def search_solutions_request(test_paths, specified_template=None): user_agent = "test_agent" version = core_pb2.DESCRIPTOR.GetOptions().Extensions[ core_pb2.protocol_version] time_bound = 0.5 priority = 10 # allowed_value_types = [value_pb2.ValueType.Value(value) for value in ALLOWED_VALUE_TYPES] problem_description = utils.encode_problem_description( problem_module.Problem.load(test_paths['TRAIN']['problem'])) template = None if specified_template == 'FULL': with d3m_utils.silence(): pipeline = pipeline_utils.load_pipeline( FULL_SPECIFIED_PIPELINE_PATH) template = utils.encode_pipeline_description( pipeline, ALLOWED_VALUE_TYPES, constants.Path.TEMP_STORAGE_ROOT) elif specified_template == 'PRE': # PRE for PREPROCESSING pipeline = runtime_module.get_pipeline(PRE_SPECIFIED_PIPELINE_PATH, load_all_primitives=False) template = utils.encode_pipeline_description( pipeline, ALLOWED_VALUE_TYPES, constants.Path.TEMP_STORAGE_ROOT) inputs = [value_pb2.Value(dataset_uri=test_paths['TRAIN']['dataset'])] request = core_pb2.SearchSolutionsRequest( user_agent=user_agent, version=version, time_bound_search=time_bound, priority=priority, allowed_value_types=ALLOWED_VALUE_TYPES, problem=problem_description, template=template, inputs=inputs) return request
def load_default_pipeline(): from axolotl.utils import pipeline as pipeline_utils pipeline = pipeline_utils.load_pipeline(DEFAULT_PIPELINE_DIR) return pipeline
def get_classification_pipeline(): with open(schemas_utils.PIPELINES_DB_DIR) as file: default_pipelines = json.load(file) return pipeline_utils.load_pipeline(default_pipelines['CLASSIFICATION'][0])
def test_fit_lr(self): pipeline_info = os.path.join(os.path.dirname(__file__), 'resources', 'logistic_regeression.json') pipeline = pipeline_utils.load_pipeline(pipeline_info) _, pipeline_result = self.tuner_base.search_fit(input_data=[self.dataset], time_limit=60, pipeline_candidates=[pipeline]) self.assertEqual(pipeline_result.error, None)