示例#1
0
 def make_and_optimize_acqf(
         override_qmc: bool = False) -> Tuple[Tensor, Tensor]:
     add_kwargs = {"qmc": False} if override_qmc else {}
     acquisition_function = self.acqf_constructor(  # pyre-ignore: [28]
         model=model,
         objective_weights=objective_weights,
         outcome_constraints=outcome_constraints,
         X_observed=X_observed,
         X_pending=X_pending,
         **acf_options,
         **add_kwargs,
     )
     acquisition_function = checked_cast(AcquisitionFunction,
                                         acquisition_function)
     # pyre-ignore: [28]
     candidates, expected_acquisition_value = self.acqf_optimizer(
         acq_function=checked_cast(AcquisitionFunction,
                                   acquisition_function),
         bounds=bounds_,
         n=n,
         inequality_constraints=_to_inequality_constraints(
             linear_constraints=linear_constraints),
         fixed_features=fixed_features,
         rounding_func=botorch_rounding_func,
         **optimizer_options,
     )
     return candidates, expected_acquisition_value
示例#2
0
    def gen(
        self,
        n: int,
        bounds: List[Tuple[float, float]],
        objective_weights: Tensor,
        objective_thresholds: Optional[Tensor] = None,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata,
               Optional[List[TCandidateMetadata]]]:
        if self._search_space_digest is None:
            raise RuntimeError("Must `fit` the model before calling `gen`.")
        acq_options, opt_options = construct_acquisition_and_optimizer_options(
            acqf_options=self.acquisition_options,
            model_gen_options=model_gen_options)
        # update bounds / target fidelities
        new_ssd_args = {
            **dataclasses.asdict(self._search_space_digest),
            "bounds": bounds,
            "target_fidelities": target_fidelities or {},
        }
        search_space_digest = SearchSpaceDigest(**new_ssd_args)

        acqf = self._instantiate_acquisition(
            search_space_digest=search_space_digest,
            objective_weights=objective_weights,
            objective_thresholds=objective_thresholds,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
            pending_observations=pending_observations,
            acq_options=acq_options,
        )
        botorch_rounding_func = get_rounding_func(rounding_func)
        candidates, expected_acquisition_value = acqf.optimize(
            n=n,
            search_space_digest=search_space_digest,
            inequality_constraints=_to_inequality_constraints(
                linear_constraints=linear_constraints),
            fixed_features=fixed_features,
            rounding_func=botorch_rounding_func,
            optimizer_options=checked_cast(dict, opt_options),
        )
        gen_metadata: TGenMetadata = {
            Keys.EXPECTED_ACQF_VAL: expected_acquisition_value.tolist()
        }
        if objective_weights.nonzero().numel() > 1:
            gen_metadata["objective_thresholds"] = acqf.objective_thresholds
            gen_metadata["objective_weights"] = acqf.objective_weights
        return (
            candidates.detach().cpu(),
            torch.ones(n, dtype=self.surrogate.dtype),
            gen_metadata,
            None,
        )
示例#3
0
    def best_out_of_sample_point(
        self,
        bounds: List[Tuple[float, float]],
        objective_weights: Tensor,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        fidelity_features: Optional[List[int]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
        options: Optional[TConfig] = None,
    ) -> Tuple[Tensor, Tensor]:
        """Finds the best predicted point and the corresponding value of the
        appropriate best point acquisition function.
        """
        if fixed_features:
            # When have fixed features, need `FixedFeatureAcquisitionFunction`
            # which has peculiar instantiation (wraps another acquisition fn.),
            # so need to figure out how to handle.
            # TODO (ref: https://fburl.com/diff/uneqb3n9)
            raise NotImplementedError("Fixed features not yet supported.")

        options = options or {}
        acqf_class, acqf_options = pick_best_out_of_sample_point_acqf_class(
            outcome_constraints=outcome_constraints,
            seed_inner=checked_cast_optional(int, options.get(Keys.SEED_INNER, None)),
            qmc=checked_cast(bool, options.get(Keys.QMC, True)),
        )

        # Avoiding circular import between `Surrogate` and `Acquisition`.
        from ax.models.torch.botorch_modular.acquisition import Acquisition

        acqf = Acquisition(  # TODO: For multi-fidelity, might need diff. class.
            surrogate=self,
            botorch_acqf_class=acqf_class,
            bounds=bounds,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
            target_fidelities=target_fidelities,
            options=acqf_options,
        )
        candidates, acqf_values = acqf.optimize(
            # pyre-ignore[6]: Exp. Tensor, got List[Tuple[float, float]].
            # TODO: Fix typing of `bounds` in `TorchModel`-s.
            bounds=bounds,
            n=1,
            inequality_constraints=_to_inequality_constraints(
                linear_constraints=linear_constraints
            ),
            fixed_features=fixed_features,
        )
        return candidates[0], acqf_values[0]
示例#4
0
    def gen(
        self,
        n: int,
        bounds: List[Tuple[float, float]],
        objective_weights: Tensor,
        objective_thresholds: Optional[Tensor] = None,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata,
               Optional[List[TCandidateMetadata]]]:
        acq_options, opt_options = construct_acquisition_and_optimizer_options(
            acqf_options=self.acquisition_options,
            model_gen_options=model_gen_options)
        acqf = self._instantiate_acquisition(
            bounds=bounds,
            objective_weights=objective_weights,
            objective_thresholds=objective_thresholds,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
            pending_observations=pending_observations,
            target_fidelities=target_fidelities,
            acq_options=acq_options,
        )

        botorch_rounding_func = get_rounding_func(rounding_func)
        candidates, expected_acquisition_value = acqf.optimize(
            bounds=self._bounds_as_tensor(bounds=bounds),
            n=n,
            inequality_constraints=_to_inequality_constraints(
                linear_constraints=linear_constraints),
            fixed_features=fixed_features,
            rounding_func=botorch_rounding_func,
            optimizer_options=checked_cast(dict, opt_options),
        )
        return (
            candidates.detach().cpu(),
            torch.ones(n, dtype=self.surrogate.dtype),
            {
                Keys.EXPECTED_ACQF_VAL: expected_acquisition_value.tolist()
            },
            None,
        )
示例#5
0
    def gen(
        self,
        n: int,
        bounds: List,
        objective_weights: Tensor,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata,
               Optional[List[TCandidateMetadata]]]:
        r"""Generate new candidates.

        Args:
            n: Number of candidates to generate.
            bounds: A list of (lower, upper) tuples for each column of X.
            objective_weights: The objective is to maximize a weighted sum of
                the columns of f(x). These are the weights.
            outcome_constraints: A tuple of (A, b). For k outcome constraints
                and m outputs at f(x), A is (k x m) and b is (k x 1) such that
                A f(x) <= b.
            linear_constraints: A tuple of (A, b). For k linear constraints on
                d-dimensional x, A is (k x d) and b is (k x 1) such that
                A x <= b.
            fixed_features: A map {feature_index: value} for features that
                should be fixed to a particular value during generation.
            pending_observations:  A list of m (k_i x d) feature tensors X
                for m outcomes and k_i pending observations for outcome i.
            model_gen_options: A config dictionary that can contain
                model-specific options.
            rounding_func: A function that rounds an optimization result
                appropriately (i.e., according to `round-trip` transformations).
            target_fidelities: A map {feature_index: value} of fidelity feature
                column indices to their respective target fidelities. Used for
                multi-fidelity optimization.

        Returns:
            3-element tuple containing

            - (n x d) tensor of generated points.
            - n-tensor of weights for each point.
            - Dictionary of model-specific metadata for the given
                generation candidates.
        """
        options = model_gen_options or {}
        acf_options = options.get("acquisition_function_kwargs", {})
        optimizer_options = options.get("optimizer_kwargs", {})

        X_pending, X_observed = _get_X_pending_and_observed(
            Xs=self.Xs,
            pending_observations=pending_observations,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            bounds=bounds,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
        )

        # subset model only to the outcomes we need for the optimization
        model = not_none(self.model)
        if options.get("subset_model", True):
            model, objective_weights, outcome_constraints, _ = subset_model(
                model=model,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
            )

        objective = get_botorch_objective(
            model=model,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=X_observed,
        )

        inequality_constraints = _to_inequality_constraints(linear_constraints)
        # TODO: update optimizers to handle inequality_constraints
        if inequality_constraints is not None:
            raise UnsupportedError(
                "Inequality constraints are not yet supported for KnowledgeGradient!"
            )

        # extract a few options
        n_fantasies = acf_options.get("num_fantasies", 64)
        qmc = acf_options.get("qmc", True)
        seed_inner = acf_options.get("seed_inner", None)
        num_restarts = optimizer_options.get("num_restarts", 40)
        raw_samples = optimizer_options.get("raw_samples", 1024)

        # get current value
        current_value = self._get_current_value(
            model=model,
            bounds=bounds,
            X_observed=not_none(X_observed),
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            seed_inner=seed_inner,
            fixed_features=fixed_features,
            model_gen_options=model_gen_options,
            target_fidelities=target_fidelities,
            qmc=qmc,
        )

        bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device)
        bounds_ = bounds_.transpose(0, 1)

        # get acquisition function
        acq_function = _instantiate_KG(
            model=model,
            objective=objective,
            qmc=qmc,
            n_fantasies=n_fantasies,
            num_trace_observations=options.get("num_trace_observations", 0),
            mc_samples=acf_options.get("mc_samples", 256),
            seed_inner=seed_inner,
            seed_outer=acf_options.get("seed_outer", None),
            X_pending=X_pending,
            target_fidelities=target_fidelities,
            fidelity_weights=options.get("fidelity_weights"),
            current_value=current_value,
            cost_intercept=self.cost_intercept,
        )

        # optimize and get new points
        new_x = _optimize_and_get_candidates(
            acq_function=acq_function,
            bounds_=bounds_,
            n=n,
            num_restarts=num_restarts,
            raw_samples=raw_samples,
            optimizer_options=optimizer_options,
            rounding_func=rounding_func,
            inequality_constraints=inequality_constraints,
            fixed_features=fixed_features,
        )

        return new_x, torch.ones(n, dtype=self.dtype), {}, None
示例#6
0
    def gen(
        self,
        n: int,
        bounds: List[Tuple[float, float]],
        objective_weights: Tensor,  # objective_directions
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        objective_thresholds: Optional[Tensor] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata,
               Optional[List[TCandidateMetadata]]]:
        options = model_gen_options or {}
        acf_options = options.get("acquisition_function_kwargs", {})
        optimizer_options = options.get("optimizer_kwargs", {})

        if target_fidelities:
            raise NotImplementedError(
                "target_fidelities not implemented for base BotorchModel")

        X_pending, X_observed = _get_X_pending_and_observed(
            Xs=self.Xs,
            pending_observations=pending_observations,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            bounds=bounds,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
        )

        model = self.model

        # subset model only to the outcomes we need for the optimization
        if options.get(Keys.SUBSET_MODEL, True):
            model, objective_weights, outcome_constraints, Ys = subset_model(
                model=model,  # pyre-ignore [6]
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
                Ys=self.Ys,
            )
        else:
            Ys = self.Ys

        bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device)
        bounds_ = bounds_.transpose(0, 1)
        botorch_rounding_func = get_rounding_func(rounding_func)
        if acf_options.get("random_scalarization", False) or acf_options.get(
                "chebyshev_scalarization", False):
            # If using a list of acquisition functions, the algorithm to generate
            # that list is configured by acquisition_function_kwargs.
            objective_weights_list = [
                randomize_objective_weights(objective_weights, **acf_options)
                for _ in range(n)
            ]
            acquisition_function_list = [
                self.acqf_constructor(  # pyre-ignore: [28]
                    model=model,
                    objective_weights=objective_weights,
                    outcome_constraints=outcome_constraints,
                    X_observed=X_observed,
                    X_pending=X_pending,
                    Ys=Ys,  # Required for chebyshev scalarization calculations.
                    **acf_options,
                ) for objective_weights in objective_weights_list
            ]
            acquisition_function_list = [
                checked_cast(AcquisitionFunction, acq_function)
                for acq_function in acquisition_function_list
            ]
            # Multiple acquisition functions require a sequential optimizer
            # always use scipy_optimizer_list.
            # TODO(jej): Allow any optimizer.
            candidates, expected_acquisition_value = scipy_optimizer_list(
                acq_function_list=acquisition_function_list,
                bounds=bounds_,
                inequality_constraints=_to_inequality_constraints(
                    linear_constraints=linear_constraints),
                fixed_features=fixed_features,
                rounding_func=botorch_rounding_func,
                **optimizer_options,
            )
        else:
            acquisition_function = self.acqf_constructor(  # pyre-ignore: [28]
                model=model,
                objective_weights=objective_weights,
                objective_thresholds=objective_thresholds,
                outcome_constraints=outcome_constraints,
                X_observed=X_observed,
                X_pending=X_pending,
                Ys=self.Ys,  # Required for qEHVI calculations.
                **acf_options,
            )
            acquisition_function = checked_cast(AcquisitionFunction,
                                                acquisition_function)
            # pyre-ignore: [28]
            candidates, expected_acquisition_value = self.acqf_optimizer(
                acq_function=checked_cast(AcquisitionFunction,
                                          acquisition_function),
                bounds=bounds_,
                n=n,
                inequality_constraints=_to_inequality_constraints(
                    linear_constraints=linear_constraints),
                fixed_features=fixed_features,
                rounding_func=botorch_rounding_func,
                **optimizer_options,
            )
        return (
            candidates.detach().cpu(),
            torch.ones(n, dtype=self.dtype),
            {
                "expected_acquisition_value":
                expected_acquisition_value.tolist()
            },
            None,
        )
示例#7
0
文件: botorch.py 项目: sandguine/Ax
    def gen(
        self,
        n: int,
        bounds: List[Tuple[float, float]],
        objective_weights: Tensor,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata, Optional[List[TCandidateMetadata]]]:
        options = model_gen_options or {}
        acf_options = options.get(Keys.ACQF_KWARGS, {})
        optimizer_options = options.get(Keys.OPTIMIZER_KWARGS, {})

        if target_fidelities:
            raise NotImplementedError(
                "target_fidelities not implemented for base BotorchModel"
            )
        X_pending, X_observed = _get_X_pending_and_observed(
            Xs=self.Xs,
            pending_observations=pending_observations,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            bounds=bounds,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
        )

        model = self.model

        # subset model only to the outcomes we need for the optimization	357
        if options.get(Keys.SUBSET_MODEL, True):
            model, objective_weights, outcome_constraints, _ = subset_model(
                model=model,  # pyre-ignore [6]
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
            )

        bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device)
        bounds_ = bounds_.transpose(0, 1)

        botorch_rounding_func = get_rounding_func(rounding_func)
        acquisition_function = self.acqf_constructor(  # pyre-ignore: [28]
            model=model,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=X_observed,
            X_pending=X_pending,
            **acf_options,
        )
        acquisition_function = checked_cast(AcquisitionFunction, acquisition_function)
        # pyre-ignore: [28]
        candidates, expected_acquisition_value = self.acqf_optimizer(
            acq_function=checked_cast(AcquisitionFunction, acquisition_function),
            bounds=bounds_,
            n=n,
            inequality_constraints=_to_inequality_constraints(
                linear_constraints=linear_constraints
            ),
            fixed_features=fixed_features,
            rounding_func=botorch_rounding_func,
            **optimizer_options,
        )
        return (
            candidates.detach().cpu(),
            torch.ones(n, dtype=self.dtype),
            {"expected_acquisition_value": expected_acquisition_value.tolist()},
            None,
        )
示例#8
0
def recommend_best_out_of_sample_point(
    model: TorchModel,
    bounds: List[Tuple[float, float]],
    objective_weights: Tensor,
    outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
    linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
    fixed_features: Optional[Dict[int, float]] = None,
    model_gen_options: Optional[TConfig] = None,
    target_fidelities: Optional[Dict[int, float]] = None,
) -> Optional[Tensor]:
    """
    Identify the current best point by optimizing the posterior mean of the model.
    This is "out-of-sample" because it considers un-observed designs as well.

    Return None if no such point can be identified.

    Args:
        model: A TorchModel.
        bounds: A list of (lower, upper) tuples for each column of X.
        objective_weights: The objective is to maximize a weighted sum of
            the columns of f(x). These are the weights.
        outcome_constraints: A tuple of (A, b). For k outcome constraints
            and m outputs at f(x), A is (k x m) and b is (k x 1) such that
            A f(x) <= b.
        linear_constraints: A tuple of (A, b). For k linear constraints on
            d-dimensional x, A is (k x d) and b is (k x 1) such that
            A x <= b.
        fixed_features: A map {feature_index: value} for features that
            should be fixed to a particular value in the best point.
        model_gen_options: A config dictionary that can contain
            model-specific options.
        target_fidelities: A map {feature_index: value} of fidelity feature
            column indices to their respective target fidelities. Used for
            multi-fidelity optimization.

    Returns:
        A d-array of the best point, or None if no feasible point exists.
    """
    options = model_gen_options or {}
    fixed_features = fixed_features or {}
    acf_options = options.get("acquisition_function_kwargs", {})
    optimizer_options = options.get("optimizer_kwargs", {})

    X_observed = get_observed(
        Xs=model.Xs,  # pyre-ignore: [16]
        objective_weights=objective_weights,
        outcome_constraints=outcome_constraints,
    )

    if hasattr(model, "_get_best_point_acqf"):
        acq_function, non_fixed_idcs = model._get_best_point_acqf(  # pyre-ignore: [16]
            X_observed=X_observed,
            objective_weights=objective_weights,
            mc_samples=acf_options.get("mc_samples", 512),
            fixed_features=fixed_features,
            target_fidelities=target_fidelities,
            outcome_constraints=outcome_constraints,
            seed_inner=acf_options.get("seed_inner", None),
            qmc=acf_options.get("qmc", True),
        )
    else:
        raise RuntimeError("The model should implement _get_best_point_acqf.")

    inequality_constraints = _to_inequality_constraints(linear_constraints)
    # TODO: update optimizers to handle inequality_constraints
    # (including transforming constraints b/c of fixed features)
    if inequality_constraints is not None:
        raise UnsupportedError("Inequality constraints are not supported!")

    return_best_only = optimizer_options.get("return_best_only", True)
    bounds_ = torch.tensor(bounds, dtype=model.dtype, device=model.device)
    bounds_ = bounds_.transpose(-1, -2)
    if non_fixed_idcs is not None:
        bounds_ = bounds_[..., non_fixed_idcs]

    candidates, _ = optimize_acqf(
        acq_function=acq_function,
        bounds=bounds_,
        q=1,
        num_restarts=optimizer_options.get("num_restarts", 60),
        raw_samples=optimizer_options.get("raw_samples", 1024),
        inequality_constraints=inequality_constraints,
        fixed_features=None,  # handled inside the acquisition function
        options={
            "batch_limit": optimizer_options.get("batch_limit", 8),
            "maxiter": optimizer_options.get("maxiter", 200),
            "nonnegative": optimizer_options.get("nonnegative", False),
            "method": "L-BFGS-B",
        },
        return_best_only=return_best_only,
    )
    rec_point = candidates.detach().cpu()
    if isinstance(acq_function, FixedFeatureAcquisitionFunction):
        rec_point = acq_function._construct_X_full(rec_point)
    if return_best_only:
        rec_point = rec_point.view(-1)
    return rec_point
示例#9
0
    def gen(
        self,
        n: int,
        bounds: List[Tuple[float, float]],
        objective_weights: Tensor,  # objective_directions
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        objective_thresholds: Optional[Tensor] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata,
               Optional[List[TCandidateMetadata]]]:
        options = model_gen_options or {}
        acf_options = options.get("acquisition_function_kwargs", {})
        optimizer_options = options.get("optimizer_kwargs", {})

        if target_fidelities:
            raise NotImplementedError(
                "target_fidelities not implemented for base BotorchModel")
        if (objective_thresholds is not None and
                objective_weights.shape[0] != objective_thresholds.shape[0]):
            raise AxError(
                "Objective weights and thresholds most both contain an element for"
                " each modeled metric.")

        X_pending, X_observed = _get_X_pending_and_observed(
            Xs=self.Xs,
            pending_observations=pending_observations,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            bounds=bounds,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
        )

        model = not_none(self.model)
        full_objective_thresholds = objective_thresholds
        full_objective_weights = objective_weights
        full_outcome_constraints = outcome_constraints
        # subset model only to the outcomes we need for the optimization
        if options.get(Keys.SUBSET_MODEL, True):
            full_objective_weights
            subset_model_results = subset_model(
                model=model,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
                objective_thresholds=objective_thresholds,
            )
            model = subset_model_results.model
            objective_weights = subset_model_results.objective_weights
            outcome_constraints = subset_model_results.outcome_constraints
            objective_thresholds = subset_model_results.objective_thresholds
            idcs = subset_model_results.indices
        else:
            idcs = None
        if objective_thresholds is None:
            full_objective_thresholds = infer_objective_thresholds(
                model=model,
                X_observed=not_none(X_observed),
                objective_weights=full_objective_weights,
                outcome_constraints=full_outcome_constraints,
                subset_idcs=idcs,
            )
            # subset the objective thresholds
            objective_thresholds = (full_objective_thresholds
                                    if idcs is None else
                                    full_objective_thresholds[idcs].clone())

        bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device)
        bounds_ = bounds_.transpose(0, 1)
        botorch_rounding_func = get_rounding_func(rounding_func)
        if acf_options.get("random_scalarization", False) or acf_options.get(
                "chebyshev_scalarization", False):
            # If using a list of acquisition functions, the algorithm to generate
            # that list is configured by acquisition_function_kwargs.
            objective_weights_list = [
                randomize_objective_weights(objective_weights, **acf_options)
                for _ in range(n)
            ]
            acquisition_function_list = [
                self.acqf_constructor(  # pyre-ignore: [28]
                    model=model,
                    objective_weights=objective_weights,
                    outcome_constraints=outcome_constraints,
                    X_observed=X_observed,
                    X_pending=X_pending,
                    **acf_options,
                ) for objective_weights in objective_weights_list
            ]
            acquisition_function_list = [
                checked_cast(AcquisitionFunction, acq_function)
                for acq_function in acquisition_function_list
            ]
            # Multiple acquisition functions require a sequential optimizer
            # always use scipy_optimizer_list.
            # TODO(jej): Allow any optimizer.
            candidates, expected_acquisition_value = scipy_optimizer_list(
                acq_function_list=acquisition_function_list,
                bounds=bounds_,
                inequality_constraints=_to_inequality_constraints(
                    linear_constraints=linear_constraints),
                fixed_features=fixed_features,
                rounding_func=botorch_rounding_func,
                **optimizer_options,
            )
        else:
            acquisition_function = self.acqf_constructor(  # pyre-ignore: [28]
                model=model,
                objective_weights=objective_weights,
                objective_thresholds=objective_thresholds,
                outcome_constraints=outcome_constraints,
                X_observed=X_observed,
                X_pending=X_pending,
                **acf_options,
            )
            acquisition_function = checked_cast(AcquisitionFunction,
                                                acquisition_function)
            # pyre-ignore: [28]
            candidates, expected_acquisition_value = self.acqf_optimizer(
                acq_function=checked_cast(AcquisitionFunction,
                                          acquisition_function),
                bounds=bounds_,
                n=n,
                inequality_constraints=_to_inequality_constraints(
                    linear_constraints=linear_constraints),
                fixed_features=fixed_features,
                rounding_func=botorch_rounding_func,
                **optimizer_options,
            )
        gen_metadata = {
            "expected_acquisition_value": expected_acquisition_value.tolist(),
            "objective_thresholds": not_none(full_objective_thresholds).cpu(),
        }
        return (
            candidates.detach().cpu(),
            torch.ones(n, dtype=self.dtype),
            gen_metadata,
            None,
        )
示例#10
0
    def gen(
        self,
        n: int,
        bounds: List,
        objective_weights: Tensor,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata]:
        """
        Generate new candidates.

        Args:
            n: Number of candidates to generate.
            bounds: A list of (lower, upper) tuples for each column of X.
            objective_weights: The objective is to maximize a weighted sum of
                the columns of f(x). These are the weights.
            outcome_constraints: A tuple of (A, b). For k outcome constraints
                and m outputs at f(x), A is (k x m) and b is (k x 1) such that
                A f(x) <= b.
            linear_constraints: A tuple of (A, b). For k linear constraints on
                d-dimensional x, A is (k x d) and b is (k x 1) such that
                A x <= b.
            fixed_features: A map {feature_index: value} for features that
                should be fixed to a particular value during generation.
            pending_observations:  A list of m (k_i x d) feature tensors X
                for m outcomes and k_i pending observations for outcome i.
            model_gen_options: A config dictionary that can contain
                model-specific options.
            rounding_func: A function that rounds an optimization result
                appropriately (i.e., according to `round-trip` transformations).
            target_fidelities: A map {feature_index: value} of fidelity feature
                column indices to their respective target fidelities. Used for
                multi-fidelity optimization.

        Returns:
            3-element tuple containing

            - (n x d) tensor of generated points.
            - n-tensor of weights for each point.
            - Dictionary of model-specific metadata for the given
                generation candidates.
        """
        options = model_gen_options or {}
        acf_options = options.get("acquisition_function_kwargs", {})
        optimizer_options = options.get("optimizer_kwargs", {})

        X_pending, X_observed = _get_X_pending_and_observed(
            Xs=self.Xs,
            pending_observations=pending_observations,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            bounds=bounds,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
        )

        model = self.model

        # subset model only to the outcomes we need for the optimization
        if options.get("subset_model", True):
            model, objective_weights, outcome_constraints = subset_model(
                model=model,  # pyre-ignore [6]
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
            )

        objective = _get_objective(
            model=model,  # pyre-ignore [6]
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=X_observed,
        )

        # get the acquisition function
        n_fantasies = acf_options.get("num_fantasies", 64)
        qmc = acf_options.get("qmc", True)
        seed_inner = acf_options.get("seed_inner", None)
        num_restarts = optimizer_options.get("num_restarts", 40)
        raw_samples = optimizer_options.get("raw_samples", 1024)

        inequality_constraints = _to_inequality_constraints(linear_constraints)
        # TODO: update optimizers to handle inequality_constraints
        if inequality_constraints is not None:
            raise UnsupportedError(
                "Inequality constraints are not yet supported for KnowledgeGradient!"
            )

        # get current value
        best_point_acqf, non_fixed_idcs = self._get_best_point_acqf(
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=X_observed,  # pyre-ignore: [6]
            seed_inner=seed_inner,
            fixed_features=fixed_features,
            target_fidelities=target_fidelities,
            qmc=qmc,
        )

        # solution from previous iteration
        recommended_point = self.best_point(
            bounds=bounds,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
            model_gen_options=model_gen_options,
            target_fidelities=target_fidelities,
        )
        recommended_point = recommended_point.detach().unsqueeze(
            0)  # pyre-ignore: [16]
        # Extract acquisition value (TODO: Make this less painful and repetitive)
        if non_fixed_idcs is not None:
            recommended_point = recommended_point[..., non_fixed_idcs]
        current_value = best_point_acqf(recommended_point).max()

        acq_function = _instantiate_KG(
            model=model,  # pyre-ignore [6]
            objective=objective,
            qmc=qmc,
            n_fantasies=n_fantasies,
            num_trace_observations=options.get("num_trace_observations", 0),
            mc_samples=acf_options.get("mc_samples", 256),
            seed_inner=seed_inner,
            seed_outer=acf_options.get("seed_outer", None),
            X_pending=X_pending,
            target_fidelities=target_fidelities,
            fidelity_weights=options.get("fidelity_weights"),
            current_value=current_value,
            cost_intercept=self.cost_intercept,
        )

        # optimize and get new points
        bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device)
        bounds_ = bounds_.transpose(0, 1)

        batch_initial_conditions = gen_one_shot_kg_initial_conditions(
            acq_function=acq_function,
            bounds=bounds_,
            q=n,
            num_restarts=num_restarts,
            raw_samples=raw_samples,
            options={
                "frac_random": optimizer_options.get("frac_random", 0.1),
                "num_inner_restarts": num_restarts,
                "raw_inner_samples": raw_samples,
            },
        )

        botorch_rounding_func = get_rounding_func(rounding_func)

        candidates, _ = optimize_acqf(
            acq_function=acq_function,
            bounds=bounds_,
            q=n,
            inequality_constraints=inequality_constraints,
            fixed_features=fixed_features,
            post_processing_func=botorch_rounding_func,
            num_restarts=num_restarts,
            raw_samples=raw_samples,
            options={
                "batch_limit": optimizer_options.get("batch_limit", 8),
                "maxiter": optimizer_options.get("maxiter", 200),
                "method": "L-BFGS-B",
                "nonnegative": optimizer_options.get("nonnegative", False),
            },
            batch_initial_conditions=batch_initial_conditions,
        )
        new_x = candidates.detach().cpu()
        return new_x, torch.ones(n, dtype=self.dtype), {}