示例#1
0
    def _get_best_point_acqf(
        self,
        X_observed: Tensor,
        objective_weights: Tensor,
        mc_samples: int = 512,
        fixed_features: Optional[Dict[int, float]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        seed_inner: Optional[int] = None,
        qmc: bool = True,
        **kwargs: Any,
    ) -> Tuple[AcquisitionFunction, Optional[List[int]]]:
        # `outcome_constraints` is validated to be None in `gen`
        if outcome_constraints is not None:
            raise UnsupportedError("Outcome constraints not yet supported.")

        return get_out_of_sample_best_point_acqf(
            model=not_none(self.model),
            Xs=self.Xs,
            objective_weights=objective_weights,
            # With None `outcome_constraints`, `get_objective` utility
            # always returns a `ScalarizedObjective`, which results in
            # `get_out_of_sample_best_point_acqf` always selecting
            # `PosteriorMean`.
            outcome_constraints=outcome_constraints,
            X_observed=not_none(X_observed),
            seed_inner=seed_inner,
            fixed_features=fixed_features,
            fidelity_features=self.fidelity_features,
            target_fidelities=target_fidelities,
            qmc=qmc,
        )
示例#2
0
    def _get_current_value(
        self,
        model: Model,
        bounds: List,
        X_observed: Tensor,
        objective_weights: Tensor,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]],
        linear_constraints: Optional[Tuple[Tensor, Tensor]],
        seed_inner: Optional[int],
        fixed_features: Optional[Dict[int, float]],
        model_gen_options: Optional[TConfig],
        target_fidelities: Optional[Dict[int, float]],
        qmc: bool,
    ) -> Tensor:
        r"""Computes the value of the current best point. This is the current_value
        passed to KG.

        NOTE: The current value is computed as the current value of the 'best point
        acquisition function' (typically `PosteriorMean` or `qSimpleRegret`), not of
        the Knowledge Gradient acquisition function.
        """
        best_point_acqf, non_fixed_idcs = get_out_of_sample_best_point_acqf(
            model=model,
            Xs=self.Xs,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=X_observed,
            seed_inner=seed_inner,
            fixed_features=fixed_features,
            fidelity_features=self.fidelity_features,
            target_fidelities=target_fidelities,
            qmc=qmc,
        )

        # solution from previous iteration
        recommended_point = self.best_point(
            bounds=bounds,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
            model_gen_options=model_gen_options,
            target_fidelities=target_fidelities,
        )
        # pyre-fixme[16]: `Optional` has no attribute `detach`.
        recommended_point = recommended_point.detach().unsqueeze(0)
        # ensure correct device (`best_point` always returns a CPU tensor)
        recommended_point = recommended_point.to(device=self.device)
        # Extract acquisition value (TODO: Make this less painful and repetitive)
        if non_fixed_idcs is not None:
            recommended_point = recommended_point[..., non_fixed_idcs]
        current_value = best_point_acqf(recommended_point).max()
        return current_value
示例#3
0
 def _get_best_point_acqf(
     self,
     X_observed: Tensor,
     objective_weights: Tensor,
     mc_samples: int = 512,
     fixed_features: Optional[Dict[int, float]] = None,
     target_fidelities: Optional[Dict[int, float]] = None,
     outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
     seed_inner: Optional[int] = None,
     qmc: bool = True,
     **kwargs: Any,
 ) -> Tuple[AcquisitionFunction, Optional[List[int]]]:
     return get_out_of_sample_best_point_acqf(
         model=not_none(self.model),
         Xs=self.Xs,
         objective_weights=objective_weights,
         outcome_constraints=outcome_constraints,
         X_observed=not_none(X_observed),
         seed_inner=seed_inner,
         fixed_features=fixed_features,
         fidelity_features=self.fidelity_features,
         target_fidelities=target_fidelities,
         qmc=qmc,
     )
示例#4
0
    def gen(
        self,
        n: int,
        bounds: List,
        objective_weights: Tensor,
        outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
        fixed_features: Optional[Dict[int, float]] = None,
        pending_observations: Optional[List[Tensor]] = None,
        model_gen_options: Optional[TConfig] = None,
        rounding_func: Optional[Callable[[Tensor], Tensor]] = None,
        target_fidelities: Optional[Dict[int, float]] = None,
    ) -> Tuple[Tensor, Tensor, TGenMetadata,
               Optional[List[TCandidateMetadata]]]:
        """
        Generate new candidates.

        Args:
            n: Number of candidates to generate.
            bounds: A list of (lower, upper) tuples for each column of X.
            objective_weights: The objective is to maximize a weighted sum of
                the columns of f(x). These are the weights.
            outcome_constraints: A tuple of (A, b). For k outcome constraints
                and m outputs at f(x), A is (k x m) and b is (k x 1) such that
                A f(x) <= b.
            linear_constraints: A tuple of (A, b). For k linear constraints on
                d-dimensional x, A is (k x d) and b is (k x 1) such that
                A x <= b.
            fixed_features: A map {feature_index: value} for features that
                should be fixed to a particular value during generation.
            pending_observations:  A list of m (k_i x d) feature tensors X
                for m outcomes and k_i pending observations for outcome i.
            model_gen_options: A config dictionary that can contain
                model-specific options.
            rounding_func: A function that rounds an optimization result
                appropriately (i.e., according to `round-trip` transformations).
            target_fidelities: A map {feature_index: value} of fidelity feature
                column indices to their respective target fidelities. Used for
                multi-fidelity optimization.

        Returns:
            3-element tuple containing

            - (n x d) tensor of generated points.
            - n-tensor of weights for each point.
            - Dictionary of model-specific metadata for the given
                generation candidates.
        """
        options = model_gen_options or {}
        acf_options = options.get("acquisition_function_kwargs", {})
        optimizer_options = options.get("optimizer_kwargs", {})

        X_pending, X_observed = _get_X_pending_and_observed(
            Xs=self.Xs,
            pending_observations=pending_observations,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            bounds=bounds,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
        )

        model = not_none(self.model)

        # subset model only to the outcomes we need for the optimization
        if options.get("subset_model", True):
            model, objective_weights, outcome_constraints = subset_model(
                model=model,
                objective_weights=objective_weights,
                outcome_constraints=outcome_constraints,
            )

        objective = get_botorch_objective(
            model=model,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=X_observed,
        )

        # get the acquisition function
        n_fantasies = acf_options.get("num_fantasies", 64)
        qmc = acf_options.get("qmc", True)
        seed_inner = acf_options.get("seed_inner", None)
        num_restarts = optimizer_options.get("num_restarts", 40)
        raw_samples = optimizer_options.get("raw_samples", 1024)

        inequality_constraints = _to_inequality_constraints(linear_constraints)
        # TODO: update optimizers to handle inequality_constraints
        if inequality_constraints is not None:
            raise UnsupportedError(
                "Inequality constraints are not yet supported for KnowledgeGradient!"
            )

        # get current value
        best_point_acqf, non_fixed_idcs = get_out_of_sample_best_point_acqf(
            model=model,
            Xs=self.Xs,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            X_observed=not_none(X_observed),
            seed_inner=seed_inner,
            fixed_features=fixed_features,
            fidelity_features=self.fidelity_features,
            target_fidelities=target_fidelities,
            qmc=qmc,
        )

        # solution from previous iteration
        recommended_point = self.best_point(
            bounds=bounds,
            objective_weights=objective_weights,
            outcome_constraints=outcome_constraints,
            linear_constraints=linear_constraints,
            fixed_features=fixed_features,
            model_gen_options=model_gen_options,
            target_fidelities=target_fidelities,
        )
        recommended_point = recommended_point.detach().unsqueeze(0)
        # Extract acquisition value (TODO: Make this less painful and repetitive)
        if non_fixed_idcs is not None:
            recommended_point = recommended_point[..., non_fixed_idcs]
        current_value = best_point_acqf(recommended_point).max()

        acq_function = _instantiate_KG(
            model=model,
            objective=objective,
            qmc=qmc,
            n_fantasies=n_fantasies,
            num_trace_observations=options.get("num_trace_observations", 0),
            mc_samples=acf_options.get("mc_samples", 256),
            seed_inner=seed_inner,
            seed_outer=acf_options.get("seed_outer", None),
            X_pending=X_pending,
            target_fidelities=target_fidelities,
            fidelity_weights=options.get("fidelity_weights"),
            current_value=current_value,
            cost_intercept=self.cost_intercept,
        )

        # optimize and get new points
        bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device)
        bounds_ = bounds_.transpose(0, 1)

        batch_initial_conditions = gen_one_shot_kg_initial_conditions(
            acq_function=acq_function,
            bounds=bounds_,
            q=n,
            num_restarts=num_restarts,
            raw_samples=raw_samples,
            options={
                "frac_random": optimizer_options.get("frac_random", 0.1),
                "num_inner_restarts": num_restarts,
                "raw_inner_samples": raw_samples,
            },
        )

        botorch_rounding_func = get_rounding_func(rounding_func)

        candidates, _ = optimize_acqf(
            acq_function=acq_function,
            bounds=bounds_,
            q=n,
            inequality_constraints=inequality_constraints,
            fixed_features=fixed_features,
            post_processing_func=botorch_rounding_func,
            num_restarts=num_restarts,
            raw_samples=raw_samples,
            options={
                "batch_limit": optimizer_options.get("batch_limit", 8),
                "maxiter": optimizer_options.get("maxiter", 200),
                "method": "L-BFGS-B",
                "nonnegative": optimizer_options.get("nonnegative", False),
            },
            batch_initial_conditions=batch_initial_conditions,
        )
        new_x = candidates.detach().cpu()
        return new_x, torch.ones(n, dtype=self.dtype), {}, None