示例#1
0
 def testSetTrainingDataDupFeatures(self, mock_fit,
                                    mock_observations_from_data):
     # Throws an error if repeated features in observations.
     with self.assertRaises(ValueError):
         ModelBridge(
             get_search_space_for_value(),
             0,
             [],
             get_experiment_for_value(),
             0,
             status_quo_name="1_1",
         )
示例#2
0
 def testGenWithDefaults(self, _, mock_gen):
     exp = get_experiment_for_value()
     exp.optimization_config = get_optimization_config_no_constraints()
     ss = get_search_space_for_range_value()
     modelbridge = ModelBridge(ss, None, [], exp)
     modelbridge.gen(1)
     mock_gen.assert_called_with(
         modelbridge,
         n=1,
         search_space=ss,
         fixed_features=ObservationFeatures(parameters={}),
         model_gen_options=None,
         optimization_config=OptimizationConfig(
             objective=Objective(metric=Metric("test_metric"),
                                 minimize=False),
             outcome_constraints=[],
         ),
         pending_observations={},
     )
示例#3
0
 def test_update(self, _mock_update, _mock_gen):
     exp = get_experiment_for_value()
     exp.optimization_config = get_optimization_config_no_constraints()
     ss = get_search_space_for_range_values()
     exp.search_space = ss
     modelbridge = ModelBridge(ss, None, [Log], exp)
     exp.new_trial(generator_run=modelbridge.gen(1))
     modelbridge._set_training_data(
         observations_from_data(
             data=Data(
                 pd.DataFrame([{
                     "arm_name": "0_0",
                     "metric_name": "m1",
                     "mean": 3.0,
                     "sem": 1.0,
                 }])),
             experiment=exp,
         ))
     exp.new_trial(generator_run=modelbridge.gen(1))
     modelbridge.update(
         data=Data(
             pd.DataFrame([{
                 "arm_name": "1_0",
                 "metric_name": "m1",
                 "mean": 5.0,
                 "sem": 0.0
             }])),
         experiment=exp,
     )
     exp.new_trial(generator_run=modelbridge.gen(1))
     # Trying to update with unrecognised metric should error.
     with self.assertRaisesRegex(ValueError, "Unrecognised metric"):
         modelbridge.update(
             data=Data(
                 pd.DataFrame([{
                     "arm_name": "1_0",
                     "metric_name": "m2",
                     "mean": 5.0,
                     "sem": 0.0,
                 }])),
             experiment=exp,
         )
示例#4
0
    def testModelBridge(self, mock_fit, mock_gen_arms,
                        mock_observations_from_data):
        # Test that on init transforms are stored and applied in the correct order
        transforms = [transform_1, transform_2]
        exp = get_experiment_for_value()
        modelbridge = ModelBridge(get_search_space_for_value(), 0, transforms,
                                  exp, 0)
        self.assertEqual(list(modelbridge.transforms.keys()),
                         ["transform_1", "transform_2"])
        fit_args = mock_fit.mock_calls[0][2]
        self.assertTrue(
            fit_args["search_space"] == get_search_space_for_value(8.0))
        self.assertTrue(fit_args["observation_features"] == [
            get_observation1trans().features,
            get_observation2trans().features
        ])
        self.assertTrue(
            fit_args["observation_data"] ==
            [get_observation1trans().data,
             get_observation2trans().data])
        self.assertTrue(mock_observations_from_data.called)

        # Test that transforms are applied correctly on predict
        modelbridge._predict = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._predict",
            autospec=True,
            return_value=[get_observation2trans().data],
        )

        modelbridge.predict([get_observation2().features])
        # Observation features sent to _predict are un-transformed afterwards
        modelbridge._predict.assert_called_with([get_observation2().features])

        # Test transforms applied on gen
        modelbridge._gen = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._gen",
            autospec=True,
            return_value=([get_observation1trans().features], [2], None),
        )
        oc = OptimizationConfig(objective=Objective(metric=Metric(
            name="test_metric")))
        modelbridge._set_kwargs_to_save(model_key="TestModel",
                                        model_kwargs={},
                                        bridge_kwargs={})
        gr = modelbridge.gen(
            n=1,
            search_space=get_search_space_for_value(),
            optimization_config=oc,
            pending_observations={"a": [get_observation2().features]},
            fixed_features=ObservationFeatures({"x": 5}),
        )
        self.assertEqual(gr._model_key, "TestModel")
        modelbridge._gen.assert_called_with(
            n=1,
            search_space=SearchSpace(
                [FixedParameter("x", ParameterType.FLOAT, 8.0)]),
            optimization_config=oc,
            pending_observations={"a": [get_observation2trans().features]},
            fixed_features=ObservationFeatures({"x": 36}),
            model_gen_options=None,
        )
        mock_gen_arms.assert_called_with(
            arms_by_signature={},
            observation_features=[get_observation1().features])

        # Gen with no pending observations and no fixed features
        modelbridge.gen(n=1,
                        search_space=get_search_space_for_value(),
                        optimization_config=None)
        modelbridge._gen.assert_called_with(
            n=1,
            search_space=SearchSpace(
                [FixedParameter("x", ParameterType.FLOAT, 8.0)]),
            optimization_config=None,
            pending_observations={},
            fixed_features=ObservationFeatures({}),
            model_gen_options=None,
        )

        # Gen with multi-objective optimization config.
        oc2 = OptimizationConfig(objective=ScalarizedObjective(
            metrics=[Metric(name="test_metric"),
                     Metric(name="test_metric_2")]))
        modelbridge.gen(n=1,
                        search_space=get_search_space_for_value(),
                        optimization_config=oc2)
        modelbridge._gen.assert_called_with(
            n=1,
            search_space=SearchSpace(
                [FixedParameter("x", ParameterType.FLOAT, 8.0)]),
            optimization_config=oc2,
            pending_observations={},
            fixed_features=ObservationFeatures({}),
            model_gen_options=None,
        )

        # Test transforms applied on cross_validate
        modelbridge._cross_validate = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._cross_validate",
            autospec=True,
            return_value=[get_observation1trans().data],
        )
        cv_training_data = [get_observation2()]
        cv_test_points = [get_observation1().features]
        cv_predictions = modelbridge.cross_validate(
            cv_training_data=cv_training_data, cv_test_points=cv_test_points)
        modelbridge._cross_validate.assert_called_with(
            obs_feats=[get_observation2trans().features],
            obs_data=[get_observation2trans().data],
            cv_test_points=[get_observation1().features
                            ],  # untransformed after
        )
        self.assertTrue(cv_predictions == [get_observation1().data])

        # Test stored training data
        obs = modelbridge.get_training_data()
        self.assertTrue(obs == [get_observation1(), get_observation2()])
        self.assertEqual(modelbridge.metric_names, {"a", "b"})
        self.assertIsNone(modelbridge.status_quo)
        self.assertTrue(
            modelbridge.model_space == get_search_space_for_value())
        self.assertEqual(modelbridge.training_in_design, [True, True])

        modelbridge.training_in_design = [True, False]
        with self.assertRaises(ValueError):
            modelbridge.training_in_design = [True, True, False]

        ood_obs = modelbridge.out_of_design_data()
        self.assertTrue(
            ood_obs == unwrap_observation_data([get_observation2().data]))
示例#5
0
    def testSetStatusQuo(self, mock_fit, mock_observations_from_data):
        # NOTE: If empty data object is not passed, observations are not
        # extracted, even with mock.
        modelbridge = ModelBridge(
            search_space=get_search_space_for_value(),
            model=0,
            experiment=get_experiment_for_value(),
            data=Data(),
            status_quo_name="1_1",
        )
        self.assertEqual(modelbridge.status_quo, get_observation1())

        # Alternatively, we can specify by features
        modelbridge = ModelBridge(
            get_search_space_for_value(),
            0,
            [],
            get_experiment_for_value(),
            0,
            status_quo_features=get_observation1().features,
        )
        self.assertEqual(modelbridge.status_quo, get_observation1())

        # Alternatively, we can specify on experiment
        # Put a dummy arm with SQ name 1_1 on the dummy experiment.
        exp = get_experiment_for_value()
        sq = Arm(name="1_1", parameters={"x": 3.0})
        exp._status_quo = sq
        # Check that we set SQ to arm 1_1
        modelbridge = ModelBridge(get_search_space_for_value(), 0, [], exp, 0)
        self.assertEqual(modelbridge.status_quo, get_observation1())

        # Errors if features and name both specified
        with self.assertRaises(ValueError):
            modelbridge = ModelBridge(
                get_search_space_for_value(),
                0,
                [],
                exp,
                0,
                status_quo_features=get_observation1().features,
                status_quo_name="1_1",
            )

        # Left as None if features or name don't exist
        modelbridge = ModelBridge(get_search_space_for_value(),
                                  0, [],
                                  exp,
                                  0,
                                  status_quo_name="1_0")
        self.assertIsNone(modelbridge.status_quo)
        modelbridge = ModelBridge(
            get_search_space_for_value(),
            0,
            [],
            get_experiment_for_value(),
            0,
            status_quo_features=ObservationFeatures(parameters={
                "x": 3.0,
                "y": 10.0
            }),
        )
        self.assertIsNone(modelbridge.status_quo)