = {}
        for name in bin_name_list:
            binned_sieie_hist[name], _ = make_bins(
                ak.flatten(leading_pho_sel.pt),
                ak.flatten(abs(leading_pho_sel.eta)),
                ak.flatten(leading_pho_sel.sieie), name)
            _, binmask_dict[name] = make_bins(ak.flatten(leading_pho.pt),
                                              ak.flatten(abs(leading_pho.eta)),
                                              ak.flatten(leading_pho.sieie),
                                              name)

        print("Show me the last bin: ", binned_sieie_hist['PT_4_eta_4'])

        # --- Apply weight and hist
        weights = processor.Weights(len(cut4))

        # --- skim cut-weight
        def skim_weight(arr):
            mask1 = ~ak.is_none(arr)
            subarr = arr[mask1]
            mask2 = subarr != 0
            return ak.to_numpy(subarr[mask2])

        cuts = Event_sel_mask
        cuts_pho_EE = ak.flatten(isEE_mask)
        cuts_pho_EB = ak.flatten(isEB_mask)

        print(
            "cut0: {0}, cut1: {1}, cut2: {2}, cut3: {3}, cut4: {4} ,cut5 {5} ".
            format(len(Initial_events), len(cut1), len(cut2), len(cut3),
                   len(cut4), len(cut5)))

        # Weight and SF here
        if not isData:
            weights.add('pileup', pu)
            weights.add('ele_id', ele_medium_id_sf)
            weights.add('pho_id', get_pho_medium_id_sf)
            weights.add('ele_reco', ele_reco_sf)

            # 2016,2017 are not applied yet
            if self._year == "2018":
                weights.add('ele_trigger', ele_trig_weight)

        # ---------------------------- Fill hist --------------------------------------#

        # Initial events
        out["sumw"][dataset] += len(Initial_events)

        # Cut flow loop
        for cut in [cut0, cut1, cut2, cut3, cut4, cut5]:
            out["cutflow"].fill(dataset=dataset, cutflow=cut)

        # Primary vertex
        out['nPV'].fill(
            dataset=dataset,
            nPV=nPV,
        )
        out['nPV_nw'].fill(dataset=dataset, nPV_nw=nPV_nw)

        # Fill hist

        # -- met -- #
        out["met"].fill(dataset=dataset,
                        met=MET_PT,
                        weight=skim_weight(weights.weight() * cuts))

        # --mass -- #
        out["mass"].fill(dataset=dataset,
                         mass=Diele_mass,
                         weight=skim_weight(weights.weight() * cuts))
        # -- Ele1 -- #
        out["ele1pt"].fill(dataset=dataset,
                           ele1pt=Ele1_PT,
                           weight=skim_weight(weights.weight() * cuts))
        out["ele1eta"].fill(dataset=dataset,
                            ele1eta=Ele1_Eta,
                            weight=skim_weight(weights.weight() * cuts))
        out["ele1phi"].fill(dataset=dataset,
                            ele1phi=Ele1_Phi,
                            weight=skim_weight(weights.weight() * cuts))

        # --Ele2 --#
        out["ele2pt"].fill(dataset=dataset,
                           ele2pt=Ele2_PT,
                           weight=skim_weight(weights.weight() * cuts))
        out["ele2eta"].fill(dataset=dataset,
                            ele2eta=Ele2_Eta,
                            weight=skim_weight(weights.weight() * cuts))
        out["ele2phi"].fill(dataset=dataset,
                            ele2phi=Ele2_Phi,
                            weight=skim_weight(weights.weight() * cuts))

        # -- Photon -- #

        out["phopt"].fill(dataset=dataset,
                          phopt=Pho_PT,
                          weight=skim_weight(weights.weight() * cuts))
        out["phoeta"].fill(dataset=dataset,
                           phoeta=Pho_Eta,
                           weight=skim_weight(weights.weight() * cuts))
        out["phophi"].fill(dataset=dataset,
                           phophi=Pho_Phi,
                           weight=skim_weight(weights.weight() * cuts))

        # -- Binned sieie hist -- #
        if len(binned_sieie_hist['PT_1_eta_1'] > 0):
            out['PT_1_eta_1'].fill(dataset=dataset,
                                   PT_1_eta_1=binned_sieie_hist['PT_1_eta_1'])
        if len(binned_sieie_hist['PT_1_eta_2'] > 0):
            out['PT_1_eta_2'].fill(dataset=dataset,
                                   PT_1_eta_2=binned_sieie_hist['PT_1_eta_2'])
        if len(binned_sieie_hist['PT_1_eta_3'] > 0):
            out['PT_1_eta_3'].fill(dataset=dataset,
                                   PT_1_eta_3=binned_sieie_hist['PT_1_eta_3'])
        if len(binned_sieie_hist['PT_1_eta_4'] > 0):
            out['PT_1_eta_4'].fill(dataset=dataset,
                                   PT_1_eta_4=binned_sieie_hist['PT_1_eta_4'])
        if len(binned_sieie_hist['PT_2_eta_1'] > 0):
            out['PT_2_eta_1'].fill(dataset=dataset,
                                   PT_2_eta_1=binned_sieie_hist['PT_2_eta_1'])
        if len(binned_sieie_hist['PT_2_eta_2'] > 0):
            out['PT_2_eta_2'].fill(dataset=dataset,
                                   PT_2_eta_2=binned_sieie_hist['PT_2_eta_2'])
        if len(binned_sieie_hist['PT_2_eta_3'] > 0):
            out['PT_2_eta_3'].fill(dataset=dataset,
                                   PT_2_eta_3=binned_sieie_hist['PT_2_eta_3'])
        if len(binned_sieie_hist['PT_2_eta_4'] > 0):
            out['PT_2_eta_4'].fill(dataset=dataset,
                                   PT_2_eta_4=binned_sieie_hist['PT_2_eta_4'])
        if len(binned_sieie_hist['PT_3_eta_1'] > 0):
            out['PT_3_eta_1'].fill(dataset=dataset,
                                   PT_3_eta_1=binned_sieie_hist['PT_3_eta_1'])
        if len(binned_sieie_hist['PT_3_eta_2'] > 0):
            out['PT_3_eta_2'].fill(dataset=dataset,
                                   PT_3_eta_2=binned_sieie_hist['PT_3_eta_2'])
        if len(binned_sieie_hist['PT_3_eta_3'] > 0):
            out['PT_3_eta_3'].fill(dataset=dataset,
                                   PT_3_eta_3=binned_sieie_hist['PT_3_eta_3'])
        if len(binned_sieie_hist['PT_3_eta_4'] > 0):
            out['PT_3_eta_4'].fill(dataset=dataset,
                                   PT_3_eta_4=binned_sieie_hist['PT_3_eta_4'])
        if len(binned_sieie_hist['PT_4_eta_1'] > 0):
            out['PT_4_eta_1'].fill(dataset=dataset,
                                   PT_4_eta_1=binned_sieie_hist['PT_4_eta_1'])
        if len(binned_sieie_hist['PT_4_eta_2'] > 0):
            out['PT_4_eta_2'].fill(dataset=dataset,
                                   PT_4_eta_2=binned_sieie_hist['PT_4_eta_2'])
        if len(binned_sieie_hist['PT_4_eta_3'] > 0):
            out['PT_4_eta_3'].fill(dataset=dataset,
                                   PT_4_eta_3=binned_sieie_hist['PT_4_eta_3'])
        if len(binned_sieie_hist['PT_4_eta_4'] > 0):
            out['PT_4_eta_4'].fill(dataset=dataset,
                                   PT_4_eta_4=binned_sieie_hist['PT_4_eta_4'])

        return out
示例#15
0
def test_jagged_axis0():
    assert ak.min(ak.Array([[1.1, 5.5], [4.4], [2.2, 3.3, 0.0, -10]]),
                  axis=0).tolist() == [1.1, 3.3, 0, -10]
    assert ak.argmin(ak.Array([[1.1, 5.5], [4.4], [2.2, 3.3, 0.0, -10]]),
                     axis=0).tolist() == [0, 2, 2, 2]
示例#16
0
def test_jagged_axis1():
    # first is [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [4, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [5, 4, 3]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[], [], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [6, 5, 4]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [5, 4, 3]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [5, 4, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [5, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0], []],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [4, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1, 999, 999], [1.1, 2.2, 999], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [4, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1, 999, 999, 999], [1.1, 2.2, 999], [1.1, 2.2, 3.3], [999, 2.0],
         [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3, 999]]
    assert ak.argmin(array, axis=1).tolist() == [[4, 3, 2], [4, 3, 2, 0]]

    # first is [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [4, 3, 2]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [5, 4, 3]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[], [], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [6, 5, 4]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [5, 4, 3]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [5, 4, 2]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [5, 3, 2]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0], []],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [4, 3, 2]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1, 999, 999], [1.1, 2.2, 999], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [4, 3, 2]]

    array = ak.Array([
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
        [[1.1, 999, 999, 999], [1.1, 2.2, 999], [1.1, 2.2, 3.3], [999, 2.0],
         [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3, 999]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 3], [4, 3, 2, 0]]

    # first is [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [4, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [5, 4, 3]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[], [], [1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [6, 5, 4]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [5, 4, 3]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [5, 4, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [5, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [999, 2.0], [1.0], []],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [4, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1, 999, 999], [1.1, 2.2, 999], [1.1, 2.2, 3.3], [999, 2.0], [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [4, 3, 2]]

    array = ak.Array([
        [[1.1], [1.1, 2.2], [1.1, 2.2, 3.3], [], [999, 2.0], [1.0]],
        [[1.1, 999, 999, 999], [1.1, 2.2, 999], [1.1, 2.2, 3.3], [999, 2.0],
         [1.0]],
    ])
    assert ak.min(array, axis=1).tolist() == [[1, 2, 3.3], [1, 2, 3.3, 999]]
    assert ak.argmin(array, axis=1).tolist() == [[5, 4, 2], [4, 3, 2, 0]]
示例#17
0
    def process(self, events):

        output = self.accumulator.identity()

        # use a very loose preselection to filter the events
        presel = ak.num(events.Jet) > 2

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        output['totalEvents']['all'] += len(events)
        output['skimmedEvents']['all'] += len(ev)

        ## Generated leptons
        '''gen_lep = ev.GenL
        leading_gen_lep = gen_lep[ak.singletons(ak.argmax(gen_lep.pt, axis=1))]
        trailing_gen_lep = gen_lep[ak.singletons(ak.argmin(gen_lep.pt, axis=1))]'''

        ## Muons

        muon = Collections(ev, "Muon", "tightTTH").get()
        vetomuon = Collections(ev, "Muon", "vetoTTH").get()
        leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1))
        leading_muon = muon[leading_muon_idx]

        ## Electrons
        electron = Collections(ev, "Electron", "tightTTH").get()
        vetoelectron = Collections(ev, "Electron", "vetoTTH").get()
        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[leading_electron_idx]

        ## Merge electrons and muons - this should work better now in ak1
        dilepton = cross(muon, electron)

        dimuon = choose(muon, 2)
        OS_dimuon = dimuon[(dimuon['0'].charge * dimuon['1'].charge < 0)]

        dielectron = choose(electron, 2)
        OS_dielectron = dielectron[(
            dielectron['0'].charge * dielectron['1'].charge < 0)]

        OS_dimuon_bestZmumu = OS_dimuon[ak.singletons(
            ak.argmin(abs(OS_dimuon.mass - 91.2), axis=1))]
        OS_dielectron_bestZee = OS_dielectron[ak.singletons(
            ak.argmin(abs(OS_dielectron.mass - 91.2), axis=1))]
        OS_dilepton_mass = ak.fill_none(
            ak.pad_none(ak.concatenate(
                [OS_dimuon_bestZmumu.mass, OS_dielectron_bestZee.mass],
                axis=1),
                        1,
                        clip=True), -1)

        lepton = ak.concatenate([muon, electron], axis=1)
        leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1))
        leading_lepton = lepton[leading_lepton_idx]
        trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1))
        trailing_lepton = lepton[trailing_lepton_idx]

        ## Jets
        jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom')
        jet = jet[ak.argsort(
            jet.pt_nom, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        central = jet[(abs(jet.eta) < 2.4)]
        btag = getBTagsDeepFlavB(
            jet, year=self.year)  # should study working point for DeepJet
        light = getBTagsDeepFlavB(jet, year=self.year, invert=True)
        fwd = getFwdJet(light)
        fwd_noPU = getFwdJet(light, puId=False)

        ## forward jets
        j_fwd = fwd[ak.singletons(ak.argmax(
            fwd.p, axis=1))]  # highest momentum spectator

        jf = cross(j_fwd, jet)
        mjf = (jf['0'] + jf['1']).mass
        #        j_fwd2      = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd
        #        delta_eta   = abs(j_fwd2.eta - j_fwd.eta)

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        ## other variables
        ht = ak.sum(jet.pt, axis=1)
        st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt,
                                                            axis=1)

        # define the weight
        weight = Weights(len(ev))

        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'),
                         dataset):
            # lumi weight
            weight.add("weight", ev.weight * cfg['lumi'][self.year])

            # PU weight - not in the babies...
            weight.add("PU",
                       ev.puWeight,
                       weightUp=ev.puWeightUp,
                       weightDown=ev.puWeightDown,
                       shift=False)

            # b-tag SFs
            weight.add("btag", self.btagSF.Method1a(btag, light))

        #  lepton SFs
        #  weight.add("lepton", self.leptonSF.get(electron, muon))

        cutflow = Cutflow(output, ev, weight=weight)

        sel = Selection(
            dataset=dataset,
            events=ev,
            year=self.year,
            ele=electron,
            ele_veto=vetoelectron,
            mu=muon,
            mu_veto=vetomuon,
            jet_all=jet,
            jet_central=central,
            jet_btag=btag,
            jet_fwd=fwd,
            met=ev.MET,
        )

        BL = sel.trilep_baseline(cutflow=cutflow)

        # first, make a few super inclusive plots
        output['ST'].fill(dataset=dataset,
                          ht=st[BL],
                          weight=weight.weight()[BL])

        output['PV_npvs'].fill(dataset=dataset,
                               multiplicity=ev.PV[BL].npvs,
                               weight=weight.weight()[BL])
        output['PV_npvsGood'].fill(dataset=dataset,
                                   multiplicity=ev.PV[BL].npvsGood,
                                   weight=weight.weight()[BL])
        output['N_jet'].fill(dataset=dataset,
                             multiplicity=ak.num(jet)[BL],
                             weight=weight.weight()[BL])
        output['N_b'].fill(dataset=dataset,
                           multiplicity=ak.num(btag)[BL],
                           weight=weight.weight()[BL])
        output['N_central'].fill(dataset=dataset,
                                 multiplicity=ak.num(central)[BL],
                                 weight=weight.weight()[BL])
        output['N_ele'].fill(dataset=dataset,
                             multiplicity=ak.num(vetoelectron)[BL],
                             weight=weight.weight()[BL])
        output['N_mu'].fill(dataset=dataset,
                            multiplicity=ak.num(vetomuon)[BL],
                            weight=weight.weight()[BL])
        output['N_fwd'].fill(dataset=dataset,
                             multiplicity=ak.num(fwd)[BL],
                             weight=weight.weight()[BL])
        '''output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight.weight()[BL])
        output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight.weight()[BL])
        output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight.weight()[BL])
        output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight.weight()[BL])
        output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight.weight()[BL])
        output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight.weight()[BL])'''

        # make a plot of the dilepton mass, but without applying the cut on the dilepton mass itself (N-1 plot)
        output['dilep_mass'].fill(
            dataset=dataset,
            mass=ak.flatten(
                OS_dilepton_mass[sel.trilep_baseline(omit=['offZ'])]),
            weight=weight.weight()[sel.trilep_baseline(omit=['offZ'])])

        output['MET'].fill(dataset=dataset,
                           pt=ev.MET[BL].pt,
                           phi=ev.MET[BL].phi,
                           weight=weight.weight()[BL])
        '''output['lead_gen_lep'].fill(
            dataset = dataset,
            pt  = ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)),
            eta = ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)),
            phi = ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)),
            weight = weight.weight()[BL]
        )

        output['trail_gen_lep'].fill(
            dataset = dataset,
            pt  = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)),
            eta = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)),
            phi = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)),
            weight = weight.weight()[BL]
        )'''

        output['lead_lep'].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_lepton[BL].pt)),
            eta=ak.to_numpy(ak.flatten(leading_lepton[BL].eta)),
            phi=ak.to_numpy(ak.flatten(leading_lepton[BL].phi)),
            weight=weight.weight()[BL])

        output['trail_lep'].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_lepton[BL].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_lepton[BL].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_lepton[BL].phi)),
            weight=weight.weight()[BL])

        output['j1'].fill(dataset=dataset,
                          pt=ak.flatten(jet.pt_nom[:, 0:1][BL]),
                          eta=ak.flatten(jet.eta[:, 0:1][BL]),
                          phi=ak.flatten(jet.phi[:, 0:1][BL]),
                          weight=weight.weight()[BL])

        output['j2'].fill(dataset=dataset,
                          pt=ak.flatten(jet[:, 1:2][BL].pt_nom),
                          eta=ak.flatten(jet[:, 1:2][BL].eta),
                          phi=ak.flatten(jet[:, 1:2][BL].phi),
                          weight=weight.weight()[BL])

        #output['j3'].fill(
        #    dataset = dataset,
        #    pt  = ak.flatten(jet[:, 2:3][BL].pt_nom),
        #    eta = ak.flatten(jet[:, 2:3][BL].eta),
        #    phi = ak.flatten(jet[:, 2:3][BL].phi),
        #    weight = weight.weight()[BL]
        #)

        output['fwd_jet'].fill(dataset=dataset,
                               pt=ak.flatten(j_fwd[BL].pt),
                               eta=ak.flatten(j_fwd[BL].eta),
                               phi=ak.flatten(j_fwd[BL].phi),
                               weight=weight.weight()[BL])

        output['high_p_fwd_p'].fill(dataset=dataset,
                                    p=ak.flatten(j_fwd[BL].p),
                                    weight=weight.weight()[BL])

        vetolepton = ak.concatenate([vetomuon, vetoelectron], axis=1)
        trilep = choose3(vetolepton, 3)
        trilep_m = trilep.mass
        output['m3l'].fill(dataset=dataset,
                           mass=ak.flatten(trilep_m[BL]),
                           weight=weight.weight()[BL])

        return output
示例#18
0
def best_match(gen_hyp=None, jets=None, leptons=None, met=None):
    if gen_hyp is None:
        raise ValueError("Gen Objects gen_hyp needed for matching")
    if jets is None:
        raise ValueError("Reco jets needed for matching")
    if leptons is None:
        raise ValueError("Reco leptons needed for matching")
    if met is None:
        raise ValueError("Reco met needed for matching")

    if not ak.all(ak.num(gen_hyp) == 1):
        raise ValueError("Not all events for matching are semileptonic")

    jets_ak = ak.with_name(jets[["pt", "eta", "phi", "mass"]],"PtEtaPhiMLorentzVector")
    leps_ak = ak.with_name(leptons[["pt", "eta", "phi", "mass"]],"PtEtaPhiMLorentzVector")

        # init dict of objects
    matched_objects = {}

        # match jet closest to gen objects 
    for genobj in ['BHad', 'BLep', 'WJa', 'WJb']:
        genobj_ak = ak.with_name(gen_hyp[genobj][["pt", "eta", "phi", "mass"]],"PtEtaPhiMLorentzVector")
        jets_akc, genobj_akc = ak.unzip(ak.cartesian([jets_ak, genobj_ak], nested=False))
        deltaRs = jets_akc.delta_r(genobj_akc)  # find deltaRs between jets and gen object
        indexOfMin = ak.unflatten(ak.argmin(deltaRs, axis=1), ak.num(genobj_ak))
        passing_inds = deltaRs[indexOfMin] < 0.4

        matched_jets_inds = indexOfMin[passing_inds]
        matched_jets = jets[matched_jets_inds]

        ## add matched perm objects
        matched_objects[genobj] = ak.Array({
            'pt' : matched_jets.pt,
            'eta' : matched_jets.eta,
            'phi' : matched_jets.phi,
            'mass' : matched_jets.mass,
            'jetIdx' : matched_jets_inds, # index of jet that the gen object is matched to in the event
        }, with_name="PtEtaPhiMLorentzVector")
        
        # match lepton closest to gen lepton
    genlep_ak = ak.with_name(gen_hyp['Lepton'][["pt", "eta", "phi", "mass"]],"PtEtaPhiMLorentzVector")
    lep_akc, genlep_akc = ak.unzip(ak.cartesian([leps_ak, genlep_ak], nested=False))
    lepDRs = lep_akc.delta_r(genlep_akc)
    lepIdxOfMin = ak.unflatten(ak.argmin(lepDRs, axis=1), ak.num(genlep_ak))
    passing_inds = lepDRs[lepIdxOfMin] < 0.4
    matched_leps_inds = lepIdxOfMin[passing_inds]
    matched_leps = leptons[matched_leps_inds]
    
    ## add matched perm objects
    matched_objects['Lepton'] = ak.Array({key: matched_leps[key] for key in matched_leps.fields}, with_name="PtEtaPhiMLorentzVector")

        # solve for neutrino
    nu_array = np.zeros((len(ak.num(jets)), 4), dtype='float64')
            # convert all inputs into 2d numpy arrays of dtype=float64 (won't work if they're not float64)
    blep_inputs = np.stack((ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['BLep'].px, 1), -999))).astype('float64'), ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['BLep'].py, 1), -999))).astype('float64'),\
        ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['BLep'].pz, 1), -999))).astype('float64'), ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['BLep'].energy, 1), -999))).astype('float64')), axis=-1)
    lep_inputs = np.stack((ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['Lepton'].px, 1), -999))).astype('float64'), ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['Lepton'].py, 1), -999))).astype('float64'),\
        ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['Lepton'].pz, 1), -999))).astype('float64'), ak.to_numpy(ak.flatten(ak.fill_none(ak.pad_none(matched_objects['Lepton'].energy, 1), -999))).astype('float64')), axis=-1)
    met_inputs = np.stack((ak.to_numpy(ak.fill_none(met.px, -999)).astype('float64'), ak.to_numpy(ak.fill_none(met.py, -999)).astype('float64')), axis=-1)
    nu_array = find_nu(bleps=blep_inputs, leptons=lep_inputs, met=met_inputs, nu_array=nu_array)

    valid_nu = ~((nu_array[:, 3] > 1e20) | (nu_array[:, 3] == 0)) # events that have a solution and matched blep

        # convert px, py, pz to pt, eta, phi
    nu_px, nu_py, nu_pz = nu_array[:, 0][valid_nu], nu_array[:, 1][valid_nu], nu_array[:, 2][valid_nu]
    nu_mom, nu_pt = np.sqrt(np.square(nu_px)+np.square(nu_py)+np.square(nu_pz)), np.sqrt(np.square(nu_px)+np.square(nu_py))
    nu_phi = np.arctan2(nu_py, nu_px)
    nu_eta = np.arcsinh(nu_pz/nu_pt)
    matched_objects['Nu'] = ak.Array({
        'pt' : ak.unflatten(nu_pt, valid_nu.astype(int)),
        'eta' : ak.unflatten(nu_eta, valid_nu.astype(int)),
        'phi' : ak.unflatten(nu_phi, valid_nu.astype(int)),
        'mass' : ak.zeros_like(ak.unflatten(nu_array[:, 0][valid_nu], valid_nu.astype(int))),
        'chi2' : ak.unflatten(nu_array[:, 3][valid_nu], valid_nu.astype(int)),
    }, with_name="PtEtaPhiMLorentzVector")

    matched_perm = make_perm_table(bhad=matched_objects['BHad'], blep=matched_objects['BLep'], wja=matched_objects['WJa'], wjb=matched_objects['WJb'], lepton=matched_objects['Lepton'], met=met, nu=matched_objects['Nu'])

    return matched_perm
示例#19
0
    def process(self, events):
        # Dataset parameters
        dataset = events.metadata['dataset']
        year = self._samples[dataset]['year']
        xsec = self._samples[dataset]['xsec']
        sow = self._samples[dataset]['nSumOfWeights']
        isData = self._samples[dataset]['isData']
        datasets = [
            'SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon',
            'DoubleElectron'
        ]
        for d in datasets:
            if d in dataset: dataset = dataset.split('_')[0]

        # Initialize objects
        met = events.MET
        e = events.Electron
        mu = events.Muon
        tau = events.Tau
        j = events.Jet

        # Muon selection

        #mu['isGood'] = isMuonMVA(mu.pt, mu.eta, mu.dxy, mu.dz, mu.miniPFRelIso_all, mu.sip3d, mu.mvaTTH, mu.mediumPromptId, mu.tightCharge, minpt=10)
        mu['isPres'] = isPresMuon(mu.dxy, mu.dz, mu.sip3d, mu.looseId)
        mu['isTight'] = isTightMuon(mu.pt,
                                    mu.eta,
                                    mu.dxy,
                                    mu.dz,
                                    mu.pfRelIso03_all,
                                    mu.sip3d,
                                    mu.mvaTTH,
                                    mu.mediumPromptId,
                                    mu.tightCharge,
                                    mu.looseId,
                                    minpt=10)
        mu['isGood'] = mu['isPres'] & mu['isTight']

        leading_mu = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)]
        leading_mu = leading_mu[leading_mu.isGood]

        mu = mu[mu.isGood]
        mu_pres = mu[mu.isPres]

        # Electron selection
        #e['isGood'] = isElecMVA(e.pt, e.eta, e.dxy, e.dz, e.miniPFRelIso_all, e.sip3d, e.mvaTTH, e.mvaFall17V2Iso, e.lostHits, e.convVeto, e.tightCharge, minpt=10)
        e['isPres'] = isPresElec(e.pt,
                                 e.eta,
                                 e.dxy,
                                 e.dz,
                                 e.miniPFRelIso_all,
                                 e.sip3d,
                                 e.lostHits,
                                 minpt=15)
        e['isTight'] = isTightElec(e.pt,
                                   e.eta,
                                   e.dxy,
                                   e.dz,
                                   e.miniPFRelIso_all,
                                   e.sip3d,
                                   e.mvaTTH,
                                   e.mvaFall17V2Iso,
                                   e.lostHits,
                                   e.convVeto,
                                   e.tightCharge,
                                   e.sieie,
                                   e.hoe,
                                   e.eInvMinusPInv,
                                   minpt=15)
        e['isClean'] = isClean(e, mu, drmin=0.05)
        e['isGood'] = e['isPres'] & e['isTight'] & e['isClean']

        leading_e = e[ak.argmax(e.pt, axis=-1, keepdims=True)]
        leading_e = leading_e[leading_e.isGood]

        e = e[e.isGood]
        e_pres = e[e.isPres & e.isClean]

        # Tau selection
        tau['isPres'] = isPresTau(tau.pt,
                                  tau.eta,
                                  tau.dxy,
                                  tau.dz,
                                  tau.leadTkPtOverTauPt,
                                  tau.idAntiMu,
                                  tau.idAntiEle,
                                  tau.rawIso,
                                  tau.idDecayModeNewDMs,
                                  minpt=20)
        tau['isClean'] = isClean(tau, e_pres, drmin=0.4) & isClean(
            tau, mu_pres, drmin=0.4)
        tau['isGood'] = tau['isPres']  # & tau['isClean'], for the moment
        tau = tau[tau.isGood]

        nElec = ak.num(e)
        nMuon = ak.num(mu)
        nTau = ak.num(tau)

        twoLeps = (nElec + nMuon) == 2
        threeLeps = (nElec + nMuon) == 3
        twoElec = (nElec == 2)
        twoMuon = (nMuon == 2)
        e0 = e[ak.argmax(e.pt, axis=-1, keepdims=True)]
        m0 = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)]

        # Jet selection

        jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt'
        j['isGood'] = isTightJet(getattr(j,
                                         jetptname), j.eta, j.jetId, j.neHEF,
                                 j.neEmEF, j.chHEF, j.chEmEF, j.nConstituents)
        #j['isgood']  = isGoodJet(j.pt, j.eta, j.jetId)
        #j['isclean'] = isClean(j, e, mu)
        j['isClean'] = isClean(j, e, drmin=0.4) & isClean(
            j, mu, drmin=0.4)  # & isClean(j, tau, drmin=0.4)
        goodJets = j[(j.isClean) & (j.isGood)]
        njets = ak.num(goodJets)
        ht = ak.sum(goodJets.pt, axis=-1)
        j0 = goodJets[ak.argmax(goodJets.pt, axis=-1, keepdims=True)]
        #nbtags = ak.num(goodJets[goodJets.btagDeepFlavB > 0.2770])
        nbtags = ak.num(goodJets[goodJets.btagDeepB > 0.4941])

        ##################################################################
        ### 2 same-sign leptons
        ##################################################################

        # emu
        singe = e[(nElec == 1) & (nMuon == 1) & (e.pt > -1)]
        singm = mu[(nElec == 1) & (nMuon == 1) & (mu.pt > -1)]
        em = ak.cartesian({"e": singe, "m": singm})
        emSSmask = (em.e.charge * em.m.charge > 0)
        emSS = em[emSSmask]
        nemSS = len(ak.flatten(emSS))

        # ee and mumu
        # pt>-1 to preserve jagged dimensions
        ee = e[(nElec == 2) & (nMuon == 0) & (e.pt > -1)]
        mm = mu[(nElec == 0) & (nMuon == 2) & (mu.pt > -1)]

        eepairs = ak.combinations(ee, 2, fields=["e0", "e1"])
        eeSSmask = (eepairs.e0.charge * eepairs.e1.charge > 0)
        eeonZmask = (np.abs((eepairs.e0 + eepairs.e1).mass - 91.2) < 10)
        eeoffZmask = (eeonZmask == 0)

        mmpairs = ak.combinations(mm, 2, fields=["m0", "m1"])
        mmSSmask = (mmpairs.m0.charge * mmpairs.m1.charge > 0)
        mmonZmask = (np.abs((mmpairs.m0 + mmpairs.m1).mass - 91.2) < 10)
        mmoffZmask = (mmonZmask == 0)

        eeSSonZ = eepairs[eeSSmask & eeonZmask]
        eeSSoffZ = eepairs[eeSSmask & eeoffZmask]
        mmSSonZ = mmpairs[mmSSmask & mmonZmask]
        mmSSoffZ = mmpairs[mmSSmask & mmoffZmask]
        neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ))
        nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ))

        print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]' %
              (neeSS, nemSS, nmmSS))

        # Cuts
        eeSSmask = (ak.num(eeSSmask[eeSSmask]) > 0)
        mmSSmask = (ak.num(mmSSmask[mmSSmask]) > 0)
        eeonZmask = (ak.num(eeonZmask[eeonZmask]) > 0)
        eeoffZmask = (ak.num(eeoffZmask[eeoffZmask]) > 0)
        mmonZmask = (ak.num(mmonZmask[mmonZmask]) > 0)
        mmoffZmask = (ak.num(mmoffZmask[mmoffZmask]) > 0)
        emSSmask = (ak.num(emSSmask[emSSmask]) > 0)

        ##################################################################
        ### 3 leptons
        ##################################################################

        # eem
        muon_eem = mu[(nElec == 2) & (nMuon == 1) & (mu.pt > -1)]
        elec_eem = e[(nElec == 2) & (nMuon == 1) & (e.pt > -1)]
        ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"])

        ee_eemZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs(
            (ee_eem.e0 + ee_eem.e1).mass - 91.2) < 10)
        ee_eemOffZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs(
            (ee_eem.e0 + ee_eem.e1).mass - 91.2) > 10)
        ee_eemZmask = (ak.num(ee_eemZmask[ee_eemZmask]) > 0)
        ee_eemOffZmask = (ak.num(ee_eemOffZmask[ee_eemOffZmask]) > 0)

        eepair_eem = (ee_eem.e0 + ee_eem.e1)
        trilep_eem = eepair_eem + muon_eem  #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem})

        # mme
        muon_mme = mu[(nElec == 1) & (nMuon == 2) & (mu.pt > -1)]
        elec_mme = e[(nElec == 1) & (nMuon == 2) & (e.pt > -1)]

        mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"])
        mm_mmeZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs(
            (mm_mme.m0 + mm_mme.m1).mass - 91.2) < 10)
        mm_mmeOffZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs(
            (mm_mme.m0 + mm_mme.m1).mass - 91.2) > 10)
        mm_mmeZmask = (ak.num(mm_mmeZmask[mm_mmeZmask]) > 0)
        mm_mmeOffZmask = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask]) > 0)

        mmpair_mme = (mm_mme.m0 + mm_mme.m1)
        trilep_mme = mmpair_mme + elec_mme

        mZ_mme = mmpair_mme.mass
        mZ_eem = eepair_eem.mass
        m3l_eem = trilep_eem.mass
        m3l_mme = trilep_mme.mass

        # eee and mmm
        eee = e[(nElec == 3) & (nMuon == 0) & (e.pt > -1)]
        mmm = mu[(nElec == 0) & (nMuon == 3) & (mu.pt > -1)]

        eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"])
        mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"])
        ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"])
        mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"])
        ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"])
        mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"])

        mmSFOS_pairs = mm_pairs[
            (np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId))
            & (mm_pairs.m0.charge != mm_pairs.m1.charge)]
        offZmask_mm = ak.all(
            np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) > 10.,
            axis=1,
            keepdims=True) & (ak.num(mmSFOS_pairs) > 0)
        onZmask_mm = ak.any(
            np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) < 10.,
            axis=1,
            keepdims=True)

        eeSFOS_pairs = ee_pairs[
            (np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId))
            & (ee_pairs.e0.charge != ee_pairs.e1.charge)]
        offZmask_ee = ak.all(
            np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) > 10,
            axis=1,
            keepdims=True) & (ak.num(eeSFOS_pairs) > 0)
        onZmask_ee = ak.any(
            np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) < 10,
            axis=1,
            keepdims=True)

        # Create masks **for event selection**
        eeeOnZmask = (ak.num(onZmask_ee[onZmask_ee]) > 0)
        eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee]) > 0)
        mmmOnZmask = (ak.num(onZmask_mm[onZmask_mm]) > 0)
        mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm]) > 0)

        # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories)
        ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass -
                                   91.2),
                            axis=1,
                            keepdims=True)
        ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass -
                                   91.2),
                            axis=1,
                            keepdims=True)

        Zee = eeSFOS_pairs[ZeeMask]
        Zmm = mmSFOS_pairs[ZmmMask]
        eZ0 = Zee.e0[ak.num(eeSFOS_pairs) > 0]
        eZ1 = Zee.e1[ak.num(eeSFOS_pairs) > 0]
        eZ = eZ0 + eZ1
        mZ0 = Zmm.m0[ak.num(mmSFOS_pairs) > 0]
        mZ1 = Zmm.m1[ak.num(mmSFOS_pairs) > 0]
        mZ = mZ0 + mZ1
        mZ_eee = eZ.mass
        mZ_mmm = mZ.mass

        # And for the W boson
        ZmmIndices = mm_pairs_index[ZmmMask]
        ZeeIndices = ee_pairs_index[ZeeMask]
        eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1]
        mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1]

        triElec = eee_leps.e0 + eee_leps.e1 + eee_leps.e2
        triMuon = mmm_leps.m0 + mmm_leps.m1 + mmm_leps.m2
        m3l_eee = triElec.mass
        m3l_mmm = triMuon.mass

        # Triggers
        trig_eeSS = passTrigger(events, 'ee', isData, dataset)
        trig_mmSS = passTrigger(events, 'mm', isData, dataset)
        trig_emSS = passTrigger(events, 'em', isData, dataset)
        trig_eee = passTrigger(events, 'eee', isData, dataset)
        trig_mmm = passTrigger(events, 'mmm', isData, dataset)
        trig_eem = passTrigger(events, 'eem', isData, dataset)
        trig_mme = passTrigger(events, 'mme', isData, dataset)

        # MET filters

        # Weights
        genw = np.ones_like(
            events['MET_pt']) if isData else events['genWeight']
        weights = coffea.analysis_tools.Weights(len(events))
        weights.add('norm', genw if isData else (xsec / sow) * genw)
        eftweights = events['EFTfitCoefficients'] if hasattr(
            events, "EFTfitCoefficients") else []

        # Selections and cuts
        selections = PackedSelection()
        channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS']
        selections.add('eeSSonZ', (eeonZmask) & (eeSSmask) & (trig_eeSS))
        selections.add('eeSSoffZ', (eeoffZmask) & (eeSSmask) & (trig_eeSS))
        selections.add('mmSSonZ', (mmonZmask) & (mmSSmask) & (trig_mmSS))
        selections.add('mmSSoffZ', (mmoffZmask) & (mmSSmask) & (trig_mmSS))
        selections.add('emSS', (emSSmask) & (trig_emSS))

        channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ']
        selections.add('eemSSonZ', (ee_eemZmask) & (trig_eem))
        selections.add('eemSSoffZ', (ee_eemOffZmask) & (trig_eem))
        selections.add('mmeSSonZ', (mm_mmeZmask) & (trig_mme))
        selections.add('mmeSSoffZ', (mm_mmeOffZmask) & (trig_mme))

        channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ']
        selections.add('eeeSSonZ', (eeeOnZmask) & (trig_eee))
        selections.add('eeeSSoffZ', (eeeOffZmask) & (trig_eee))
        selections.add('mmmSSonZ', (mmmOnZmask) & (trig_mmm))
        selections.add('mmmSSoffZ', (mmmOffZmask) & (trig_mmm))

        levels = ['base', '2jets', '4jets', '4j1b', '4j2b']
        selections.add('base', (nElec + nMuon >= 2))
        selections.add('2jets', (njets >= 2))
        selections.add('4jets', (njets >= 4))
        selections.add('4j1b', (njets >= 4) & (nbtags >= 1))
        selections.add('4j2b', (njets >= 4) & (nbtags >= 2))

        # Variables
        invMass_eeSSonZ = (eeSSonZ.e0 + eeSSonZ.e1).mass
        invMass_eeSSoffZ = (eeSSoffZ.e0 + eeSSoffZ.e1).mass
        invMass_mmSSonZ = (mmSSonZ.m0 + mmSSonZ.m1).mass
        invMass_mmSSoffZ = (mmSSoffZ.m0 + mmSSoffZ.m1).mass
        invMass_emSS = (emSS.e + emSS.m).mass

        varnames = {}
        varnames['met'] = met.pt
        varnames['ht'] = ht
        varnames['njets'] = njets
        varnames['nbtags'] = nbtags
        varnames['invmass'] = {
            'eeSSonZ': invMass_eeSSonZ,
            'eeSSoffZ': invMass_eeSSoffZ,
            'mmSSonZ': invMass_mmSSonZ,
            'mmSSoffZ': invMass_mmSSoffZ,
            'emSS': invMass_emSS,
            'eemSSonZ': mZ_eem,
            'eemSSoffZ': mZ_eem,
            'mmeSSonZ': mZ_mme,
            'mmeSSoffZ': mZ_mme,
            'eeeSSonZ': mZ_eee,
            'eeeSSoffZ': mZ_eee,
            'mmmSSonZ': mZ_mmm,
            'mmmSSoffZ': mZ_mmm,
        }
        varnames['m3l'] = {
            'eemSSonZ': m3l_eem,
            'eemSSoffZ': m3l_eem,
            'mmeSSonZ': m3l_mme,
            'mmeSSoffZ': m3l_mme,
            'eeeSSonZ': m3l_eee,
            'eeeSSoffZ': m3l_eee,
            'mmmSSonZ': m3l_mmm,
            'mmmSSoffZ': m3l_mmm,
        }
        varnames['e0pt'] = e0.pt
        varnames['e0eta'] = e0.eta
        varnames['m0pt'] = m0.pt
        varnames['m0eta'] = m0.eta
        varnames['j0pt'] = j0.pt
        varnames['j0eta'] = j0.eta
        varnames['counts'] = np.ones_like(events.MET.pt)

        # fill Histos
        hout = self.accumulator.identity()
        allweights = weights.weight().flatten(
        )  # Why does it not complain about .flatten() here?
        hout['SumOfEFTweights'].fill(eftweights,
                                     sample=dataset,
                                     SumOfEFTweights=varnames['counts'],
                                     weight=allweights)

        for var, v in varnames.items():
            for ch in channels2LSS + channels3L:
                for lev in levels:
                    weight = weights.weight()
                    cuts = [ch] + [lev]
                    cut = selections.all(*cuts)
                    weights_flat = weight[cut].flatten(
                    )  # Why does it not complain about .flatten() here?
                    weights_ones = np.ones_like(weights_flat, dtype=np.int)
                    eftweightsvalues = eftweights[cut] if len(
                        eftweights) > 0 else []
                    if var == 'invmass':
                        if ch in ['eeeSSoffZ', 'mmmSSoffZ']: continue
                        elif ch in ['eeeSSonZ', 'mmmSSonZ']:
                            continue  #values = v[ch]
                        else:
                            values = ak.flatten(v[ch][cut])
                        hout['invmass'].fill(sample=dataset,
                                             channel=ch,
                                             cut=lev,
                                             invmass=values,
                                             weight=weights_flat)
                    elif var == 'm3l':
                        if ch in [
                                'eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ',
                                'emSS', 'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ',
                                'mmmSSonZ'
                        ]:
                            continue
                        values = ak.flatten(v[ch][cut])
                        hout['m3l'].fill(eftweightsvalues,
                                         sample=dataset,
                                         channel=ch,
                                         cut=lev,
                                         m3l=values,
                                         weight=weights_flat)
                    else:
                        values = v[cut]
                        if var == 'ht':
                            hout[var].fill(eftweightsvalues,
                                           ht=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'met':
                            hout[var].fill(eftweightsvalues,
                                           met=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'njets':
                            hout[var].fill(eftweightsvalues,
                                           njets=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'nbtags':
                            hout[var].fill(eftweightsvalues,
                                           nbtags=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'counts':
                            hout[var].fill(counts=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_ones)
                        elif var == 'j0eta':
                            if lev == 'base': continue
                            values = ak.flatten(values)
                            #values=np.asarray(values)
                            hout[var].fill(eftweightsvalues,
                                           j0eta=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'e0pt':
                            if ch in [
                                    'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ',
                                    'mmmSSonZ'
                            ]:
                                continue
                            values = ak.flatten(values)
                            #values=np.asarray(values)
                            hout[var].fill(
                                eftweightsvalues,
                                e0pt=values,
                                sample=dataset,
                                channel=ch,
                                cut=lev,
                                weight=weights_flat
                            )  # Crashing here, not sure why. Related to values?
                        elif var == 'm0pt':
                            if ch in [
                                    'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ',
                                    'eeeSSonZ'
                            ]:
                                continue
                            values = ak.flatten(values)
                            #values=np.asarray(values)
                            hout[var].fill(eftweightsvalues,
                                           m0pt=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'e0eta':
                            if ch in [
                                    'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ',
                                    'mmmSSonZ'
                            ]:
                                continue
                            values = ak.flatten(values)
                            #values=np.asarray(values)
                            hout[var].fill(eftweightsvalues,
                                           e0eta=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'm0eta':
                            if ch in [
                                    'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ',
                                    'eeeSSonZ'
                            ]:
                                continue
                            values = ak.flatten(values)
                            #values=np.asarray(values)
                            hout[var].fill(eftweightsvalues,
                                           m0eta=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
                        elif var == 'j0pt':
                            if lev == 'base': continue
                            values = ak.flatten(values)
                            #values=np.asarray(values)
                            hout[var].fill(eftweightsvalues,
                                           j0pt=values,
                                           sample=dataset,
                                           channel=ch,
                                           cut=lev,
                                           weight=weights_flat)
        return hout
    def process(self, events):

        output = self.accumulator.identity()

        output['total']['all'] += len(events)
        # use a very loose preselection to filter the events
        presel = ak.num(events.Jet) > 2

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        ## Muons
        muon = Collections(ev, "Muon", "vetoTTH").get()
        tightmuon = Collections(ev, "Muon", "tightTTH").get()
        dimuon = choose(muon, 2)
        SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) > 0, axis=1)
        leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1))
        leading_muon = muon[leading_muon_idx]

        ## Electrons
        electron = Collections(ev, "Electron", "vetoTTH").get()
        tightelectron = Collections(ev, "Electron", "tightTTH").get()
        dielectron = choose(electron, 2)
        SSelectron = ak.any(
            (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1)
        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[leading_electron_idx]

        ## Merge electrons and muons - this should work better now in ak1
        dilepton = cross(muon, electron)
        SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0,
                          axis=1)

        lepton = ak.concatenate([muon, electron], axis=1)
        leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1))
        leading_lepton = lepton[leading_lepton_idx]
        trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1))
        trailing_lepton = lepton[trailing_lepton_idx]

        dilepton_mass = (leading_lepton + trailing_lepton).mass
        dilepton_pt = (leading_lepton + trailing_lepton).pt
        dilepton_dR = delta_r(leading_lepton, trailing_lepton)

        mt_lep_met = mt(lepton.pt, lepton.phi, ev.MET.pt, ev.MET.phi)
        min_mt_lep_met = ak.min(mt_lep_met, axis=1)

        ## Jets
        jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom')
        jet = jet[ak.argsort(
            jet.pt_nom, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        central = jet[(abs(jet.eta) < 2.4)]
        btag = getBTagsDeepFlavB(
            jet, year=self.year)  # should study working point for DeepJet
        light = getBTagsDeepFlavB(jet, year=self.year, invert=True)
        fwd = getFwdJet(light)
        fwd_noPU = getFwdJet(light, puId=False)

        tau = getTaus(ev)
        track = getIsoTracks(ev)
        ## forward jets
        j_fwd = fwd[ak.singletons(ak.argmax(
            fwd.p, axis=1))]  # highest momentum spectator

        high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:, :2]

        bl = cross(lepton, high_score_btag)
        bl_dR = delta_r(bl['0'], bl['1'])
        min_bl_dR = ak.min(bl_dR, axis=1)

        jf = cross(j_fwd, jet)
        mjf = (jf['0'] + jf['1']).mass
        j_fwd2 = jf[ak.singletons(
            ak.argmax(mjf, axis=1)
        )]['1']  # this is the jet that forms the largest invariant mass with j_fwd
        delta_eta = ak.fill_none(
            ak.pad_none(abs(j_fwd2.eta - j_fwd.eta), 1, clip=True), 0)

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        ## other variables
        ht = ak.sum(jet.pt, axis=1)
        st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt,
                                                            axis=1)

        ## event selectors
        filters = getFilters(ev, year=self.year, dataset=dataset)

        dilep = ((ak.num(tightelectron) + ak.num(tightmuon)) == 2)
        lep0pt = ((ak.num(electron[(electron.pt > 25)]) +
                   ak.num(muon[(muon.pt > 25)])) > 0)
        lep1pt = ((ak.num(electron[(electron.pt > 20)]) +
                   ak.num(muon[(muon.pt > 20)])) > 1)
        lepveto = ((ak.num(electron) + ak.num(muon)) == 2)

        selection = PackedSelection()
        selection.add('lepveto', lepveto)
        selection.add('dilep', dilep)
        selection.add('filter', (filters))
        selection.add('p_T(lep0)>25', lep0pt)
        selection.add('p_T(lep1)>20', lep1pt)
        selection.add('SS', (SSlepton | SSelectron | SSmuon))
        selection.add('N_jet>3', (ak.num(jet) >= 4))
        selection.add('N_central>2', (ak.num(central) >= 3))
        selection.add('N_btag>0', (ak.num(btag) >= 1))
        selection.add('N_fwd>0', (ak.num(fwd) >= 1))

        #ss_reqs = ['lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS']
        ss_reqs = [
            'lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS'
        ]
        #bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0', 'N_fwd>0']
        bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0']

        ss_reqs_d = {sel: True for sel in ss_reqs}
        ss_selection = selection.require(**ss_reqs_d)
        bl_reqs_d = {sel: True for sel in bl_reqs}
        BL = selection.require(**bl_reqs_d)

        weight = Weights(len(ev))

        if not dataset == 'MuonEG':
            # lumi weight
            weight.add("weight", ev.weight)

            # PU weight - not in the babies...
            weight.add("PU",
                       ev.puWeight,
                       weightUp=ev.puWeightUp,
                       weightDown=ev.puWeightDown,
                       shift=False)

            # b-tag SFs
            weight.add("btag", self.btagSF.Method1a(btag, light))

            # lepton SFs
            weight.add("lepton", self.leptonSF.get(electron, muon))

        #cutflow     = Cutflow(output, ev, weight=weight)
        #cutflow_reqs_d = {}
        #for req in bl_reqs:
        #    cutflow_reqs_d.update({req: True})
        #    cutflow.addRow( req, selection.require(**cutflow_reqs_d) )

        labels = {
            'topW_v3': 0,
            'TTW': 1,
            'TTZ': 2,
            'TTH': 3,
            'ttbar': 4,
            'ttbar1l_MG': 4
        }
        if dataset in labels:
            label_mult = labels[dataset]
        else:
            label_mult = 5
        label = np.ones(len(ev[BL])) * label_mult

        output["n_lep"] += processor.column_accumulator(
            ak.to_numpy((ak.num(electron) + ak.num(muon))[BL]))
        output["n_lep_tight"] += processor.column_accumulator(
            ak.to_numpy((ak.num(tightelectron) + ak.num(tightmuon))[BL]))

        output["lead_lep_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].pt, axis=1)))
        output["lead_lep_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].eta, axis=1)))
        output["lead_lep_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].phi, axis=1)))
        output["lead_lep_charge"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].charge, axis=1)))

        output["sublead_lep_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].pt, axis=1)))
        output["sublead_lep_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].eta, axis=1)))
        output["sublead_lep_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].phi, axis=1)))
        output["sublead_lep_charge"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].charge, axis=1)))

        output["lead_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].pt, axis=1)))
        output["lead_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].eta, axis=1)))
        output["lead_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].phi, axis=1)))

        output["sublead_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].pt, axis=1)))
        output["sublead_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].eta, axis=1)))
        output["sublead_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].phi, axis=1)))

        output["lead_btag_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].pt, axis=1)))
        output["lead_btag_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].eta, axis=1)))
        output["lead_btag_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].phi, axis=1)))

        output["sublead_btag_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].pt, axis=1)))
        output["sublead_btag_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].eta, axis=1)))
        output["sublead_btag_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].phi, axis=1)))

        output["fwd_jet_p"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(ak.pad_none(j_fwd[BL].p, 1, clip=True),
                                        0),
                           axis=1)))
        output["fwd_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].pt, 1, clip=True), 0),
                           axis=1)))
        output["fwd_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].eta, 1, clip=True), 0),
                           axis=1)))
        output["fwd_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].phi, 1, clip=True), 0),
                           axis=1)))

        output["mjj_max"] += processor.column_accumulator(
            ak.to_numpy(ak.fill_none(ak.max(mjf[BL], axis=1), 0)))
        output["delta_eta_jj"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(delta_eta[BL], axis=1)))

        output["met"] += processor.column_accumulator(ak.to_numpy(met_pt[BL]))
        output["ht"] += processor.column_accumulator(ak.to_numpy(ht[BL]))
        output["st"] += processor.column_accumulator(ak.to_numpy(st[BL]))
        output["n_jet"] += processor.column_accumulator(
            ak.to_numpy(ak.num(jet[BL])))
        output["n_btag"] += processor.column_accumulator(
            ak.to_numpy(ak.num(btag[BL])))
        output["n_fwd"] += processor.column_accumulator(
            ak.to_numpy(ak.num(fwd[BL])))
        output["n_central"] += processor.column_accumulator(
            ak.to_numpy(ak.num(central[BL])))
        output["n_tau"] += processor.column_accumulator(
            ak.to_numpy(ak.num(tau[BL])))
        output["n_track"] += processor.column_accumulator(
            ak.to_numpy(ak.num(track[BL])))

        output["dilepton_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(dilepton_pt[BL], axis=1)))
        output["dilepton_mass"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(dilepton_mass[BL], axis=1)))
        output["min_bl_dR"] += processor.column_accumulator(
            ak.to_numpy(min_bl_dR[BL]))
        output["min_mt_lep_met"] += processor.column_accumulator(
            ak.to_numpy(min_mt_lep_met[BL]))

        output["label"] += processor.column_accumulator(label)
        output["weight"] += processor.column_accumulator(weight.weight()[BL])

        output["presel"]["all"] += len(ev[ss_selection])
        output["sel"]["all"] += len(ev[BL])

        return output
示例#21
0
	def process(self, events):

		# Initialize accumulator
		out = self.accumulator.identity()
		dataset = sample_name
		# events.metadata['dataset']

		# Data or MC
		isData = "genWeight" not in events.fields
		isFake = self._isFake


		# Stop processing if there is no event remain
		if len(events) == 0:
			return out

		# Golden Json file
		if (self._year == "2018") and isData:
			injson = "/x5/cms/jwkim/gitdir/JWCorp/JW_analysis/Coffea_WZG/Corrections/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt.RunABD"

		if (self._year == "2017") and isData:
			injson = "/x5/cms/jwkim/gitdir/JWCorp/JW_analysis/Coffea_WZG/Corrections/Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt"

		# <----- Get Scale factors ------>#

		if not isData:

			# Egamma reco ID
			get_ele_reco_above20_sf = self._corrections["get_ele_reco_above20_sf"][
				self._year
			]
			get_ele_medium_id_sf = self._corrections["get_ele_medium_id_sf"][self._year]
			get_pho_medium_id_sf = self._corrections["get_pho_medium_id_sf"][self._year]

			# DoubleEG trigger # 2016, 2017 are not applied yet
			if self._year == "2018":
				get_ele_trig_leg1_SF = self._corrections["get_ele_trig_leg1_SF"][
					self._year
				]
				get_ele_trig_leg1_data_Eff = self._corrections[
					"get_ele_trig_leg1_data_Eff"
				][self._year]
				get_ele_trig_leg1_mc_Eff = self._corrections[
					"get_ele_trig_leg1_mc_Eff"
				][self._year]
				get_ele_trig_leg2_SF = self._corrections["get_ele_trig_leg2_SF"][
					self._year
				]
				get_ele_trig_leg2_data_Eff = self._corrections[
					"get_ele_trig_leg2_data_Eff"
				][self._year]
				get_ele_trig_leg2_mc_Eff = self._corrections[
					"get_ele_trig_leg2_mc_Eff"
				][self._year]

			# PU weight with custom made npy and multi-indexing
			pu_weight_idx = ak.values_astype(events.Pileup.nTrueInt, "int64")
			pu = self._puweight_arr[pu_weight_idx]

			print("## pu_idx: ",len(pu_weight_idx),pu_weight_idx)
			print("## pu_arr: ",len(self._puweight_arr),self._puweight_arr)
			print("## pu:",len(pu),pu)

		selection = processor.PackedSelection()

		# Cut flow
		cut0 = np.zeros(len(events))
		out["cutflow"].fill(dataset=dataset, cutflow=cut0)
		# <----- Helper functions ------>#

		#  Sort by PT  helper function
		def sort_by_pt(ele, pho, jet):
			ele = ele[ak.argsort(ele.pt, ascending=False, axis=1)]
			pho = pho[ak.argsort(pho.pt, ascending=False, axis=1)]
			jet = jet[ak.argsort(jet.pt, ascending=False, axis=1)]

			return ele, pho, jet

		# Lorentz vectors
		from coffea.nanoevents.methods import vector

		ak.behavior.update(vector.behavior)

		def TLorentz_vector(vec):
			vec = ak.zip(
				{"x": vec.x, "y": vec.y, "z": vec.z, "t": vec.t},
				with_name="LorentzVector",
			)
			return vec

		def TLorentz_vector_cylinder(vec):

			vec = ak.zip(
				{
					"pt": vec.pt,
					"eta": vec.eta,
					"phi": vec.phi,
					"mass": vec.mass,
				},
				with_name="PtEtaPhiMLorentzVector",
			)

			return vec

		# <----- Selection ------>#

		Initial_events = events
		# Good Run ( Golden Json files )
		from coffea import lumi_tools

		if isData:
			lumi_mask_builder = lumi_tools.LumiMask(injson)
			lumimask = ak.Array(
				lumi_mask_builder.__call__(events.run, events.luminosityBlock)
			)
			events = events[lumimask]
			# print("{0}%  of files pass good-run conditions".format(len(events)/ len(Initial_events)))

		# Stop processing if there is no event remain
		if len(events) == 0:
			return out

		##----------- Cut flow1: Passing Triggers

		# double lepton trigger
		is_double_ele_trigger = True
		if not is_double_ele_trigger:
			double_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
		else:
			double_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
			for path in self._doubleelectron_triggers[self._year]:
				if path not in events.HLT.fields:
					continue
				double_ele_triggers_arr = double_ele_triggers_arr | events.HLT[path]

		# single lepton trigger
		is_single_ele_trigger = True
		if not is_single_ele_trigger:
			single_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
		else:
			single_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
			for path in self._singleelectron_triggers[self._year]:
				if path not in events.HLT.fields:
					continue
				single_ele_triggers_arr = single_ele_triggers_arr | events.HLT[path]

		events.Electron, events.Photon, events.Jet = sort_by_pt(
			events.Electron, events.Photon, events.Jet
		)

		# Good Primary vertex
		nPV = events.PV.npvsGood
		nPV_nw = events.PV.npvsGood
		if not isData:
			nPV = nPV * pu

			print(pu)


		# Apply cut1
		events = events[double_ele_triggers_arr]
		if not isData:
			pu = pu[double_ele_triggers_arr]

		# Stop processing if there is no event remain
		if len(events) == 0:
			return out

		cut1 = np.ones(len(events))
		out["cutflow"].fill(dataset=dataset, cutflow=cut1)

		# Set Particles
		Electron = events.Electron
		Muon = events.Muon
		Photon = events.Photon
		MET = events.MET
		Jet = events.Jet


		#  --Muon ( only used to calculate dR )
		MuSelmask = (
			(Muon.pt >= 10)
			& (abs(Muon.eta) <= 2.5)
			& (Muon.tightId)
			& (Muon.pfRelIso04_all < 0.15)
		)
		Muon = Muon[MuSelmask]

		
		#  --Loose Muon ( For Loose Muon veto )
		LoooseMuSelmask = (
			(Muon.pt > 20)
			& (abs(Muon.eta) < 2.4)
			& (Muon.isPFcand)
			& (Muon.isGlobal | Muon.isTracker)
			& (Muon.pfRelIso03_all < 0.25)
		)
		# Reference: VBS Zgamma+2jets
		
		VetoMuon = Muon[LoooseMuSelmask]
		

		##----------- Cut flow2: Electron Selection

		EleSelmask = (
			(Electron.pt >= 10)
			& (np.abs(Electron.eta + Electron.deltaEtaSC) < 1.479)
			& (Electron.cutBased > 2)
			& (abs(Electron.dxy) < 0.05)
			& (abs(Electron.dz) < 0.1)
		) | (
			(Electron.pt >= 10)
			& (np.abs(Electron.eta + Electron.deltaEtaSC) > 1.479)
			& (np.abs(Electron.eta + Electron.deltaEtaSC) <= 2.5)
			& (Electron.cutBased > 2)
			& (abs(Electron.dxy) < 0.1)
			& (abs(Electron.dz) < 0.2)
		)

		Electron = Electron[EleSelmask]

		
		# Event with 3 Electrons
		# apply cut 2
		Tri_electron_mask = ak.num(Electron) == 3 
		Electron = Electron[Tri_electron_mask]
		Photon = Photon[Tri_electron_mask]
		Jet = Jet[Tri_electron_mask]
		MET = MET[Tri_electron_mask]
		Muon = Muon[Tri_electron_mask]
		VetoMuon = VetoMuon[Tri_electron_mask]
		if not isData:
			pu = pu[Tri_electron_mask]
		events = events[Tri_electron_mask]
		
		# Stop processing if there is no event remain
		if len(Electron) == 0:
			return out

		cut2 = np.ones(len(Photon)) * 2
		out["cutflow"].fill(dataset=dataset, cutflow=cut2)

		##----------- Cut flow3: 4th lepton veto (Loose Muon)
		# Veto 4th Loose muon
		# apply cut 3
		fourth_lepton_veto = ak.num(VetoMuon) < 1
		Electron = Electron[fourth_lepton_veto]
		Photon = Photon[fourth_lepton_veto]
		Jet = Jet[fourth_lepton_veto]
		MET = MET[fourth_lepton_veto]
		Muon = Muon[fourth_lepton_veto]
		if not isData:
			pu = pu[fourth_lepton_veto]
		events = events[fourth_lepton_veto]
		
		# Stop processing if there is no event remain
		if len(Electron) == 0:
			return out

		cut3 = np.ones(len(Photon)) * 3
		out["cutflow"].fill(dataset=dataset, cutflow=cut3)


		##----------- Cut flow4: Photon Selection

		# Basic photon selection
		isgap_mask = (abs(Photon.eta) < 1.442) | (
			(abs(Photon.eta) > 1.566) & (abs(Photon.eta) < 2.5)
		)
		Pixel_seed_mask = ~Photon.pixelSeed

		if (dataset == "ZZ") and (self._year == "2017"):
			PT_ID_mask = (Photon.pt >= 20) & (
				Photon.cutBasedBitmap >= 3
			)  # 2^0(Loose) + 2^1(Medium) + 2^2(Tights)
		else:
			PT_ID_mask = (Photon.pt >= 20) & (Photon.cutBased > 1)

		# dR cut with selected Muon and Electrons
		dr_pho_ele_mask = ak.all(
			Photon.metric_table(Electron) >= 0.5, axis=-1
		)  # default metric table: delta_r
		dr_pho_mu_mask = ak.all(Photon.metric_table(Muon) >= 0.5, axis=-1)

		# genPartFlav cut
		"""
		if dataset == "WZG":
			isPrompt = (Photon.genPartFlav == 1) | (Photon.genPartFlav == 11)
			PhoSelmask = PT_ID_mask & isgap_mask &  Pixel_seed_mask & isPrompt & dr_pho_ele_mask & dr_pho_mu_mask

		elif dataset == "WZ":
			isPrompt = (Photon.genPartFlav == 1) 
			PhoSelmask = PT_ID_mask & isgap_mask &  Pixel_seed_mask & ~isPrompt & dr_pho_ele_mask & dr_pho_mu_mask
				
		else:
			PhoSelmask = PT_ID_mask  & isgap_mask &  Pixel_seed_mask & dr_pho_ele_mask & dr_pho_mu_mask
		"""

		PhoSelmask = (
			PT_ID_mask & isgap_mask & Pixel_seed_mask & dr_pho_ele_mask & dr_pho_mu_mask
		)
		Photon = Photon[PhoSelmask]

		# Apply cut 4
		A_photon_mask = ak.num(Photon) > 0
		Electron = Electron[A_photon_mask]
		Photon = Photon[A_photon_mask]
		Jet = Jet[A_photon_mask]
		Muon = Muon[A_photon_mask]
		MET = MET[A_photon_mask]
		if not isData:
			pu = pu[A_photon_mask]
		events = events[A_photon_mask]

		# Stop processing if there is no event remain
		if len(Electron) == 0:
			return out

		cut4 = np.ones(len(Photon)) * 4
		out["cutflow"].fill(dataset=dataset, cutflow=cut4)

		##----------- Cut flow5: OSSF
		# OSSF index maker
		@numba.njit
		def find_3lep(events_leptons, builder):
			for leptons in events_leptons:

				builder.begin_list()
				nlep = len(leptons)
				for i0 in range(nlep):
					for i1 in range(i0 + 1, nlep):
						if leptons[i0].charge + leptons[i1].charge != 0:
							continue

						for i2 in range(nlep):
							if len({i0, i1, i2}) < 3:
								continue
							builder.begin_tuple(3)
							builder.index(0).integer(i0)
							builder.index(1).integer(i1)
							builder.index(2).integer(i2)
							builder.end_tuple()
				builder.end_list()
			return builder

		eee_triplet_idx = find_3lep(Electron, ak.ArrayBuilder()).snapshot()

		ossf_mask = ak.num(eee_triplet_idx) == 2

		# Apply cut 5
		eee_triplet_idx = eee_triplet_idx[ossf_mask]
		Electron = Electron[ossf_mask]
		Photon = Photon[ossf_mask]
		Jet = Jet[ossf_mask]
		MET = MET[ossf_mask]
		if not isData:
			pu = pu[ossf_mask]
		events = events[ossf_mask]

		# Stop processing if there is no event remain
		if len(Electron) == 0:
			return out

		cut5 = np.ones(ak.sum(ak.num(Electron) > 0)) * 5
		out["cutflow"].fill(dataset=dataset, cutflow=cut5)

		# Define Electron Triplet

		Triple_electron = [Electron[eee_triplet_idx[idx]] for idx in "012"]
		Triple_eee = ak.zip(
			{
				"lep1": Triple_electron[0],
				"lep2": Triple_electron[1],
				"lep3": Triple_electron[2],
				"p4": TLorentz_vector(Triple_electron[0] + Triple_electron[1]),
			}
		)

		# Ele pair selector --> Close to Z mass
		bestZ_idx = ak.singletons(ak.argmin(abs(Triple_eee.p4.mass - 91.1876), axis=1))
		Triple_eee = Triple_eee[bestZ_idx]

		leading_ele = Triple_eee.lep1
		subleading_ele = Triple_eee.lep2
		third_ele = Triple_eee.lep3

		def make_leading_pair(target, base):
			return target[ak.argmax(base.pt, axis=1, keepdims=True)]

		leading_pho = make_leading_pair(Photon, Photon)

		# -- Scale Factor for each electron

		# Trigger weight helper function
		def Trigger_Weight(eta1, pt1, eta2, pt2):
			per_ev_MC = (
				get_ele_trig_leg1_mc_Eff(eta1, pt1)
				* get_ele_trig_leg2_mc_Eff(eta2, pt2)
				+ get_ele_trig_leg1_mc_Eff(eta2, pt2)
				* get_ele_trig_leg2_mc_Eff(eta1, pt1)
				- get_ele_trig_leg1_mc_Eff(eta1, pt1)
				* get_ele_trig_leg1_mc_Eff(eta2, pt2)
			)

			per_ev_data = (
				get_ele_trig_leg1_data_Eff(eta1, pt1)
				* get_ele_trig_leg1_SF(eta1, pt1)
				* get_ele_trig_leg2_data_Eff(eta2, pt2)
				* get_ele_trig_leg2_SF(eta2, pt2)
				+ get_ele_trig_leg1_data_Eff(eta2, pt2)
				* get_ele_trig_leg1_SF(eta2, pt2)
				* get_ele_trig_leg2_data_Eff(eta1, pt1)
				* get_ele_trig_leg2_SF(eta1, pt1)
				- get_ele_trig_leg1_data_Eff(eta1, pt1)
				* get_ele_trig_leg1_SF(eta1, pt1)
				* get_ele_trig_leg1_data_Eff(eta2, pt2)
				* get_ele_trig_leg1_SF(eta2, pt2)
			)

			return per_ev_data / per_ev_MC

		if not isData:

			## -------------< Egamma ID and Reco Scale factor > -----------------##
			get_pho_medium_id_sf = get_pho_medium_id_sf(
				ak.flatten(leading_pho.eta), ak.flatten(leading_pho.pt)
			)

			ele_reco_sf = (
				get_ele_reco_above20_sf(
					ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta),
					ak.flatten(leading_ele.pt),
				)
				* get_ele_reco_above20_sf(
					ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta),
					ak.flatten(subleading_ele.pt),
				)
				* get_ele_reco_above20_sf(
					ak.flatten(third_ele.deltaEtaSC + third_ele.eta),
					ak.flatten(third_ele.pt),
				)
			)

			ele_medium_id_sf = (
				get_ele_medium_id_sf(
					ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta),
					ak.flatten(leading_ele.pt),
				)
				* get_ele_medium_id_sf(
					ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta),
					ak.flatten(subleading_ele.pt),
				)
				* get_ele_medium_id_sf(
					ak.flatten(third_ele.deltaEtaSC + third_ele.eta),
					ak.flatten(third_ele.pt),
				)
			)

			## -------------< Double Electron Trigger Scale factor > -----------------##
			eta1 = ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta)
			eta2 = ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta)
			pt1 = ak.flatten(leading_ele.pt)
			pt2 = ak.flatten(subleading_ele.pt)

			# -- 2017,2016 are not applied yet
			if self._year == "2018":
				ele_trig_weight = Trigger_Weight(eta1, pt1, eta2, pt2)

		##----------- Cut flow6: Event selection

		# Mee cut
		diele = Triple_eee.p4
		Mee_cut_mask = ak.firsts(diele.mass) > 4

		# Z mass window
		# zmass_window_mask = ak.firsts(abs(diele.mass - 91.1876)) < 15 # SR, CR_ZZA, CR_Z+jets, CR_Conversion
		# zmass_window_mask = ak.firsts(abs(diele.mass - 91.1876)) > 5 #  CR_t-enriched
		# zmass_window_mask = ak.firsts(abs(diele.mass - 91.1876)) > 15 #  CR_Conversion

		# M(eee) cut SR, CR_ZZA, CR_Z+jets, CR_t enriched
		# eee = Triple_eee.lep1 + Triple_eee.lep2 + Triple_eee.lep3
		# Meee_cut_mask = ak.firsts(eee.mass > 100)
		# Meee_cut_mask = ak.firsts(eee.mass <= 100)

		# b-Jet veto cut  #SR, CR_ZZA, CR_Z+jets, CR_Conversion
		# bjet_mask = (Jet.btagCSVV2 > 0.4184)	&  (Jet.pt > 30)
		# bjet_veto_mask = ak.num(Jet[bjet_mask]) == 0
		# bjet_veto_mask = ak.num(Jet[bjet_mask]) > 0 # CR_t-enriched

		# Electron PT cuts
		Elept_mask = ak.firsts(
			(leading_ele.pt >= 25) & (subleading_ele.pt >= 10) & (third_ele.pt >= 25)
		)

		# MET cuts
		MET_mask = MET > 20  # Baseline
		# MET_mask = MET.pt > 30 #  SR, CR-ZZE, CR-t-entirched
		# MET_mask = MET.pt <= 30 #  CR-Z+jets. CR-Conversion

		# Mask
		# Event_sel_mask = Elept_mask & MET_mask & bjet_veto_mask & Mee_cut_mask & zmass_window_mask  & Meee_cut_mask # SR,CR
		Event_sel_mask = Elept_mask & MET_mask & Mee_cut_mask  # SR,CR

		# Apply cut6
		Triple_eee_sel = Triple_eee[Event_sel_mask]
		leading_pho_sel = leading_pho[Event_sel_mask]
		MET_sel = MET[Event_sel_mask]
		events = events[Event_sel_mask]

		# Photon  EE and EB
		isEE_mask = leading_pho.isScEtaEE
		isEB_mask = leading_pho.isScEtaEB
		Pho_EE = leading_pho[isEE_mask & Event_sel_mask]
		Pho_EB = leading_pho[isEB_mask & Event_sel_mask]


		# Stop processing if there is no event remain
		if len(leading_pho_sel) == 0:
			return out

		cut6 = np.ones(ak.sum(ak.num(leading_pho_sel) > 0)) * 6
		out["cutflow"].fill(dataset=dataset, cutflow=cut6)

		## -------------------- Prepare making hist --------------#

		# Photon
		phoPT = ak.flatten(leading_pho_sel.pt)
		phoEta = ak.flatten(leading_pho_sel.eta)
		phoPhi = ak.flatten(leading_pho_sel.phi)

		# Photon EE
		if len(Pho_EE.pt) != 0:
			Pho_EE_PT = ak.flatten(Pho_EE.pt)
			Pho_EE_Eta = ak.flatten(Pho_EE.eta)
			Pho_EE_Phi = ak.flatten(Pho_EE.phi)
			Pho_EE_sieie = ak.flatten(Pho_EE.sieie)
			Pho_EE_hoe = ak.flatten(Pho_EE.hoe)
			Pho_EE_Iso_charge = ak.flatten(Pho_EE.pfRelIso03_chg)

		# Photon EB
		if len(Pho_EB.pt) != 0:
			Pho_EB_PT = ak.flatten(Pho_EB.pt)
			Pho_EB_Eta = ak.flatten(Pho_EB.eta)
			Pho_EB_Phi = ak.flatten(Pho_EB.phi)
			Pho_EB_sieie = ak.flatten(Pho_EB.sieie)
			Pho_EB_hoe = ak.flatten(Pho_EB.hoe)
			Pho_EB_Iso_charge = ak.flatten(Pho_EB.pfRelIso03_chg)

		# Electrons
		ele1PT = ak.flatten(Triple_eee_sel.lep1.pt)
		ele1Eta = ak.flatten(Triple_eee_sel.lep1.eta)
		ele1Phi = ak.flatten(Triple_eee_sel.lep1.phi)

		ele2PT = ak.flatten(Triple_eee_sel.lep2.pt)
		ele2Eta = ak.flatten(Triple_eee_sel.lep2.eta)
		ele2Phi = ak.flatten(Triple_eee_sel.lep2.phi)

		ele3PT = ak.flatten(Triple_eee_sel.lep3.pt)
		ele3Eta = ak.flatten(Triple_eee_sel.lep3.eta)
		ele3Phi = ak.flatten(Triple_eee_sel.lep3.phi)

		charge = ak.flatten(Triple_eee.lep1.charge + Triple_eee.lep2.charge)

		# MET
		met = ak.to_numpy(MET_sel)

		# M(eea) M(ee)
		diele = Triple_eee_sel.p4
		eeg_vec = diele + leading_pho_sel
		Meea = ak.flatten(eeg_vec.mass)
		Mee = ak.flatten(Triple_eee_sel.p4.mass)


		# --- Apply weight and hist
		
		if isFake:
			weights = processor.Weights(len(cut6))
		else:
			weights = processor.Weights(len(cut5))
			


		# -------------------- Sieie bins---------------------------#
		def make_bins(pt, eta, bin_range_str):

			bin_dict = {
				"PT_1_eta_1": (pt > 20) & (pt < 30) & (eta < 1),
				"PT_1_eta_2": (pt > 20) & (pt < 30) & (eta > 1) & (eta < 1.5),
				"PT_1_eta_3": (pt > 20) & (pt < 30) & (eta > 1.5) & (eta < 2),
				"PT_1_eta_4": (pt > 20) & (pt < 30) & (eta > 2) & (eta < 2.5),
				"PT_2_eta_1": (pt > 30) & (pt < 40) & (eta < 1),
				"PT_2_eta_2": (pt > 30) & (pt < 40) & (eta > 1) & (eta < 1.5),
				"PT_2_eta_3": (pt > 30) & (pt < 40) & (eta > 1.5) & (eta < 2),
				"PT_2_eta_4": (pt > 30) & (pt < 40) & (eta > 2) & (eta < 2.5),
				"PT_3_eta_1": (pt > 40) & (pt < 50) & (eta < 1),
				"PT_3_eta_2": (pt > 40) & (pt < 50) & (eta > 1) & (eta < 1.5),
				"PT_3_eta_3": (pt > 40) & (pt < 50) & (eta > 1.5) & (eta < 2),
				"PT_3_eta_4": (pt > 40) & (pt < 50) & (eta > 2) & (eta < 2.5),
				"PT_4_eta_1": (pt > 50) & (eta < 1),
				"PT_4_eta_2": (pt > 50) & (eta > 1) & (eta < 1.5),
				"PT_4_eta_3": (pt > 50) & (eta > 1.5) & (eta < 2),
				"PT_4_eta_4": (pt > 50) & (eta > 2) & (eta < 2.5),
			}

			binmask = bin_dict[bin_range_str]

			return binmask

		bin_name_list = [
			"PT_1_eta_1",
			"PT_1_eta_2",
			"PT_1_eta_3",
			"PT_1_eta_4",
			"PT_2_eta_1",
			"PT_2_eta_2",
			"PT_2_eta_3",
			"PT_2_eta_4",
			"PT_3_eta_1",
			"PT_3_eta_2",
			"PT_3_eta_3",
			"PT_3_eta_4",
			"PT_4_eta_1",
			"PT_4_eta_2",
			"PT_4_eta_3",
			"PT_4_eta_4",
		]



		## -- Fake-fraction Lookup table --##
		if isFake:
			# Make Bin-range mask
			binned_pteta_mask = {}
			for name in bin_name_list:
				binned_pteta_mask[name] = make_bins(
					ak.flatten(leading_pho_sel.pt),
					ak.flatten(abs(leading_pho_sel.eta)),
					name,
				)
			# Read Fake fraction --> Mapping bin name to int()
			in_dict = np.load('Fitting_v2/results_210517.npy',allow_pickle="True")[()]
			idx=0
			fake_dict ={}
			for i,j in in_dict.items():
				fake_dict[idx] = j
				idx+=1


			# Reconstruct Fake_weight
			fw= 0
			for i,j in binned_pteta_mask.items():
				fw = fw + j*fake_dict[bin_name_list.index(i)]


			# Process 0 weight to 1
			@numba.njit
			def zero_one(x):
				if x == 0:
					x = 1
				return x
			vec_zero_one = np.vectorize(zero_one)
			fw = vec_zero_one(fw)




		# --- skim cut-weight
		if not isFake:
			def skim_weight(arr):
				mask1 = ~ak.is_none(arr)
				subarr = arr[mask1]
				mask2 = subarr != 0
				return ak.to_numpy(subarr[mask2])
		else:
			def skim_weight(arr):
				return arr


		if not isFake:
			cuts = Event_sel_mask
			cuts_pho_EE = ak.flatten(isEE_mask)
			cuts_pho_EB = ak.flatten(isEB_mask)

		if isFake:
			cuts = np.ones(len(Event_sel_mask))
			cuts_pho_EE = ak.flatten(isEE_mask & Event_sel_mask)
			cuts_pho_EB = ak.flatten(isEB_mask & Event_sel_mask)


		if isFake:
			weights.add("fake_fraction", fw)
			
		# Weight and SF here
		if not (isData | isFake):
			weights.add("pileup", pu)
			weights.add("ele_id", ele_medium_id_sf)
			weights.add("pho_id", get_pho_medium_id_sf)
			weights.add("ele_reco", ele_reco_sf)

			# 2016,2017 are not applied yet
			if self._year == "2018":
				weights.add("ele_trigger", ele_trig_weight)

		# ---------------------------- Fill hist --------------------------------------#

		# Initial events
		out["sumw"][dataset] += len(Initial_events)


		print("cut1: {0},cut2: {1},cut3: {2},cut4: {3},cut5: {4},cut6: {5},cut7: {6}".format(len(cut0), len(cut1), len(cut2), len(cut3), len(cut4), len(cut5),len(cut6)))


		## Cut flow loop
		#for cut in [cut0, cut1, cut2, cut3, cut4, cut5,cut6]:
		#	out["cutflow"].fill(dataset=dataset, cutflow=cut)

		# Primary vertex
		out["nPV"].fill(
			dataset=dataset,
			nPV=nPV,
		)
		out["nPV_nw"].fill(dataset=dataset, nPV_nw=nPV_nw)

		# Fill hist

		# -- met -- #
		out["met"].fill(
			dataset=dataset, met=met, weight=skim_weight(weights.weight() * cuts)
		)

		# --mass -- #
		out["mass"].fill(
			dataset=dataset, mass=Mee, weight=skim_weight(weights.weight() * cuts)
		)
		out["mass_eea"].fill(
			dataset=dataset, mass_eea=Meea, weight=skim_weight(weights.weight() * cuts)
		)

		# -- Electron -- #
		out["ele1pt"].fill(
			dataset=dataset, ele1pt=ele1PT, weight=skim_weight(weights.weight() * cuts)
		)
		out["ele1eta"].fill(
			dataset=dataset,
			ele1eta=ele1Eta,
			weight=skim_weight(weights.weight() * cuts),
		)
		out["ele1phi"].fill(
			dataset=dataset,
			ele1phi=ele1Phi,
			weight=skim_weight(weights.weight() * cuts),
		)
		out["ele2pt"].fill(
			dataset=dataset, ele2pt=ele2PT, weight=skim_weight(weights.weight() * cuts)
		)
		out["ele2eta"].fill(
			dataset=dataset,
			ele2eta=ele2Eta,
			weight=skim_weight(weights.weight() * cuts),
		)
		out["ele2phi"].fill(
			dataset=dataset,
			ele2phi=ele2Phi,
			weight=skim_weight(weights.weight() * cuts),
		)
		out["ele3pt"].fill(
			dataset=dataset, ele3pt=ele3PT, weight=skim_weight(weights.weight() * cuts)
		)

		# -- Photon -- #

		out["phopt"].fill(
			dataset=dataset, phopt=phoPT, weight=skim_weight(weights.weight() * cuts)
		)
		out["phoeta"].fill(
			dataset=dataset, phoeta=phoEta, weight=skim_weight(weights.weight() * cuts)
		)
		out["phophi"].fill(
			dataset=dataset, phophi=phoPhi, weight=skim_weight(weights.weight() * cuts)
		)

		if len(Pho_EE.pt) != 0:

			out["pho_EE_pt"].fill(
				dataset=dataset,
				pho_EE_pt=Pho_EE_PT,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EE),
			)
			out["pho_EE_eta"].fill(
				dataset=dataset,
				pho_EE_eta=Pho_EE_Eta,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EE),
			)
			out["pho_EE_phi"].fill(
				dataset=dataset,
				pho_EE_phi=Pho_EE_Phi,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EE),
			)
			out["pho_EE_hoe"].fill(
				dataset=dataset,
				pho_EE_hoe=Pho_EE_hoe,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EE),
			)
			out["pho_EE_sieie"].fill(
				dataset=dataset,
				pho_EE_sieie=Pho_EE_sieie,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EE),
			)
			out["pho_EE_Iso_chg"].fill(
				dataset=dataset,
				pho_EE_Iso_chg=Pho_EE_Iso_charge,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EE),
			)

		if len(Pho_EB.pt) != 0:
			out["pho_EB_pt"].fill(
				dataset=dataset,
				pho_EB_pt=Pho_EB_PT,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EB),
			)
			out["pho_EB_eta"].fill(
				dataset=dataset,
				pho_EB_eta=Pho_EB_Eta,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EB),
			)
			out["pho_EB_phi"].fill(
				dataset=dataset,
				pho_EB_phi=Pho_EB_Phi,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EB),
			)
			out["pho_EB_hoe"].fill(
				dataset=dataset,
				pho_EB_hoe=Pho_EB_hoe,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EB),
			)
			out["pho_EB_sieie"].fill(
				dataset=dataset,
				pho_EB_sieie=Pho_EB_sieie,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EB),
			)
			out["pho_EB_Iso_chg"].fill(
				dataset=dataset,
				pho_EB_Iso_chg=Pho_EB_Iso_charge,
				weight=skim_weight(weights.weight() * cuts * cuts_pho_EB),
			)

		return out
示例#22
0
    def process(self, events):

        output = self.accumulator.identity()

        # we can use a very loose preselection to filter the events. nothing is done with this presel, though
        presel = ak.num(events.Jet) > 0

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        #output['totalEvents']['all'] += len(events)
        #output['skimmedEvents']['all'] += len(ev)

        if self.year == 2018:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2017:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2016:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ

        if self.year == 2018:
            lumimask = LumiMask(
                'processors/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt'
            )

        ## Electrons
        electron = Collections(ev, "Electron", "tight").get()
        electron = electron[(electron.pt > 25) & (np.abs(electron.eta) < 2.4)]

        loose_electron = Collections(ev, "Electron", "veto").get()
        loose_electron = loose_electron[(loose_electron.pt > 25)
                                        & (np.abs(loose_electron.eta) < 2.4)]

        SSelectron = (ak.sum(electron.charge, axis=1) != 0) & (ak.num(electron)
                                                               == 2)
        OSelectron = (ak.sum(electron.charge, axis=1) == 0) & (ak.num(electron)
                                                               == 2)

        dielectron = choose(electron, 2)
        dielectron_mass = (dielectron['0'] + dielectron['1']).mass
        dielectron_pt = (dielectron['0'] + dielectron['1']).pt

        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[(leading_electron_idx)]
        leading_electron = leading_electron[(leading_electron.pt > 30)]

        trailing_electron_idx = ak.singletons(ak.argmin(electron.pt, axis=1))
        trailing_electron = electron[trailing_electron_idx]

        ##Muons

        loose_muon = Collections(ev, "Muon", "veto").get()
        loose_muon = loose_muon[(loose_muon.pt > 20)
                                & (np.abs(loose_muon.eta) < 2.4)]

        #jets
        jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt', UL=False)
        jet = jet[ak.argsort(
            jet.pt, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, loose_muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        #selections
        filters = getFilters(ev, year=self.year, dataset=dataset)
        mask = lumimask(ev.run, ev.luminosityBlock)
        ss = (SSelectron)
        os = (OSelectron)
        mass = (ak.min(np.abs(dielectron_mass - 91.2), axis=1) < 15)
        lead_electron = (ak.min(leading_electron.pt, axis=1) > 30)
        jet1 = (ak.num(jet) >= 1)
        jet2 = (ak.num(jet) >= 2)
        num_loose = ((ak.num(loose_electron) == 2) & (ak.num(loose_muon) == 0))

        selection = PackedSelection()
        selection.add('filter', (filters))
        selection.add('mask', (mask))
        selection.add('ss', ss)
        selection.add('os', os)
        selection.add('mass', mass)
        selection.add('leading', lead_electron)
        selection.add('triggers', triggers)
        selection.add('one jet', jet1)
        selection.add('two jets', jet2)
        selection.add('num_loose', num_loose)

        bl_reqs = ['filter'] + ['mass'] + ['mask'] + ['triggers'] + [
            'leading'
        ] + ['num_loose']
        #bl_reqs = ['filter'] + ['mass'] + ['triggers'] + ['leading'] + ['num_loose']

        bl_reqs_d = {sel: True for sel in bl_reqs}
        baseline = selection.require(**bl_reqs_d)

        s_reqs = bl_reqs + ['ss']
        s_reqs_d = {sel: True for sel in s_reqs}
        ss_sel = selection.require(**s_reqs_d)

        o_reqs = bl_reqs + ['os']
        o_reqs_d = {sel: True for sel in o_reqs}
        os_sel = selection.require(**o_reqs_d)

        j1s_reqs = s_reqs + ['one jet']
        j1s_reqs_d = {sel: True for sel in j1s_reqs}
        j1ss_sel = selection.require(**j1s_reqs_d)

        j1o_reqs = o_reqs + ['one jet']
        j1o_reqs_d = {sel: True for sel in j1o_reqs}
        j1os_sel = selection.require(**j1o_reqs_d)

        j2s_reqs = s_reqs + ['two jets']
        j2s_reqs_d = {sel: True for sel in j2s_reqs}
        j2ss_sel = selection.require(**j2s_reqs_d)

        j2o_reqs = o_reqs + ['two jets']
        j2o_reqs_d = {sel: True for sel in j2o_reqs}
        j2os_sel = selection.require(**j2o_reqs_d)

        output["N_jet"].fill(
            dataset=dataset,
            multiplicity=ak.num(jet)[os_sel],
        )

        return output
示例#23
0
    def process(self, events):
        # Dataset parameters
        dataset = events.metadata['dataset']
        histAxisName = self._samples[dataset]['histAxisName']
        year = self._samples[dataset]['year']
        xsec = self._samples[dataset]['xsec']
        sow = self._samples[dataset]['nSumOfWeights']
        isData = self._samples[dataset]['isData']
        datasets = [
            'SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon',
            'DoubleElectron'
        ]
        for d in datasets:
            if d in dataset: dataset = dataset.split('_')[0]

        # Initialize objects
        met = events.MET
        e = events.Electron
        mu = events.Muon
        tau = events.Tau
        j = events.Jet

        # Muon selection

        mu['isPres'] = isPresMuon(mu.dxy, mu.dz, mu.sip3d, mu.looseId)
        mu['isTight'] = isTightMuon(mu.pt,
                                    mu.eta,
                                    mu.dxy,
                                    mu.dz,
                                    mu.pfRelIso03_all,
                                    mu.sip3d,
                                    mu.mvaTTH,
                                    mu.mediumPromptId,
                                    mu.tightCharge,
                                    mu.looseId,
                                    minpt=10)
        mu['isGood'] = mu['isPres'] & mu['isTight']

        leading_mu = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)]
        leading_mu = leading_mu[leading_mu.isGood]

        mu = mu[mu.isGood]
        mu_pres = mu[mu.isPres]

        # Electron selection
        e['isPres'] = isPresElec(e.pt,
                                 e.eta,
                                 e.dxy,
                                 e.dz,
                                 e.miniPFRelIso_all,
                                 e.sip3d,
                                 e.lostHits,
                                 minpt=15)
        e['isTight'] = isTightElec(e.pt,
                                   e.eta,
                                   e.dxy,
                                   e.dz,
                                   e.miniPFRelIso_all,
                                   e.sip3d,
                                   e.mvaTTH,
                                   e.mvaFall17V2Iso,
                                   e.lostHits,
                                   e.convVeto,
                                   e.tightCharge,
                                   e.sieie,
                                   e.hoe,
                                   e.eInvMinusPInv,
                                   minpt=15)
        e['isClean'] = isClean(e, mu, drmin=0.05)
        e['isGood'] = e['isPres'] & e['isTight'] & e['isClean']

        leading_e = e[ak.argmax(e.pt, axis=-1, keepdims=True)]
        leading_e = leading_e[leading_e.isGood]

        e = e[e.isGood]
        e_pres = e[e.isPres & e.isClean]

        # Tau selection
        tau['isPres'] = isPresTau(tau.pt,
                                  tau.eta,
                                  tau.dxy,
                                  tau.dz,
                                  tau.leadTkPtOverTauPt,
                                  tau.idAntiMu,
                                  tau.idAntiEle,
                                  tau.rawIso,
                                  tau.idDecayModeNewDMs,
                                  minpt=20)
        tau['isClean'] = isClean(tau, e_pres, drmin=0.4) & isClean(
            tau, mu_pres, drmin=0.4)
        tau['isGood'] = tau['isPres']  # & tau['isClean'], for the moment
        tau = tau[tau.isGood]

        nElec = ak.num(e)
        nMuon = ak.num(mu)
        nTau = ak.num(tau)

        twoLeps = (nElec + nMuon) == 2
        threeLeps = (nElec + nMuon) == 3
        twoElec = (nElec == 2)
        twoMuon = (nMuon == 2)
        e0 = e[ak.argmax(e.pt, axis=-1, keepdims=True)]
        m0 = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)]

        # Attach the lepton SFs to the electron and muons collections
        AttachElectronSF(e, year=year)
        AttachMuonSF(mu, year=year)

        # Create a lepton (muon+electron) collection and calculate a per event lepton SF
        leps = ak.concatenate([e, mu], axis=-1)
        events['lepSF_nom'] = ak.prod(leps.sf_nom, axis=-1)
        events['lepSF_hi'] = ak.prod(leps.sf_hi, axis=-1)
        events['lepSF_lo'] = ak.prod(leps.sf_lo, axis=-1)

        # Jet selection
        jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt'

        ### Jet energy corrections
        if not isData:
            j["pt_raw"] = (1 - j.rawFactor) * j.pt
            j["mass_raw"] = (1 - j.rawFactor) * j.mass
            j["pt_gen"] = ak.values_astype(ak.fill_none(j.matched_gen.pt, 0),
                                           np.float32)
            j["rho"] = ak.broadcast_arrays(events.fixedGridRhoFastjetAll,
                                           j.pt)[0]
            events_cache = events.caches[0]
            corrected_jets = jet_factory.build(j, lazy_cache=events_cache)
            #print('jet pt: ',j.pt)
            #print('cor pt: ',corrected_jets.pt)
            #print('jes up: ',corrected_jets.JES_jes.up.pt)
            #print('jes down: ',corrected_jets.JES_jes.down.pt)
            #print(ak.fields(corrected_jets))
            '''
          # SYSTEMATICS
          jets = corrected_jets
          if(self.jetSyst == 'JERUp'):
            jets = corrected_jets.JER.up
          elif(self.jetSyst == 'JERDown'):
            jets = corrected_jets.JER.down
          elif(self.jetSyst == 'JESUp'):
            jets = corrected_jets.JES_jes.up
          elif(self.jetSyst == 'JESDown'):
            jets = corrected_jets.JES_jes.down
          '''
        j['isGood'] = isTightJet(getattr(j,
                                         jetptname), j.eta, j.jetId, j.neHEF,
                                 j.neEmEF, j.chHEF, j.chEmEF, j.nConstituents)
        #j['isgood']  = isGoodJet(j.pt, j.eta, j.jetId)
        #j['isclean'] = isClean(j, e, mu)
        j['isClean'] = isClean(j, e, drmin=0.4) & isClean(
            j, mu, drmin=0.4)  # & isClean(j, tau, drmin=0.4)
        goodJets = j[(j.isClean) & (j.isGood)]
        njets = ak.num(goodJets)
        ht = ak.sum(goodJets.pt, axis=-1)
        j0 = goodJets[ak.argmax(goodJets.pt, axis=-1, keepdims=True)]
        #nbtags = ak.num(goodJets[goodJets.btagDeepFlavB > 0.2770])
        # Loose DeepJet WP
        if year == 2017: btagwpl = 0.0532  #WP loose
        else: btagwpl = 0.0490  #WP loose
        isBtagJetsLoose = (goodJets.btagDeepB > btagwpl)
        isNotBtagJetsLoose = np.invert(isBtagJetsLoose)
        nbtagsl = ak.num(goodJets[isBtagJetsLoose])
        # Medium DeepJet WP
        if year == 2017: btagwpm = 0.3040  #WP medium
        else: btagwpm = 0.2783  #WP medium
        isBtagJetsMedium = (goodJets.btagDeepB > btagwpm)
        isNotBtagJetsMedium = np.invert(isBtagJetsMedium)
        nbtagsm = ak.num(goodJets[isBtagJetsMedium])

        # Btag SF following 1a) in https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods
        btagSF = np.ones_like(ht)
        btagSFUp = np.ones_like(ht)
        btagSFDo = np.ones_like(ht)
        if not isData:
            pt = goodJets.pt
            abseta = np.abs(goodJets.eta)
            flav = goodJets.hadronFlavour
            bJetSF = GetBTagSF(abseta, pt, flav)
            bJetSFUp = GetBTagSF(abseta, pt, flav, sys=1)
            bJetSFDo = GetBTagSF(abseta, pt, flav, sys=-1)
            bJetEff = GetBtagEff(abseta, pt, flav, year)
            bJetEff_data = bJetEff * bJetSF
            bJetEff_dataUp = bJetEff * bJetSFUp
            bJetEff_dataDo = bJetEff * bJetSFDo

            pMC = ak.prod(bJetEff[isBtagJetsMedium], axis=-1) * ak.prod(
                (1 - bJetEff[isNotBtagJetsMedium]), axis=-1)
            pData = ak.prod(bJetEff_data[isBtagJetsMedium], axis=-1) * ak.prod(
                (1 - bJetEff_data[isNotBtagJetsMedium]), axis=-1)
            pDataUp = ak.prod(
                bJetEff_dataUp[isBtagJetsMedium], axis=-1) * ak.prod(
                    (1 - bJetEff_dataUp[isNotBtagJetsMedium]), axis=-1)
            pDataDo = ak.prod(
                bJetEff_dataDo[isBtagJetsMedium], axis=-1) * ak.prod(
                    (1 - bJetEff_dataDo[isNotBtagJetsMedium]), axis=-1)

            pMC = ak.where(pMC == 0, 1,
                           pMC)  # removeing zeroes from denominator...
            btagSF = pData / pMC
            btagSFUp = pDataUp / pMC
            btagSFDo = pDataUp / pMC

        ##################################################################
        ### 2 same-sign leptons
        ##################################################################

        # emu
        singe = e[(nElec == 1) & (nMuon == 1) & (e.pt > -1)]
        singm = mu[(nElec == 1) & (nMuon == 1) & (mu.pt > -1)]
        em = ak.cartesian({"e": singe, "m": singm})
        emSSmask = (em.e.charge * em.m.charge > 0)
        emSS = em[emSSmask]
        nemSS = len(ak.flatten(emSS))

        # ee and mumu
        # pt>-1 to preserve jagged dimensions
        ee = e[(nElec == 2) & (nMuon == 0) & (e.pt > -1)]
        mm = mu[(nElec == 0) & (nMuon == 2) & (mu.pt > -1)]

        sumcharge = ak.sum(e.charge, axis=-1) + ak.sum(mu.charge, axis=-1)

        eepairs = ak.combinations(ee, 2, fields=["e0", "e1"])
        eeSSmask = (eepairs.e0.charge * eepairs.e1.charge > 0)
        eeonZmask = (np.abs((eepairs.e0 + eepairs.e1).mass - 91.2) < 10)
        eeoffZmask = (eeonZmask == 0)

        mmpairs = ak.combinations(mm, 2, fields=["m0", "m1"])
        mmSSmask = (mmpairs.m0.charge * mmpairs.m1.charge > 0)
        mmonZmask = (np.abs((mmpairs.m0 + mmpairs.m1).mass - 91.2) < 10)
        mmoffZmask = (mmonZmask == 0)

        eeSSonZ = eepairs[eeSSmask & eeonZmask]
        eeSSoffZ = eepairs[eeSSmask & eeoffZmask]
        mmSSonZ = mmpairs[mmSSmask & mmonZmask]
        mmSSoffZ = mmpairs[mmSSmask & mmoffZmask]
        neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ))
        nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ))

        print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]' %
              (neeSS, nemSS, nmmSS))

        # Cuts
        eeSSmask = (ak.num(eeSSmask[eeSSmask]) > 0)
        mmSSmask = (ak.num(mmSSmask[mmSSmask]) > 0)
        eeonZmask = (ak.num(eeonZmask[eeonZmask]) > 0)
        eeoffZmask = (ak.num(eeoffZmask[eeoffZmask]) > 0)
        mmonZmask = (ak.num(mmonZmask[mmonZmask]) > 0)
        mmoffZmask = (ak.num(mmoffZmask[mmoffZmask]) > 0)
        emSSmask = (ak.num(emSSmask[emSSmask]) > 0)

        ##################################################################
        ### 3 leptons
        ##################################################################

        # eem
        muon_eem = mu[(nElec == 2) & (nMuon == 1) & (mu.pt > -1)]
        elec_eem = e[(nElec == 2) & (nMuon == 1) & (e.pt > -1)]

        ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"])
        ee_eemZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs(
            (ee_eem.e0 + ee_eem.e1).mass - 91.2) < 10)
        ee_eemOffZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs(
            (ee_eem.e0 + ee_eem.e1).mass - 91.2) > 10)
        ee_eemZmask = (ak.num(ee_eemZmask[ee_eemZmask]) > 0)
        ee_eemOffZmask = (ak.num(ee_eemOffZmask[ee_eemOffZmask]) > 0)

        eepair_eem = (ee_eem.e0 + ee_eem.e1)
        trilep_eem = eepair_eem + muon_eem  #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem})

        # mme
        muon_mme = mu[(nElec == 1) & (nMuon == 2) & (mu.pt > -1)]
        elec_mme = e[(nElec == 1) & (nMuon == 2) & (e.pt > -1)]

        mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"])
        mm_mmeZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs(
            (mm_mme.m0 + mm_mme.m1).mass - 91.2) < 10)
        mm_mmeOffZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs(
            (mm_mme.m0 + mm_mme.m1).mass - 91.2) > 10)
        mm_mmeZmask = (ak.num(mm_mmeZmask[mm_mmeZmask]) > 0)
        mm_mmeOffZmask = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask]) > 0)

        mmpair_mme = (mm_mme.m0 + mm_mme.m1)
        trilep_mme = mmpair_mme + elec_mme

        mZ_mme = mmpair_mme.mass
        mZ_eem = eepair_eem.mass
        m3l_eem = trilep_eem.mass
        m3l_mme = trilep_mme.mass

        # eee and mmm
        eee = e[(nElec == 3) & (nMuon == 0) & (e.pt > -1)]
        mmm = mu[(nElec == 0) & (nMuon == 3) & (mu.pt > -1)]

        eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"])
        mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"])

        ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"])
        mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"])
        ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"])
        mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"])

        mmSFOS_pairs = mm_pairs[
            (np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId))
            & (mm_pairs.m0.charge != mm_pairs.m1.charge)]
        offZmask_mm = ak.all(
            np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) > 10.,
            axis=1,
            keepdims=True) & (ak.num(mmSFOS_pairs) > 0)
        onZmask_mm = ak.any(
            np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) < 10.,
            axis=1,
            keepdims=True)

        eeSFOS_pairs = ee_pairs[
            (np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId))
            & (ee_pairs.e0.charge != ee_pairs.e1.charge)]
        offZmask_ee = ak.all(
            np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) > 10,
            axis=1,
            keepdims=True) & (ak.num(eeSFOS_pairs) > 0)
        onZmask_ee = ak.any(
            np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) < 10,
            axis=1,
            keepdims=True)

        # Create masks **for event selection**
        eeeOnZmask = (ak.num(onZmask_ee[onZmask_ee]) > 0)
        eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee]) > 0)
        mmmOnZmask = (ak.num(onZmask_mm[onZmask_mm]) > 0)
        mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm]) > 0)

        # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories)
        ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass -
                                   91.2),
                            axis=1,
                            keepdims=True)
        ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass -
                                   91.2),
                            axis=1,
                            keepdims=True)

        Zee = eeSFOS_pairs[ZeeMask]
        Zmm = mmSFOS_pairs[ZmmMask]
        eZ0 = Zee.e0[ak.num(eeSFOS_pairs) > 0]
        eZ1 = Zee.e1[ak.num(eeSFOS_pairs) > 0]
        eZ = eZ0 + eZ1
        mZ0 = Zmm.m0[ak.num(mmSFOS_pairs) > 0]
        mZ1 = Zmm.m1[ak.num(mmSFOS_pairs) > 0]
        mZ = mZ0 + mZ1
        mZ_eee = eZ.mass
        mZ_mmm = mZ.mass

        # And for the W boson
        ZmmIndices = mm_pairs_index[ZmmMask]
        ZeeIndices = ee_pairs_index[ZeeMask]
        eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1]
        mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1]

        triElec = eee_leps.e0 + eee_leps.e1 + eee_leps.e2
        triMuon = mmm_leps.m0 + mmm_leps.m1 + mmm_leps.m2
        m3l_eee = triElec.mass
        m3l_mmm = triMuon.mass

        ##################################################################
        ### >=4 leptons
        ##################################################################

        # 4lep cat
        is4lmask = ((nElec + nMuon) >= 4)
        muon_4l = mu[(is4lmask) & (mu.pt > -1)]
        elec_4l = e[(is4lmask) & (e.pt > -1)]

        # selecting 4 leading leptons
        leptons = ak.concatenate([e, mu], axis=-1)
        leptons_sorted = leptons[ak.argsort(leptons.pt,
                                            axis=-1,
                                            ascending=False)]
        lep4l = leptons_sorted[:, 0:4]
        e4l = lep4l[abs(lep4l.pdgId) == 11]
        mu4l = lep4l[abs(lep4l.pdgId) == 13]
        nElec4l = ak.num(e4l)
        nMuon4l = ak.num(mu4l)

        # Triggers
        trig_eeSS = passTrigger(events, 'ee', isData, dataset)
        trig_mmSS = passTrigger(events, 'mm', isData, dataset)
        trig_emSS = passTrigger(events, 'em', isData, dataset)
        trig_eee = passTrigger(events, 'eee', isData, dataset)
        trig_mmm = passTrigger(events, 'mmm', isData, dataset)
        trig_eem = passTrigger(events, 'eem', isData, dataset)
        trig_mme = passTrigger(events, 'mme', isData, dataset)
        trig_4l = triggerFor4l(events, nMuon, nElec, isData, dataset)

        # MET filters

        # Weights
        genw = np.ones_like(events['event']) if (
            isData or len(self._wc_names_lst) > 0) else events['genWeight']

        ### We need weights for: normalization, lepSF, triggerSF, pileup, btagSF...
        weights = {}
        for r in [
                'all', 'ee', 'mm', 'em', 'eee', 'mmm', 'eem', 'mme', 'eeee',
                'eeem', 'eemm', 'mmme', 'mmmm'
        ]:
            # weights[r] = coffea.analysis_tools.Weights(len(events))
            weights[r] = coffea.analysis_tools.Weights(len(events),
                                                       storeIndividual=True)
            if len(self._wc_names_lst) > 0:
                sow = np.ones_like(
                    sow
                )  # Not valid in nanoAOD for EFT samples, MUST use SumOfEFTweights at analysis level
            weights[r].add('norm', genw if isData else (xsec / sow) * genw)
            weights[r].add('btagSF', btagSF, btagSFUp, btagSFDo)
            weights[r].add('lepSF', events.lepSF_nom, events.lepSF_hi,
                           events.lepSF_lo)

        # Extract the EFT quadratic coefficients and optionally use them to calculate the coefficients on the w**2 quartic function
        # eft_coeffs is never Jagged so convert immediately to numpy for ease of use.
        eft_coeffs = ak.to_numpy(events['EFTfitCoefficients']) if hasattr(
            events, "EFTfitCoefficients") else None
        if eft_coeffs is not None:
            # Check to see if the ordering of WCs for this sample matches what want
            if self._samples[dataset]['WCnames'] != self._wc_names_lst:
                eft_coeffs = efth.remap_coeffs(
                    self._samples[dataset]['WCnames'], self._wc_names_lst,
                    eft_coeffs)
        eft_w2_coeffs = efth.calc_w2_coeffs(eft_coeffs, self._dtype) if (
            self._do_errors and eft_coeffs is not None) else None

        # Selections and cuts
        selections = PackedSelection()  #(dtype='uint64')
        channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS']
        selections.add('eeSSonZ', (eeonZmask) & (eeSSmask) & (trig_eeSS))
        selections.add('eeSSoffZ', (eeoffZmask) & (eeSSmask) & (trig_eeSS))
        selections.add('mmSSonZ', (mmonZmask) & (mmSSmask) & (trig_mmSS))
        selections.add('mmSSoffZ', (mmoffZmask) & (mmSSmask) & (trig_mmSS))
        selections.add('emSS', (emSSmask) & (trig_emSS))

        channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ']
        selections.add('eemSSonZ', (ee_eemZmask) & (trig_eem))
        selections.add('eemSSoffZ', (ee_eemOffZmask) & (trig_eem))
        selections.add('mmeSSonZ', (mm_mmeZmask) & (trig_mme))
        selections.add('mmeSSoffZ', (mm_mmeOffZmask) & (trig_mme))

        channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ']
        selections.add('eeeSSonZ', (eeeOnZmask) & (trig_eee))
        selections.add('eeeSSoffZ', (eeeOffZmask) & (trig_eee))
        selections.add('mmmSSonZ', (mmmOnZmask) & (trig_mmm))
        selections.add('mmmSSoffZ', (mmmOffZmask) & (trig_mmm))

        channels4L = ['eeee', 'eeem', 'eemm', 'mmme', 'mmmm']
        selections.add('eeee', ((nElec4l == 4) & (nMuon4l == 0)) & (trig_4l))
        selections.add('eeem', ((nElec4l == 3) & (nMuon4l == 1)) & (trig_4l))
        selections.add('eemm', ((nElec4l == 2) & (nMuon4l == 2)) & (trig_4l))
        selections.add('mmme', ((nElec4l == 1) & (nMuon4l == 3)) & (trig_4l))
        selections.add('mmmm', ((nElec4l == 0) & (nMuon4l == 4)) & (trig_4l))

        selections.add('ch+', (sumcharge > 0))
        selections.add('ch-', (sumcharge < 0))
        selections.add('ch0', (sumcharge == 0))

        levels = ['base', '1+bm2+bl', '1bm', '2+bm']
        selections.add('base', (nElec + nMuon >= 2))
        selections.add('1+bm2+bl', (nElec + nMuon >= 2) & ((nbtagsm >= 1) &
                                                           (nbtagsl >= 2)))
        selections.add('1bm', (nElec + nMuon >= 2) & (nbtagsm == 1))
        selections.add('2+bm', (nElec + nMuon >= 2) & (nbtagsm >= 2))

        # Variables
        invMass_eeSSonZ = (eeSSonZ.e0 + eeSSonZ.e1).mass
        invMass_eeSSoffZ = (eeSSoffZ.e0 + eeSSoffZ.e1).mass
        invMass_mmSSonZ = (mmSSonZ.m0 + mmSSonZ.m1).mass
        invMass_mmSSoffZ = (mmSSoffZ.m0 + mmSSoffZ.m1).mass
        invMass_emSS = (emSS.e + emSS.m).mass

        varnames = {}
        varnames['met'] = met.pt
        varnames['ht'] = ht
        varnames['njets'] = njets
        varnames['invmass'] = {
            'eeSSonZ': invMass_eeSSonZ,
            'eeSSoffZ': invMass_eeSSoffZ,
            'mmSSonZ': invMass_mmSSonZ,
            'mmSSoffZ': invMass_mmSSoffZ,
            'emSS': invMass_emSS,
            'eemSSonZ': mZ_eem,
            'eemSSoffZ': mZ_eem,
            'mmeSSonZ': mZ_mme,
            'mmeSSoffZ': mZ_mme,
            'eeeSSonZ': mZ_eee,
            'eeeSSoffZ': mZ_eee,
            'mmmSSonZ': mZ_mmm,
            'mmmSSoffZ': mZ_mmm,
        }
        varnames['m3l'] = {
            'eemSSonZ': m3l_eem,
            'eemSSoffZ': m3l_eem,
            'mmeSSonZ': m3l_mme,
            'mmeSSoffZ': m3l_mme,
            'eeeSSonZ': m3l_eee,
            'eeeSSoffZ': m3l_eee,
            'mmmSSonZ': m3l_mmm,
            'mmmSSoffZ': m3l_mmm,
        }
        varnames['e0pt'] = e0.pt
        varnames['e0eta'] = e0.eta
        varnames['m0pt'] = m0.pt
        varnames['m0eta'] = m0.eta
        varnames['j0pt'] = j0.pt
        varnames['j0eta'] = j0.eta
        varnames['counts'] = np.ones_like(events['event'])

        # systematics
        systList = []
        if isData == False:
            systList = ['nominal']
            if self._do_systematics:
                systList = systList + [
                    'lepSFUp', 'lepSFDown', 'btagSFUp', 'btagSFDown'
                ]
        else:
            systList = ['noweight']
        # fill Histos
        hout = self.accumulator.identity()
        normweights = weights['all'].weight().flatten(
        )  # Why does it not complain about .flatten() here?
        sowweights = np.ones_like(normweights) if len(
            self._wc_names_lst) > 0 else normweights
        hout['SumOfEFTweights'].fill(sample=histAxisName,
                                     SumOfEFTweights=varnames['counts'],
                                     weight=sowweights,
                                     eft_coeff=eft_coeffs,
                                     eft_err_coeff=eft_w2_coeffs)

        for syst in systList:
            for var, v in varnames.items():
                for ch in channels2LSS + channels3L + channels4L:
                    for sumcharge in ['ch+', 'ch-', 'ch0']:
                        for lev in levels:
                            #find the event weight to be used when filling the histograms
                            weightSyst = syst
                            #in the case of 'nominal', or the jet energy systematics, no weight systematic variation is used (weightSyst=None)
                            if syst in [
                                    'nominal', 'JERUp', 'JERDown', 'JESUp',
                                    'JESDown'
                            ]:
                                weightSyst = None  # no weight systematic for these variations
                            if syst == 'noweight':
                                weight = np.ones(len(events))  # for data
                            else:
                                # call weights.weight() with the name of the systematic to be varied
                                if ch in channels3L: ch_w = ch[:3]
                                elif ch in channels2LSS: ch_w = ch[:2]
                                else: ch_w = ch
                                weight = weights['all'].weight(
                                    weightSyst
                                ) if isData else weights[ch_w].weight(
                                    weightSyst)
                            cuts = [ch] + [lev] + [sumcharge]
                            cut = selections.all(*cuts)
                            weights_flat = weight[cut].flatten(
                            )  # Why does it not complain about .flatten() here?
                            weights_ones = np.ones_like(weights_flat,
                                                        dtype=np.int)
                            eft_coeffs_cut = eft_coeffs[
                                cut] if eft_coeffs is not None else None
                            eft_w2_coeffs_cut = eft_w2_coeffs[
                                cut] if eft_w2_coeffs is not None else None

                            # filling histos
                            if var == 'invmass':
                                if ((ch in [
                                        'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ',
                                        'mmmSSonZ'
                                ]) or (ch in channels4L)):
                                    continue
                                else:
                                    values = ak.flatten(v[ch][cut])
                                hout['invmass'].fill(
                                    eft_coeff=eft_coeffs_cut,
                                    eft_err_coeff=eft_w2_coeffs_cut,
                                    sample=histAxisName,
                                    channel=ch,
                                    cut=lev,
                                    sumcharge=sumcharge,
                                    invmass=values,
                                    weight=weights_flat,
                                    systematic=syst)
                            elif var == 'm3l':
                                if ((ch in channels2LSS) or (ch in [
                                        'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ',
                                        'mmmSSonZ'
                                ]) or (ch in channels4L)):
                                    continue
                                values = ak.flatten(v[ch][cut])
                                hout['m3l'].fill(
                                    eft_coeff=eft_coeffs_cut,
                                    eft_err_coeff=eft_w2_coeffs_cut,
                                    sample=histAxisName,
                                    channel=ch,
                                    cut=lev,
                                    sumcharge=sumcharge,
                                    m3l=values,
                                    weight=weights_flat,
                                    systematic=syst)
                            else:
                                values = v[cut]
                                # These all look identical, do we need if/else here?
                                if var == 'ht':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        ht=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'met':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        met=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'njets':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        njets=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'nbtags':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        nbtags=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'counts':
                                    hout[var].fill(counts=values,
                                                   sample=histAxisName,
                                                   channel=ch,
                                                   cut=lev,
                                                   sumcharge=sumcharge,
                                                   weight=weights_ones,
                                                   systematic=syst)
                                elif var == 'j0eta':
                                    if lev == 'base': continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        j0eta=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'e0pt':
                                    if ch in [
                                            'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ',
                                            'mmmSSonZ', 'mmmm'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        e0pt=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst
                                    )  # Crashing here, not sure why. Related to values?
                                elif var == 'm0pt':
                                    if ch in [
                                            'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ',
                                            'eeeSSonZ', 'eeee'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        m0pt=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'e0eta':
                                    if ch in [
                                            'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ',
                                            'mmmSSonZ', 'mmmm'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        e0eta=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'm0eta':
                                    if ch in [
                                            'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ',
                                            'eeeSSonZ', 'eeee'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        m0eta=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'j0pt':
                                    if lev == 'base': continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        j0pt=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
        return hout
示例#24
0
    def process_shift(self, events, shift_name):
        dataset = events.metadata['dataset']
        isRealData = not hasattr(events, "genWeight")
        selection = PackedSelection()
        weights = Weights(len(events), storeIndividual=True)
        output = self.make_output()
        if shift_name is None and not isRealData:
            output['sumw'] = ak.sum(events.genWeight)

        if isRealData or self._newTrigger:
            trigger = np.zeros(len(events), dtype='bool')
            for t in self._triggers[self._year]:
                if t in events.HLT.fields:
                    trigger = trigger | events.HLT[t]
            selection.add('trigger', trigger)
            del trigger
        else:
            selection.add('trigger', np.ones(len(events), dtype='bool'))

        if isRealData:
            selection.add(
                'lumimask', lumiMasks[self._year](events.run,
                                                  events.luminosityBlock))
        else:
            selection.add('lumimask', np.ones(len(events), dtype='bool'))

        if isRealData and self._skipRunB and self._year == '2017':
            selection.add('dropB', events.run > 299329)
        else:
            selection.add('dropB', np.ones(len(events), dtype='bool'))

        if isRealData:
            trigger = np.zeros(len(events), dtype='bool')
            for t in self._muontriggers[self._year]:
                if t in events.HLT.fields:
                    trigger |= np.array(events.HLT[t])
            selection.add('muontrigger', trigger)
            del trigger
        else:
            selection.add('muontrigger', np.ones(len(events), dtype='bool'))

        metfilter = np.ones(len(events), dtype='bool')
        for flag in self._met_filters[
                self._year]['data' if isRealData else 'mc']:
            metfilter &= np.array(events.Flag[flag])
        selection.add('metfilter', metfilter)
        del metfilter

        fatjets = events.FatJet
        fatjets['msdcorr'] = corrected_msoftdrop(fatjets)
        fatjets['qcdrho'] = 2 * np.log(fatjets.msdcorr / fatjets.pt)
        fatjets['n2ddt'] = fatjets.n2b1 - n2ddt_shift(fatjets, year=self._year)
        fatjets['msdcorr_full'] = fatjets['msdcorr'] * self._msdSF[self._year]

        candidatejet = fatjets[
            # https://github.com/DAZSLE/BaconAnalyzer/blob/master/Analyzer/src/VJetLoader.cc#L269
            (fatjets.pt > 200)
            & (abs(fatjets.eta) < 2.5)
            & fatjets.isTight  # this is loose in sampleContainer
        ]

        candidatejet = candidatejet[:, :
                                    2]  # Only consider first two to match generators
        if self._jet_arbitration == 'pt':
            candidatejet = ak.firsts(candidatejet)
        elif self._jet_arbitration == 'mass':
            candidatejet = ak.firsts(candidatejet[ak.argmax(
                candidatejet.msdcorr, axis=1, keepdims=True)])
        elif self._jet_arbitration == 'n2':
            candidatejet = ak.firsts(candidatejet[ak.argmin(candidatejet.n2ddt,
                                                            axis=1,
                                                            keepdims=True)])
        elif self._jet_arbitration == 'ddb':
            candidatejet = ak.firsts(candidatejet[ak.argmax(
                candidatejet.btagDDBvLV2, axis=1, keepdims=True)])
        elif self._jet_arbitration == 'ddc':
            candidatejet = ak.firsts(candidatejet[ak.argmax(
                candidatejet.btagDDCvLV2, axis=1, keepdims=True)])
        else:
            raise RuntimeError("Unknown candidate jet arbitration")

        if self._tagger == 'v1':
            bvl = candidatejet.btagDDBvL
            cvl = candidatejet.btagDDCvL
            cvb = candidatejet.btagDDCvB
        elif self._tagger == 'v2':
            bvl = candidatejet.btagDDBvLV2
            cvl = candidatejet.btagDDCvLV2
            cvb = candidatejet.btagDDCvBV2
        elif self._tagger == 'v3':
            bvl = candidatejet.particleNetMD_Xbb
            cvl = candidatejet.particleNetMD_Xcc / (
                1 - candidatejet.particleNetMD_Xbb)
            cvb = candidatejet.particleNetMD_Xcc / (
                candidatejet.particleNetMD_Xcc +
                candidatejet.particleNetMD_Xbb)

        elif self._tagger == 'v4':
            bvl = candidatejet.particleNetMD_Xbb
            cvl = candidatejet.btagDDCvLV2
            cvb = candidatejet.particleNetMD_Xcc / (
                candidatejet.particleNetMD_Xcc +
                candidatejet.particleNetMD_Xbb)
        else:
            raise ValueError("Not an option")

        selection.add('minjetkin', (candidatejet.pt >= 450)
                      & (candidatejet.pt < 1200)
                      & (candidatejet.msdcorr >= 40.)
                      & (candidatejet.msdcorr < 201.)
                      & (abs(candidatejet.eta) < 2.5))
        selection.add('_strict_mass', (candidatejet.msdcorr > 85) &
                      (candidatejet.msdcorr < 130))
        selection.add('_high_score', cvl > 0.8)
        selection.add('minjetkinmu', (candidatejet.pt >= 400)
                      & (candidatejet.pt < 1200)
                      & (candidatejet.msdcorr >= 40.)
                      & (candidatejet.msdcorr < 201.)
                      & (abs(candidatejet.eta) < 2.5))
        selection.add('minjetkinw', (candidatejet.pt >= 200)
                      & (candidatejet.pt < 1200)
                      & (candidatejet.msdcorr >= 40.)
                      & (candidatejet.msdcorr < 201.)
                      & (abs(candidatejet.eta) < 2.5))
        selection.add('jetid', candidatejet.isTight)
        selection.add('n2ddt', (candidatejet.n2ddt < 0.))
        if not self._tagger == 'v2':
            selection.add('ddbpass', (bvl >= 0.89))
            selection.add('ddcpass', (cvl >= 0.83))
            selection.add('ddcvbpass', (cvb >= 0.2))
        else:
            selection.add('ddbpass', (bvl >= 0.7))
            selection.add('ddcpass', (cvl >= 0.45))
            selection.add('ddcvbpass', (cvb >= 0.03))

        jets = events.Jet
        jets = jets[(jets.pt > 30.) & (abs(jets.eta) < 2.5) & jets.isTight]
        # only consider first 4 jets to be consistent with old framework
        jets = jets[:, :4]
        dphi = abs(jets.delta_phi(candidatejet))
        selection.add(
            'antiak4btagMediumOppHem',
            ak.max(jets[dphi > np.pi / 2][self._ak4tagBranch],
                   axis=1,
                   mask_identity=False) <
            BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium'])
        ak4_away = jets[dphi > 0.8]
        selection.add(
            'ak4btagMedium08',
            ak.max(ak4_away[self._ak4tagBranch], axis=1, mask_identity=False) >
            BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium'])

        met = events.MET
        selection.add('met', met.pt < 140.)

        goodmuon = ((events.Muon.pt > 10)
                    & (abs(events.Muon.eta) < 2.4)
                    & (events.Muon.pfRelIso04_all < 0.25)
                    & events.Muon.looseId)
        nmuons = ak.sum(goodmuon, axis=1)
        leadingmuon = ak.firsts(events.Muon[goodmuon])

        if self._looseTau:
            goodelectron = ((events.Electron.pt > 10)
                            & (abs(events.Electron.eta) < 2.5)
                            &
                            (events.Electron.cutBased >= events.Electron.VETO))
            nelectrons = ak.sum(goodelectron, axis=1)

            ntaus = ak.sum(
                ((events.Tau.pt > 20)
                 & (abs(events.Tau.eta) < 2.3)
                 & events.Tau.idDecayMode
                 & ((events.Tau.idMVAoldDM2017v2 & 2) != 0)
                 & ak.all(events.Tau.metric_table(events.Muon[goodmuon]) > 0.4,
                          axis=2)
                 & ak.all(events.Tau.metric_table(
                     events.Electron[goodelectron]) > 0.4,
                          axis=2)),
                axis=1,
            )
        else:
            goodelectron = (
                (events.Electron.pt > 10)
                & (abs(events.Electron.eta) < 2.5)
                & (events.Electron.cutBased >= events.Electron.LOOSE))
            nelectrons = ak.sum(goodelectron, axis=1)

            ntaus = ak.sum(
                (events.Tau.pt > 20)
                &
                events.Tau.idDecayMode  # bacon iso looser than Nano selection
                & ak.all(events.Tau.metric_table(events.Muon[goodmuon]) > 0.4,
                         axis=2)
                & ak.all(events.Tau.metric_table(events.Electron[goodelectron])
                         > 0.4,
                         axis=2),
                axis=1,
            )

        selection.add('noleptons',
                      (nmuons == 0) & (nelectrons == 0) & (ntaus == 0))
        selection.add('onemuon',
                      (nmuons == 1) & (nelectrons == 0) & (ntaus == 0))
        selection.add('muonkin',
                      (leadingmuon.pt > 55.) & (abs(leadingmuon.eta) < 2.1))
        selection.add('muonDphiAK8',
                      abs(leadingmuon.delta_phi(candidatejet)) > 2 * np.pi / 3)

        # W-Tag (Tag and Probe)
        # tag side
        selection.add(
            'ak4btagMediumOppHem',
            ak.max(jets[dphi > np.pi / 2][self._ak4tagBranch],
                   axis=1,
                   mask_identity=False) >
            BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium'])
        selection.add('met40p', met.pt > 40.)
        selection.add('tightMuon',
                      (leadingmuon.tightId) & (leadingmuon.pt > 53.))
        # selection.add('ptrecoW', (leadingmuon + met).pt > 250.)
        selection.add('ptrecoW200', (leadingmuon + met).pt > 200.)
        selection.add(
            'ak4btagNearMu',
            leadingmuon.delta_r(leadingmuon.nearest(ak4_away, axis=None)) <
            2.0)
        _bjets = jets[self._ak4tagBranch] > BTagEfficiency.btagWPs[
            self._ak4tagger][self._year]['medium']
        # _nearAK8 = jets.delta_r(candidatejet)  < 0.8
        # _nearMu = jets.delta_r(ak.firsts(events.Muon))  < 0.3
        # selection.add('ak4btagOld', ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1)
        _nearAK8 = jets.delta_r(candidatejet) < 0.8
        _nearMu = jets.delta_r(leadingmuon) < 0.3
        selection.add('ak4btagOld',
                      ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1)

        # _nearAK8 = jets.delta_r(candidatejet)  < 0.8
        # _nearMu = jets.delta_r(candidatejet.nearest(events.Muon[goodmuon], axis=None))  < 0.3
        # selection.add('ak4btagNew', ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1)

        # probe side
        selection.add('minWjetpteta',
                      (candidatejet.pt >= 200) & (abs(candidatejet.eta) < 2.4))
        # selection.add('noNearMuon', candidatejet.delta_r(candidatejet.nearest(events.Muon[goodmuon], axis=None)) > 1.0)
        selection.add('noNearMuon', candidatejet.delta_r(leadingmuon) > 1.0)
        #####

        if isRealData:
            genflavor = ak.zeros_like(candidatejet.pt)
        else:
            if 'HToCC' in dataset or 'HToBB' in dataset:
                if self._ewkHcorr:
                    add_HiggsEW_kFactors(weights, events.GenPart, dataset)

            weights.add('genweight', events.genWeight)
            if "PSWeight" in events.fields:
                add_ps_weight(weights, events.PSWeight)
            else:
                add_ps_weight(weights, None)
            if "LHEPdfWeight" in events.fields:
                add_pdf_weight(weights, events.LHEPdfWeight)
            else:
                add_pdf_weight(weights, None)
            if "LHEScaleWeight" in events.fields:
                add_scalevar_7pt(weights, events.LHEScaleWeight)
                add_scalevar_3pt(weights, events.LHEScaleWeight)
            else:
                add_scalevar_7pt(weights, [])
                add_scalevar_3pt(weights, [])

            add_pileup_weight(weights, events.Pileup.nPU, self._year, dataset)
            bosons = getBosons(events.GenPart)
            matchedBoson = candidatejet.nearest(bosons,
                                                axis=None,
                                                threshold=0.8)
            if self._tightMatch:
                match_mask = (
                    (candidatejet.pt - matchedBoson.pt) / matchedBoson.pt <
                    0.5) & ((candidatejet.msdcorr - matchedBoson.mass) /
                            matchedBoson.mass < 0.3)
                selmatchedBoson = ak.mask(matchedBoson, match_mask)
                genflavor = bosonFlavor(selmatchedBoson)
            else:
                genflavor = bosonFlavor(matchedBoson)
            genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0)
            if self._newVjetsKfactor:
                add_VJets_kFactors(weights, events.GenPart, dataset)
            else:
                add_VJets_NLOkFactor(weights, genBosonPt, self._year, dataset)
            if shift_name is None:
                output['btagWeight'].fill(val=self._btagSF.addBtagWeight(
                    weights, ak4_away, self._ak4tagBranch))
            if self._nnlops_rew and dataset in [
                    'GluGluHToCC_M125_13TeV_powheg_pythia8'
            ]:
                weights.add('minlo_rew',
                            powheg_to_nnlops(ak.to_numpy(genBosonPt)))

            if self._newTrigger:
                add_jetTriggerSF(
                    weights, ak.firsts(fatjets),
                    self._year if not self._skipRunB else f'{self._year}CDEF',
                    selection)
            else:
                add_jetTriggerWeight(weights, candidatejet.msdcorr,
                                     candidatejet.pt, self._year)

            add_mutriggerSF(weights, leadingmuon, self._year, selection)
            add_mucorrectionsSF(weights, leadingmuon, self._year, selection)

            if self._year in ("2016", "2017"):
                weights.add("L1Prefiring", events.L1PreFiringWeight.Nom,
                            events.L1PreFiringWeight.Up,
                            events.L1PreFiringWeight.Dn)

            logger.debug("Weight statistics: %r" % weights.weightStatistics)

        msd_matched = candidatejet.msdcorr * self._msdSF[self._year] * (
            genflavor > 0) + candidatejet.msdcorr * (genflavor == 0)

        regions = {
            'signal': [
                'noleptons', 'minjetkin', 'met', 'metfilter', 'jetid',
                'antiak4btagMediumOppHem', 'n2ddt', 'trigger', 'lumimask'
            ],
            'signal_noddt': [
                'noleptons', 'minjetkin', 'met', 'jetid',
                'antiak4btagMediumOppHem', 'trigger', 'lumimask', 'metfilter'
            ],
            # 'muoncontrol': ['minjetkinmu', 'jetid', 'n2ddt', 'ak4btagMedium08', 'onemuon', 'muonkin', 'muonDphiAK8', 'muontrigger', 'lumimask', 'metfilter'],
            'muoncontrol': [
                'onemuon', 'muonkin', 'muonDphiAK8', 'metfilter',
                'minjetkinmu', 'jetid', 'ak4btagMedium08', 'n2ddt',
                'muontrigger', 'lumimask'
            ],
            'muoncontrol_noddt': [
                'onemuon', 'muonkin', 'muonDphiAK8', 'jetid', 'metfilter',
                'minjetkinmu', 'jetid', 'ak4btagMedium08', 'muontrigger',
                'lumimask'
            ],
            'wtag': [
                'onemuon', 'tightMuon', 'minjetkinw', 'jetid', 'met40p',
                'metfilter', 'ptrecoW200', 'ak4btagOld', 'muontrigger',
                'lumimask'
            ],
            'wtag0': [
                'onemuon', 'tightMuon', 'met40p', 'metfilter', 'ptrecoW200',
                'ak4btagOld', 'muontrigger', 'lumimask'
            ],
            'wtag2': [
                'onemuon', 'tightMuon', 'minjetkinw', 'jetid',
                'ak4btagMediumOppHem', 'met40p', 'metfilter', 'ptrecoW200',
                'ak4btagOld', 'muontrigger', 'lumimask'
            ],
            'noselection': [],
        }

        def normalize(val, cut):
            if cut is None:
                ar = ak.to_numpy(ak.fill_none(val, np.nan))
                return ar
            else:
                ar = ak.to_numpy(ak.fill_none(val[cut], np.nan))
                return ar

        import time
        tic = time.time()
        if shift_name is None:
            for region, cuts in regions.items():
                allcuts = set([])
                cut = selection.all(*allcuts)
                output['cutflow_msd'].fill(region=region,
                                           genflavor=normalize(
                                               genflavor, None),
                                           cut=0,
                                           weight=weights.weight(),
                                           msd=normalize(msd_matched, None))
                output['cutflow_eta'].fill(region=region,
                                           genflavor=normalize(genflavor, cut),
                                           cut=0,
                                           weight=weights.weight()[cut],
                                           eta=normalize(
                                               candidatejet.eta, cut))
                output['cutflow_pt'].fill(region=region,
                                          genflavor=normalize(genflavor, cut),
                                          cut=0,
                                          weight=weights.weight()[cut],
                                          pt=normalize(candidatejet.pt, cut))
                for i, cut in enumerate(cuts + ['ddcvbpass', 'ddcpass']):
                    allcuts.add(cut)
                    cut = selection.all(*allcuts)
                    output['cutflow_msd'].fill(region=region,
                                               genflavor=normalize(
                                                   genflavor, cut),
                                               cut=i + 1,
                                               weight=weights.weight()[cut],
                                               msd=normalize(msd_matched, cut))
                    output['cutflow_eta'].fill(
                        region=region,
                        genflavor=normalize(genflavor, cut),
                        cut=i + 1,
                        weight=weights.weight()[cut],
                        eta=normalize(candidatejet.eta, cut))
                    output['cutflow_pt'].fill(
                        region=region,
                        genflavor=normalize(genflavor, cut),
                        cut=i + 1,
                        weight=weights.weight()[cut],
                        pt=normalize(candidatejet.pt, cut))

                    if self._evtVizInfo and 'ddcpass' in allcuts and isRealData and region == 'signal':
                        if 'event' not in events.fields:
                            continue
                        _cut = selection.all(*allcuts, '_strict_mass',
                                             '_high_score')
                        # _cut = selection.all('_strict_mass'')
                        output['to_check'][
                            'mass'] += processor.column_accumulator(
                                normalize(msd_matched, _cut))
                        nfatjet = ak.sum(
                            ((fatjets.pt > 200) &
                             (abs(fatjets.eta) < 2.5) & fatjets.isTight),
                            axis=1)
                        output['to_check'][
                            'njet'] += processor.column_accumulator(
                                normalize(nfatjet, _cut))
                        output['to_check'][
                            'fname'] += processor.column_accumulator(
                                np.array([events.metadata['filename']] *
                                         len(normalize(msd_matched, _cut))))
                        output['to_check'][
                            'event'] += processor.column_accumulator(
                                normalize(events.event, _cut))
                        output['to_check'][
                            'luminosityBlock'] += processor.column_accumulator(
                                normalize(events.luminosityBlock, _cut))
                        output['to_check'][
                            'run'] += processor.column_accumulator(
                                normalize(events.run, _cut))

        if shift_name is None:
            systematics = [None] + list(weights.variations)
        else:
            systematics = [shift_name]

        def fill(region, systematic, wmod=None):
            selections = regions[region]
            cut = selection.all(*selections)
            sname = 'nominal' if systematic is None else systematic
            if wmod is None:
                if systematic in weights.variations:
                    weight = weights.weight(modifier=systematic)[cut]
                else:
                    weight = weights.weight()[cut]
            else:
                weight = weights.weight()[cut] * wmod[cut]

            output['templates'].fill(
                region=region,
                systematic=sname,
                runid=runmap(events.run)[cut],
                genflavor=normalize(genflavor, cut),
                pt=normalize(candidatejet.pt, cut),
                msd=normalize(msd_matched, cut),
                ddb=normalize(bvl, cut),
                ddc=normalize(cvl, cut),
                ddcvb=normalize(cvb, cut),
                weight=weight,
            )
            if region in [
                    'wtag', 'wtag0', 'wtag2', 'wtag3', 'wtag4', 'wtag5',
                    'wtag6', 'wtag7', 'noselection'
            ]:  # and sname in ['nominal', 'pileup_weightDown', 'pileup_weightUp', 'jet_triggerDown', 'jet_triggerUp']:
                output['wtag'].fill(
                    region=region,
                    systematic=sname,
                    genflavor=normalize(genflavor, cut),
                    pt=normalize(candidatejet.pt, cut),
                    msd=normalize(msd_matched, cut),
                    n2ddt=normalize(candidatejet.n2ddt, cut),
                    ddc=normalize(cvl, cut),
                    ddcvb=normalize(cvb, cut),
                    weight=weight,
                )
            # if region in ['signal', 'noselection']:
            #     output['etaphi'].fill(
            #         region=region,
            #         systematic=sname,
            #         runid=runmap(events.run)[cut],
            #         genflavor=normalize(genflavor, cut),
            #         pt=normalize(candidatejet.pt, cut),
            #         eta=normalize(candidatejet.eta, cut),
            #         phi=normalize(candidatejet.phi, cut),
            #         ddc=normalize(cvl, cut),
            #         ddcvb=normalize(cvb, cut),
            #     ),
            if not isRealData:
                if wmod is not None:
                    _custom_weight = events.genWeight[cut] * wmod[cut]
                else:
                    _custom_weight = np.ones_like(weight)
                output['genresponse_noweight'].fill(
                    region=region,
                    systematic=sname,
                    pt=normalize(candidatejet.pt, cut),
                    genpt=normalize(genBosonPt, cut),
                    weight=_custom_weight,
                )

                output['genresponse'].fill(
                    region=region,
                    systematic=sname,
                    pt=normalize(candidatejet.pt, cut),
                    genpt=normalize(genBosonPt, cut),
                    weight=weight,
                )
            if systematic is None:
                output['signal_opt'].fill(
                    region=region,
                    genflavor=normalize(genflavor, cut),
                    ddc=normalize(cvl, cut),
                    ddcvb=normalize(cvb, cut),
                    msd=normalize(msd_matched, cut),
                    weight=weight,
                )
                output['signal_optb'].fill(
                    region=region,
                    genflavor=normalize(genflavor, cut),
                    ddb=normalize(bvl, cut),
                    msd=normalize(msd_matched, cut),
                    weight=weight,
                )

        for region in regions:
            cut = selection.all(*(set(regions[region]) - {'n2ddt'}))
            if shift_name is None:
                output['nminus1_n2ddt'].fill(
                    region=region,
                    n2ddt=normalize(candidatejet.n2ddt, cut),
                    weight=weights.weight()[cut],
                )
            for systematic in systematics:
                if isRealData and systematic is not None:
                    continue
                fill(region, systematic)
            if shift_name is None and 'GluGluH' in dataset and 'LHEWeight' in events.fields:
                for i in range(9):
                    fill(region, 'LHEScale_%d' % i, events.LHEScaleWeight[:,
                                                                          i])
                for c in events.LHEWeight.fields[1:]:
                    fill(region, 'LHEWeight_%s' % c, events.LHEWeight[c])

        toc = time.time()
        output["filltime"] = toc - tic
        if shift_name is None:
            output["weightStats"] = weights.weightStatistics
        return {dataset: output}
示例#25
0
    def process(self, events):

        output = self.accumulator.identity()

        # we can use a very loose preselection to filter the events. nothing is done with this presel, though
        presel = ak.num(events.Jet) > 0

        if self.year == 2016:
            lumimask = LumiMask(
                '../data/lumi/Cert_271036-284044_13TeV_Legacy2016_Collisions16_JSON.txt'
            )
        if self.year == 2017:
            lumimask = LumiMask(
                '../data/lumi/Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt'
            )
        if self.year == 2018:
            lumimask = LumiMask(
                '../data/lumi/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt'
            )

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        output['totalEvents']['all'] += len(events)
        output['skimmedEvents']['all'] += len(ev)

        if self.year == 2018:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2017:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2016:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ

        ## Electrons
        electron = Collections(ev, "Electron", "tightFCNC", 0, self.year).get()
        electron = electron[(electron.pt > 25) & (np.abs(electron.eta) < 2.4)]

        loose_electron = Collections(ev, "Electron", "looseFCNC", 0,
                                     self.year).get()
        loose_electron = loose_electron[(loose_electron.pt > 25)
                                        & (np.abs(loose_electron.eta) < 2.4)]

        SSelectron = (ak.sum(electron.charge, axis=1) != 0) & (ak.num(electron)
                                                               == 2)
        OSelectron = (ak.sum(electron.charge, axis=1) == 0) & (ak.num(electron)
                                                               == 2)

        dielectron = choose(electron, 2)
        dielectron_mass = (dielectron['0'] + dielectron['1']).mass
        dielectron_pt = (dielectron['0'] + dielectron['1']).pt

        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[(leading_electron_idx)]
        leading_electron = leading_electron[(leading_electron.pt > 30)]

        trailing_electron_idx = ak.singletons(ak.argmin(electron.pt, axis=1))
        trailing_electron = electron[trailing_electron_idx]

        ##Muons

        loose_muon = Collections(ev, "Muon", "looseFCNC", 0, self.year).get()
        loose_muon = loose_muon[(loose_muon.pt > 20)
                                & (np.abs(loose_muon.eta) < 2.4)]

        #jets
        jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt')
        jet = jet[~match(jet, loose_muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        #weights
        weight = Weights(len(ev))
        weight2 = Weights(len(ev))
        weight2.add("charge flip",
                    self.charge_flip_ratio.flip_weight(electron))

        #selections
        filters = getFilters(ev, year=self.year, dataset=dataset, UL=False)
        mask = lumimask(ev.run, ev.luminosityBlock)
        ss = (SSelectron)
        os = (OSelectron)
        mass = (ak.min(np.abs(dielectron_mass - 91.2), axis=1) < 15)
        lead_electron = (ak.min(leading_electron.pt, axis=1) > 30)
        jet1 = (ak.num(jet) >= 1)
        jet2 = (ak.num(jet) >= 2)
        num_loose = ((ak.num(loose_electron) == 2) & (ak.num(loose_muon) == 0))

        selection = PackedSelection()
        selection.add('filter', (filters))
        selection.add('mask', (mask))
        selection.add('ss', ss)
        selection.add('os', os)
        selection.add('mass', mass)
        selection.add('leading', lead_electron)
        selection.add('triggers', triggers)
        selection.add('one jet', jet1)
        selection.add('two jets', jet2)
        selection.add('num_loose', num_loose)

        bl_reqs = ['filter'] + ['triggers'] + ['mask']

        bl_reqs_d = {sel: True for sel in bl_reqs}
        baseline = selection.require(**bl_reqs_d)

        s_reqs = bl_reqs + ['ss'] + ['mass'] + ['num_loose'] + ['leading']
        s_reqs_d = {sel: True for sel in s_reqs}
        ss_sel = selection.require(**s_reqs_d)

        o_reqs = bl_reqs + ['os'] + ['mass'] + ['num_loose'] + ['leading']
        o_reqs_d = {sel: True for sel in o_reqs}
        os_sel = selection.require(**o_reqs_d)

        j1s_reqs = s_reqs + ['one jet']
        j1s_reqs_d = {sel: True for sel in j1s_reqs}
        j1ss_sel = selection.require(**j1s_reqs_d)

        j1o_reqs = o_reqs + ['one jet']
        j1o_reqs_d = {sel: True for sel in j1o_reqs}
        j1os_sel = selection.require(**j1o_reqs_d)

        j2s_reqs = s_reqs + ['two jets']
        j2s_reqs_d = {sel: True for sel in j2s_reqs}
        j2ss_sel = selection.require(**j2s_reqs_d)

        j2o_reqs = o_reqs + ['two jets']
        j2o_reqs_d = {sel: True for sel in j2o_reqs}
        j2os_sel = selection.require(**j2o_reqs_d)

        #outputs

        output["electron_data1"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[os_sel].phi)),
            weight=weight2.weight()[os_sel])

        output["electron_data2"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[os_sel].phi)),
            weight=weight2.weight()[os_sel])

        output["electron_data3"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].phi)),
            weight=weight2.weight()[j1os_sel])

        output["electron_data4"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].phi)),
            weight=weight2.weight()[j1os_sel])

        output["electron_data5"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].phi)),
            weight=weight2.weight()[j2os_sel])

        output["electron_data6"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].phi)),
            weight=weight2.weight()[j2os_sel])

        output["electron_data7"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[ss_sel].phi)),
            weight=weight.weight()[ss_sel])

        output["electron_data8"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].phi)),
            weight=weight.weight()[ss_sel])

        output["electron_data9"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].phi)),
            weight=weight.weight()[j1ss_sel])

        output["electron_data10"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].phi)),
            weight=weight.weight()[j1ss_sel])

        output["electron_data11"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].phi)),
            weight=weight.weight()[j2ss_sel])

        output["electron_data12"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].phi)),
            weight=weight.weight()[j2ss_sel])

        output["dilep_mass1"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[os_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[os_sel])),
            weight=weight2.weight()[os_sel])

        output["dilep_mass2"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j1os_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j1os_sel])),
            weight=weight2.weight()[j1os_sel])

        output["dilep_mass3"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j2os_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j2os_sel])),
            weight=weight2.weight()[j2os_sel])

        output["dilep_mass4"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[ss_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[ss_sel])),
            weight=weight.weight()[ss_sel])

        output["dilep_mass5"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j1ss_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j1ss_sel])),
            weight=weight.weight()[j1ss_sel])

        output["dilep_mass6"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j2ss_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j2ss_sel])),
            weight=weight.weight()[j2ss_sel])

        output["MET"].fill(dataset=dataset,
                           pt=met_pt[os_sel],
                           weight=weight2.weight()[os_sel])

        output["MET2"].fill(dataset=dataset,
                            pt=met_pt[j1os_sel],
                            weight=weight2.weight()[j1os_sel])

        output["MET3"].fill(dataset=dataset,
                            pt=met_pt[j2os_sel],
                            weight=weight2.weight()[j2os_sel])

        output["MET4"].fill(dataset=dataset,
                            pt=met_pt[ss_sel],
                            weight=weight.weight()[ss_sel])

        output["MET5"].fill(dataset=dataset,
                            pt=met_pt[j1ss_sel],
                            weight=weight.weight()[j1ss_sel])

        output["MET6"].fill(dataset=dataset,
                            pt=met_pt[j2ss_sel],
                            weight=weight.weight()[j2ss_sel])

        output["N_jet"].fill(dataset=dataset,
                             multiplicity=ak.num(jet)[os_sel],
                             weight=weight2.weight()[os_sel])

        output["N_jet2"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j1os_sel],
                              weight=weight2.weight()[j1os_sel])

        output["N_jet3"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j2os_sel],
                              weight=weight2.weight()[j2os_sel])

        output["N_jet4"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[ss_sel],
                              weight=weight.weight()[ss_sel])

        output["N_jet5"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j1ss_sel],
                              weight=weight.weight()[j1ss_sel])

        output["N_jet6"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j2ss_sel],
                              weight=weight.weight()[j2ss_sel])

        output["PV_npvsGood"].fill(dataset=dataset,
                                   multiplicity=ev.PV[os_sel].npvsGood,
                                   weight=weight2.weight()[os_sel])

        output["PV_npvsGood2"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j1os_sel].npvsGood,
                                    weight=weight2.weight()[j1os_sel])

        output["PV_npvsGood3"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j2os_sel].npvsGood,
                                    weight=weight2.weight()[j2os_sel])

        output["PV_npvsGood4"].fill(dataset=dataset,
                                    multiplicity=ev.PV[ss_sel].npvsGood,
                                    weight=weight.weight()[ss_sel])

        output["PV_npvsGood5"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j1ss_sel].npvsGood,
                                    weight=weight.weight()[j1ss_sel])

        output["PV_npvsGood6"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j2ss_sel].npvsGood,
                                    weight=weight.weight()[j2ss_sel])

        return output