def _apply_default_for_cluster_config( configuration: models.ClusterConfiguration): cluster_conf = models.ClusterConfiguration() cluster_conf.merge(configuration) # if cluster_conf.scheduling_target is None: # cluster_conf.scheduling_target = _default_scheduling_target(cluster_conf.size) return cluster_conf
def create_cluster(self, configuration: models.ClusterConfiguration, wait: bool = False): """ Create a new aztk spark cluster Args: cluster_conf(aztk.spark.models.models.ClusterConfiguration): Configuration for the the cluster to be created wait(bool): If you should wait for the cluster to be ready before returning Returns: aztk.spark.models.Cluster """ cluster_conf = models.ClusterConfiguration() cluster_conf.merge(DEFAULT_CLUSTER_CONFIG) cluster_conf.merge(configuration) cluster_conf.validate() cluster_data = self._get_cluster_data(cluster_conf.cluster_id) try: zip_resource_files = None node_data = NodeData(cluster_conf).add_core().done() zip_resource_files = cluster_data.upload_node_data(node_data).to_resource_file() start_task = create_cluster_helper.generate_cluster_start_task(self, zip_resource_files, cluster_conf.cluster_id, cluster_conf.gpu_enabled(), cluster_conf.get_docker_repo(), cluster_conf.file_shares, cluster_conf.plugins, cluster_conf.mixed_mode(), cluster_conf.worker_on_master) software_metadata_key = "spark" vm_image = models.VmImage( publisher='Canonical', offer='UbuntuServer', sku='16.04') cluster = self.__create_pool_and_job( cluster_conf, software_metadata_key, start_task, vm_image) # Wait for the master to be ready if wait: util.wait_for_master_to_be_ready(self, cluster.id) cluster = self.get_cluster(cluster.id) return cluster except batch_error.BatchErrorException as e: raise error.AztkError(helpers.format_batch_exception(e))
import aztk from aztk import error from aztk.client import Client as BaseClient from aztk.spark import models from aztk.utils import helpers from aztk.spark.helpers import create_cluster as create_cluster_helper from aztk.spark.helpers import submit as cluster_submit_helper from aztk.spark.helpers import job_submission as job_submit_helper from aztk.spark.helpers import get_log as get_log_helper from aztk.spark.helpers import cluster_diagnostic_helper from aztk.spark.utils import util from aztk.internal.cluster_data import NodeData DEFAULT_CLUSTER_CONFIG = models.ClusterConfiguration( worker_on_master=True, ) class Client(BaseClient): """ Aztk Spark Client This is the main entry point for using aztk for spark Args: secrets_config(aztk.spark.models.models.SecretsConfiguration): Configuration with all the needed credentials """ def __init__(self, secrets_config): super().__init__(secrets_config) def create_cluster(self, configuration: models.ClusterConfiguration, wait: bool = False): """