def pool_create(): image_reference = batchmodel.ImageReference( publisher=config_azure['batch_pool_image_publisher'], offer=config_azure['batch_pool_image_offer'], sku=config_azure['batch_pool_image_sku']) vm_config = batchmodel.VirtualMachineConfiguration( image_reference=image_reference, node_agent_sku_id=config_azure['batch_pool_node_agent_sku']) vm_start_task = batchmodel.StartTask( command_line= '/bin/bash -c "sudo yum -y install epel-release; sudo yum -y install python36 python36-devel python36-tools; sudo python36 -m ensurepip; sudo yum -y install openmpi openmpi-devel; sudo env MPICC=/usr/lib64/openmpi/bin/mpicc pip3 install mpi4py numpy; sudo pip3 --yes uninstall azure azure-common azure-storage; sudo pip3 install azure-storage azure-batch"', user_identity=batchmodel.UserIdentity( auto_user=batchmodel.AutoUserSpecification( scope=batchmodel.AutoUserScope.pool, elevation_level=batchmodel.ElevationLevel.admin)), wait_for_success=True) batch_service.pool.add(pool=batchmodel.PoolAddParameter( id=config_azure['batch_pool_name'], vm_size=config_azure['batch_pool_vm_size'], virtual_machine_configuration=vm_config, target_dedicated_nodes=config_azure[ 'batch_pool_target_dedicated_nodes'], enable_inter_node_communication=True, start_task=vm_start_task), raw=True)
def run_commands(batch_client, block_blob_client, job_id, pool_id): """Run the start commands listed in the file "start_commands" on all the nodes of the Azure Batch service. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param block_blob_client: The storage block blob client to use. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str job_id: The id of the job to create. :param str pool_id: The id of the pool to use. """ task_commands = get_list_from_file('configs/start_commands') logging.info(task_commands) user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin) start = time.time() job = batchmodels.JobAddParameter( id=job_id, pool_info=batchmodels.PoolInformation(pool_id=pool_id)) batch_client.job.add(job) logging.info('job created in seconds {}'.format(time.time() - start)) start = time.time() nodes = list(batch_client.compute_node.list(pool_id)) tasks = [batchmodels.TaskAddParameter( id="EBOTask-{}".format(i), command_line=common.helpers.wrap_commands_in_shell('linux', task_commands), user_identity=batchmodels.UserIdentity(auto_user=user)) \ for i in xrange(len(nodes))] batch_client.task.add_collection(job.id, tasks) logging.info('task created in seconds {}'.format(time.time() - start))
def add_tasks(batch_service_client, job_id, task_id, number_to_test): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. created for each input file. :number_to_test: number you want to know if it's prime or not. """ print('Adding tasks to job [{}]...'.format(job_id)) # This is the user who run the command inside the container. # An unprivileged one user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.task, elevation_level=batchmodels.ElevationLevel.non_admin) # This is the docker image we want to run task_container_settings = batchmodels.TaskContainerSettings( image_name=config._DOCKER_IMAGE, container_run_options='--rm') # The container needs this argument to be executed task = batchmodels.TaskAddParameter( id=task_id, command_line='python /is_prime.py ' + str(number_to_test), container_settings=task_container_settings, user_identity=batchmodels.UserIdentity(auto_user=user)) batch_service_client.task.add(job_id, task)
def create_job(batch_service_client, job_id, resource_files, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print('Creating job [{}]...'.format(job_id)) job = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id), job_preparation_task=batchmodels.JobPreparationTask( command_line="/bin/bash -c \"\ sudo apt-get install -y --reinstall make; \ sudo ./installrpy.sh; \ tar -xf cmdstan.tar.gz; \ cd cmdstan; \ make build; \ cd -; \ if sudo test -d ../../cmdstan; then echo stanexist; exit 0; fi; \ sudo mv * ../../; \ \"", resource_files=resource_files, wait_for_success=True, user_identity=batchmodels.UserIdentity(user_name="admin"), )) # batch_service_client.job.add(job)
def generate_task(spark_client, job, application_tasks): resource_files = [] for application, task in application_tasks: task_definition_resource_file = helpers.upload_text_to_container( container_name=job.id, application_name=application.name + ".yaml", file_path=application.name + ".yaml", content=yaml.dump(task), blob_client=spark_client.blob_client, ) resource_files.append(task_definition_resource_file) task_cmd = __app_cmd() # Create task task = batch_models.JobManagerTask( id=job.id, command_line=helpers.wrap_commands_in_shell([task_cmd]), resource_files=resource_files, kill_job_on_completion=False, allow_low_priority_node=True, user_identity=batch_models.UserIdentity( auto_user=batch_models.AutoUserSpecification( scope=batch_models.AutoUserScope.task, elevation_level=batch_models.ElevationLevel.admin)), ) return task
def create_job(batch_service_client, job_id, resource_files, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print('Creating job [{}]...'.format(job_id)) job = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id), job_preparation_task=batchmodels.JobPreparationTask( command_line="/bin/bash -c \"sudo apt-get -y update; \ sudo chmod o+w /usr/local/lib/R/site-library; \ ./installrpy.sh; \ tar -xf cmdstan.tar.gz; \ cd cmdstan; \ make build; \ cd -; \ \"", wait_for_success=True, resource_files=resource_files, user_identity=batchmodels.UserIdentity(user_name="admin"), )) batch_service_client.job.add(job)
def add_tasks(batch_service_client, job_id, task_id): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. created for each input file. :number_to_test: number you want to know if it's prime or not. """ print('Adding tasks to job [{}]...'.format(job_id)) # This is the user who run the command inside the container. # An unprivileged one user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.task, elevation_level=batchmodels.ElevationLevel.non_admin) # This is the docker image we want to run task_container_settings = batchmodels.TaskContainerSettings( image_name=config._DOCKER_IMAGE, container_run_options='--rm -e PYTHONUNBUFFERED=1') # The container needs this argument to be executed # remember we run the container like: docker ... imagename python /is_prime.py number task = batchmodels.TaskAddParameter( id=task_id, command_line= "python main.py quantity --job-id=2 --keyword='covid19' --question='Is covid19 man made' --num-papers=10", container_settings=task_container_settings, user_identity=batchmodels.UserIdentity(auto_user=user)) batch_service_client.task.add(job_id, task)
def add_training_task(batch_service_client, job_id, command, displayName, containerName, blobName): """ Adds a task to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str jobId: The ID of the job to which to add the tasks. :param command: commandLine activity to do :param displayName display name of task :param containerName name of container with training data :param blobName name of training data blob """ # sample Linux command "/bin/bash -c \"ffmpeg -i {} {} \" # sample Windows command "cmd /c cd .. & cd C:\Users\chbuja" GUID = str(uuid.uuid4())[:63] autouser = batchmodels.AutoUserSpecification( scope='task', elevation_level='admin') userId = batchmodels.UserIdentity(auto_user=autouser) tasks = list() tasks.append(batch.models.TaskAddParameter( id='{}'.format(GUID), command_line=command, display_name=displayName, user_identity=userId )) batch_service_client.task.add_collection(job_id, tasks)
def create_pool(batch_client, pool_id, vm_size, vm_count, app_files): """Creates an Azure Batch pool with the specified id. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param block_blob_client: The storage block blob client to use. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str pool_id: The id of the pool to create. :param str vm_size: vm size (sku) :param int vm_count: number of vms to allocate :param list app_files: The list of all the other scripts to upload. """ # pick the latest supported 16.04 sku for UbuntuServer sku_to_use, image_ref_to_use = \ common.helpers.select_latest_verified_vm_image_with_node_agent_sku( batch_client, 'Canonical', 'UbuntuServer', '14.04') user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin) task_commands = get_list_from_file('configs/start_commands') print(task_commands) pool = batchmodels.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=image_ref_to_use, node_agent_sku_id=sku_to_use), vm_size=vm_size, target_dedicated=vm_count, start_task=batchmodels.StartTask( command_line=common.helpers.wrap_commands_in_shell( 'linux', task_commands), user_identity=batchmodels.UserIdentity(auto_user=user), resource_files=app_files, wait_for_success=True)) common.helpers.create_pool_if_not_exist(batch_client, pool)
def add_task(batch_service_client, image_name, image_version, job_id, command, name): user = batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( elevation_level=batchmodels.ElevationLevel.admin, scope=batchmodels.AutoUserScope.task, )) task_id = name task_container_settings = batch.models.TaskContainerSettings( image_name=image_name + ":" + image_version, container_run_options="--rm -p 4040:4040", ) task = batch.models.TaskAddParameter( id=task_id, command_line=command, container_settings=task_container_settings, user_identity=user, ) print("running " + command) batch_service_client.task.add(job_id, task) return task
def create_pool(batch_service_client, pool_id, users): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # The start task installs ffmpeg on each node from an available repository, using # an administrator user identity. new_pool = batch.models.PoolAddParameter( id=pool_id, user_accounts=users, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference(publisher="Canonical", offer="UbuntuServer", sku="18.04-LTS", version="latest"), node_agent_sku_id="batch.node.ubuntu 18.04"), vm_size=_POOL_VM_SIZE, target_dedicated_nodes=_DEDICATED_POOL_NODE_COUNT, target_low_priority_nodes=_LOW_PRIORITY_POOL_NODE_COUNT, start_task=batchmodels.StartTask( #command_line="/bin/bash -c \"git clone https://github.com/uiuc-arc/probfuzz.git; \ # cd probfuzz/; ./install_java.sh; ./install.sh\"", # command_line="/bin/bash -c \"apt-get update\"", command_line="/bin/bash -c \"sudo apt-get -y update; \ sudo apt-get install git; \ sudo apt-get install -y python2.7; \ sudo apt-get install -y python-pip; \ sudo apt-get install -y bc; \ sudo apt-get install -y r-base; \ sudo pip2 --no-cache-dir install pandas; \ sudo pip2 install rpy2==2.8.6;\ sudo pip2 install argparse;\ sudo pip2 install numpy;\ sudo pip2 install scipy;\ \"", wait_for_success=True, user_identity=batchmodels.UserIdentity(user_name="admin"), #user_identity=batchmodels.UserIdentity( # auto_user=batchmodels.AutoUserSpecification( # scope=batchmodels.AutoUserScope.pool, # elevation_level=batchmodels.ElevationLevel.admin)), ), max_tasks_per_node=_MAX_TASKS_PER_NODE) batch_service_client.pool.add(new_pool)
def add_task(self, task_command: str, task_name: str, start_dir: str = None): """Add tasks to Azure Batch Job. Parameters ---------- task_command : str Task to run on job. This can be any task to run on the current job_id. task_name : str Name of task. """ user = batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( elevation_level=batchmodels.ElevationLevel.admin, scope=batchmodels.AutoUserScope.task, )) if (not start_dir and self.config["POOL"]["PUBLISHER"] != "MicrosoftWindowsServer"): start_dir = "/src" if self.config["POOL"]["PUBLISHER"] == "MicrosoftWindowsServer": if not start_dir: start_dir = "src" extra_opts = f"-w C:\\{start_dir}\\" else: extra_opts = f"--workdir {start_dir}/" if self.use_fileshare: if self.config["POOL"]["PUBLISHER"] == "MicrosoftWindowsServer": mount = f"S:\\:C:\\{start_dir}\\logs" else: mount = f"/azfileshare/:{start_dir}/logs" extra_opts += f" --volume {mount}" self.task_id = task_name logger.debug("Submitting task {0} to pool {1} with command {2}".format( task_name, self.pool_id, task_command)) logger.debug(f"Extra configuration operations: {extra_opts}") task_container_settings = batch.models.TaskContainerSettings( image_name=self.image_name + ":" + self.image_version, container_run_options=extra_opts, ) task = batch.models.TaskAddParameter( id=self.task_id, command_line=task_command, container_settings=task_container_settings, environment_settings=[ batchmodels.EnvironmentSetting(name="SIM_WORKSPACE", value=self.workspace), batchmodels.EnvironmentSetting(name="SIM_ACCESS_KEY", value=self.access_key), ], user_identity=user, ) self.batch_client.task.add(self.job_id, task)
def create_pool(batch_service_client, pool_id): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # The start task installs ffmpeg on each node from an available repository, using # an administrator user identity. # task_commands = [ "apt-get update", "apt-get -y install python3-pip", "apt -y install htop", "apt -y install iftop", "pip3 install azure-storage-blob", "pip3 install pyspark", "pip3 install pandas", "apt -y install openjdk-8-jre-headless" ] new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference( publisher="Canonical", offer="UbuntuServer", sku="18.04-LTS", version="latest" ), node_agent_sku_id="batch.node.ubuntu 18.04"), vm_size=POOL_VM_SIZE, target_dedicated_nodes=DEDICATED_POOL_NODE_COUNT, target_low_priority_nodes=LOW_PRIORITY_POOL_NODE_COUNT, start_task=batchmodels.StartTask( command_line=wrap_commands_in_shell('linux',task_commands), wait_for_success=True, user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)), ) ) batch_service_client.pool.add(new_pool)
def add_tasks(batch_service_client, job_id, input_files, output_container_sas_url): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: A collection of input files. One task will be created for each input file. :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ #print('Adding {} tasks to job [{}]...'.format(len(input_files), job_id)) print('Adding {} tasks to job [{}]...'.format( _LOW_PRIORITY_POOL_NODE_COUNT, job_id)) tasks = list() #for idx, input_file in enumerate(input_files): for idx in range(_LOW_PRIORITY_POOL_NODE_COUNT): # output_file_path='version{}.txt'.format(idx) # command = "/bin/bash -c \"apt-get install git; \ # git clone https://github.com/uiuc-arc/probfuzz.git; \ # sudo apt-get install -y default-jdk;\ # cd ./probfuzz; \ # ./install.sh; \ # command = "/bin/bash -c \"git clone https://github.com/uiuc-arc/probfuzz.git; \ # cd ./probfuzz;\ # (cd language/antlr/ && wget http://www.antlr.org/download/antlr-4.7.1-complete.jar && ./run.sh); \ # ./check.py; \ # ./probfuzz.py 5\"" command = "/bin/bash -c \"cp -r /mnt/batch/tasks/startup/wd/probfuzz ./; \ cd probfuzz; \ ./probfuzz.py 5\"" #command = "/bin/bash -c \"touch probfuzz.txt\"" tasks.append( batch.models.TaskAddParameter( id='Task{}'.format(idx), command_line=command, user_identity=batchmodels.UserIdentity(user_name="admin"), #resource_files=input_files, output_files=[ batchmodels.OutputFile( file_pattern="./probfuzz/output/*", destination=batchmodels.OutputFileDestination( container=batchmodels. OutputFileBlobContainerDestination( container_url=output_container_sas_url)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition=batchmodels. OutputFileUploadCondition.task_success)) ])) batch_service_client.task.add_collection(job_id, tasks)
def create_pool(batch_service_client, pool_id, resource_files, publisher, offer, sku, vm_size, node_count): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param list resource_files: A collection of resource files for the pool's start task. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # Specify the commands for the pool's start task. The start task is run # on each node as it joins the pool, and when it's rebooted or re-imaged. # If there were installs needed, this is where we'd add them as task_commands = ['echo starting up'] # Get the node agent SKU and image reference for the virtual machine # configuration. # For more information about the virtual machine configuration, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ sku_to_use, image_ref_to_use = \ select_latest_verified_vm_image_with_node_agent_sku( batch_service_client, publisher, offer, sku) user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin) new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=image_ref_to_use, node_agent_sku_id=sku_to_use), vm_size=vm_size, target_dedicated_nodes=node_count, start_task=batch.models.StartTask( command_line=wrap_commands_in_shell('linux',task_commands), user_identity=batchmodels.UserIdentity(auto_user=user), wait_for_success=True, resource_files=resource_files), ) try: batch_service_client.pool.add(new_pool) except batchmodels.batch_error.BatchErrorException as err: print(err) raise
def create_pool(self, pool_id): """ Creates a pool of compute nodes with the specified OS settings. :param str pool_id: An ID for the new pool. :param dict config: Configuration details. """ if pool_id in self.active_pools or self.pool_exists(pool_id): return self.logger.info("creating pool {}".format(pool_id)) pool_config = self.config['pools'][pool_id] sku_to_use, image_ref_to_use = self.__get_vm_image_and_node_agent_sku( pool_config) start_vm_commands = None if pool_config.get('create_vm_commands', None): start_vm_commands = self.__create_commands( pool_config['create_vm_commands']) user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin) vm_configuration = batchmodels.VirtualMachineConfiguration( image_reference=image_ref_to_use, node_agent_sku_id=sku_to_use, ) vm_start_task = batchmodels.StartTask( command_line=self.__wrap_commands_in_shell('linux', start_vm_commands), user_identity=batchmodels.UserIdentity(auto_user=user), wait_for_success=True) new_pool = batchmodels.PoolAddParameter( id=pool_id, virtual_machine_configuration=vm_configuration, vm_size=pool_config['pool_vm_size'], enable_auto_scale=True, auto_scale_formula=pool_config['auto_scale_formula'], auto_scale_evaluation_interval=datetime.timedelta(minutes=5), start_task=vm_start_task, max_tasks_per_node=pool_config['max_tasks_per_node'], ) try: self.batch_client.pool.add(new_pool) except batchmodels.BatchErrorException as err: self.__print_batch_exception(err) raise self.active_pools.add(pool_id)
def add_tasks(batch_service_client, job_id, input_files, output_container_sas_url): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: A collection of input files. One task will be created for each input file. :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ #print('Adding {} tasks to job [{}]...'.format(len(input_files), job_id)) print('Adding {} tasks to job [{}]...'.format( _LOW_PRIORITY_POOL_NODE_COUNT + _DEDICATED_POOL_NODE_COUNT, job_id)) tasks = list() for idx, input_file in enumerate(input_files): if idx >= 8: break input_file_path = input_file.file_path input_file_name = input_file_path.split('/')[-1].split('.')[0] #output_file_path="".join((input_file_path).split('.')[:-2]) + 'metrics_out_0319' + '.txt' # TODO: cp task to stan dir; unzip; build; change mnt script; upload metrics & summary to storage command = "/bin/bash -c \" \ time ./tar_to_metrics.sh {0} &> {1}_log.txt; \ \"".format(input_file_path, input_file_name) # #./run_metrics.sh ./metrics.py /mnt/batch/tasks/workitems/RunByIterJobAll/job-1/Task*/wd/example-models/; \ #./runner_10.sh /mnt/batch/tasks/workitems/RunByIterJobAll/job-1/Task*/wd/example-models/ _*.csv; \ #pip2 install --upgrade pip2; \ #sudo apt-get install -y r-base-core; \ #command = "/bin/bash -c \"touch probfuzz.txt\"" tasks.append( batch.models.TaskAddParameter( id='Task_{}'.format(input_file_name), command_line=command, user_identity=batchmodels.UserIdentity(user_name="admin"), resource_files=input_files, output_files=[ batchmodels.OutputFile( file_pattern="*.txt".format(idx), destination=batchmodels.OutputFileDestination( container=batchmodels. OutputFileBlobContainerDestination( container_url=output_container_sas_url)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition=batchmodels. OutputFileUploadCondition.task_success)) ])) batch_service_client.task.add_collection(job_id, tasks)
def create_job(batch_client, name_job, name_pool, cmd_prep_task=None): user = models.UserIdentity(auto_user=models.AutoUserSpecification( elevation_level=models.ElevationLevel.admin, scope=models.AutoUserScope.task)) prepare_task = models.JobPreparationTask(command_line=cmd_prep_task, id=None, user_identity=user) job = models.JobAddParameter( id=name_job, pool_info=models.PoolInformation(pool_id=name_pool), job_preparation_task=prepare_task) batch_client.job.add(job)
def create_processing_pool(batch_service_client, start_task): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :param str start_task: task start command. :type batch_service_client: `azure.batch.BatchServiceClient` """ LOGGER.info(f'Creating pool [{PROCESSING_POOL_ID}]...') image_ref_to_use = get_image_reference() container_registry = \ batch_models.ContainerRegistry( registry_server=REGISTRY_SERVER, user_name=REGISTRY_ACCOUNT_USER, password=REGISTRY_ACCOUNT_PASSWORD) container_conf = batch_models.ContainerConfiguration( container_image_names=[DOCKER_CONTAINER_URL], container_registries=[container_registry]) new_pool = batch_models.PoolAddParameter( id=PROCESSING_POOL_ID, virtual_machine_configuration= batch_models.VirtualMachineConfiguration( image_reference=image_ref_to_use, container_configuration=container_conf, node_agent_sku_id=VM_AGENT_SKU), vm_size=PROCESSING_POOL_VM_SIZE, start_task=batch_models.StartTask( command_line=start_task, user_identity=batch_models.UserIdentity( auto_user=batch_models.AutoUserSpecification( scope='pool', elevation_level='admin')) ), enable_auto_scale=True, auto_scale_evaluation_interval=datetime.timedelta( minutes=PROCESSING_POOL_SCALE_INTERVAL_MINUTES), auto_scale_formula=PROCESSING_POOL_SCALE_FORMULA) try: batch_service_client.pool.add(new_pool) LOGGER.info("Processing Pool Created") except batch_models.BatchErrorException as err: if 'The specified pool already exists.' in err.error.message.value: LOGGER.info("Pool already exists...") else: raise
def create_pool_and_wait_for_node(batch_client, pool_id, vm_size, vm_count, sha1_cert_tp): """Creates an Azure Batch pool with the specified id. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param str pool_id: The id of the pool to create. :param str vm_size: vm size (sku) :param int vm_count: number of vms to allocate :param str sha1_cert_tp: sha1 cert thumbprint for cert ref """ # pick the latest supported 16.04 sku for UbuntuServer sku_to_use, image_ref_to_use = \ common.helpers.select_latest_verified_vm_image_with_node_agent_sku( batch_client, 'Canonical', 'UbuntuServer', '16.04') # create start task commands # 1. update repository # 2. install blobxfer pre-requisites # 3. pip install blobxfer python script start_task_commands = [ 'apt-get update', 'apt-get install -y build-essential libssl-dev libffi-dev ' + 'libpython-dev python-dev python-pip', 'pip install --upgrade blobxfer' ] user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin) # create pool with start task and cert ref with visibility of task pool = batchmodels.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=image_ref_to_use, node_agent_sku_id=sku_to_use), vm_size=vm_size, target_dedicated=vm_count, start_task=batchmodels.StartTask( command_line=common.helpers.wrap_commands_in_shell( 'linux', start_task_commands), user_identity=batchmodels.UserIdentity(auto_user=user), wait_for_success=True), certificate_references=[ batchmodels.CertificateReference( sha1_cert_tp, 'sha1', visibility=[batchmodels.CertificateVisibility.task]) ], ) common.helpers.create_pool_if_not_exist(batch_client, pool)
def add_task( batch_service_client, job_id, task_id, num_instances, application_cmdline, input_files, elevation_level, output_file_names, output_container_sas, coordination_cmdline, common_files): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the task. :param str task_id: The ID of the task to be added. :param str application_cmdline: The application commandline for the task. :param list input_files: A collection of input files. :param elevation_level: Elevation level used to run the task; either 'admin' or 'nonadmin'. :type elevation_level: `azure.batch.models.ElevationLevel` :param int num_instances: Number of instances for the task :param str coordination_cmdline: The application commandline for the task. :param list common_files: A collection of common input files. """ print('Adding {} task to job [{}]...'.format(task_id, job_id)) multi_instance_settings = None if coordination_cmdline or (num_instances and num_instances > 1): multi_instance_settings = batchmodels.MultiInstanceSettings( number_of_instances=num_instances, coordination_command_line=coordination_cmdline, common_resource_files=common_files) user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=elevation_level) output_file = batchmodels.OutputFile( file_pattern=output_file_names, destination=batchmodels.OutputFileDestination( container=batchmodels.OutputFileBlobContainerDestination( container_url=output_container_sas)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition=batchmodels. OutputFileUploadCondition.task_completion)) task = batchmodels.TaskAddParameter( id=task_id, command_line=application_cmdline, user_identity=batchmodels.UserIdentity(auto_user=user), resource_files=input_files, multi_instance_settings=multi_instance_settings, output_files=[output_file]) batch_service_client.task.add(job_id, task)
def create_job(self, job_id, pool_id, total_nodes, is_linux_pool): client = self._get_batch_client() try: pool_info = batchmodels.PoolInformation(pool_id=pool_id) job = batchmodels.JobAddParameter(id=job_id, pool_info=pool_info) try: client.job.add(job) except batchmodels.BatchErrorException as be: if be.error and be.error.code == 'JobExists': pass else: print('Error creating job, code={}, message={}'.format( be.error.code, be.error.message)) raise if is_linux_pool: cmd_line = '/bin/bash -c azure-batch-ses.sh' script = 'azure-batch-ses.sh' script_url = 'https://raw.githubusercontent.com/Azure/azure-deadline/master/CloudProviderPlugin/Scripts/azure-batch-ses.sh' else: cmd_line = 'powershell.exe -file azure-batch-ses.ps1' script = 'azure-batch-ses.ps1' script_url = 'https://raw.githubusercontent.com/Azure/azure-deadline/master/CloudProviderPlugin/Scripts/azure-batch-ses.ps1' task = batchmodels.TaskAddParameter( id='', command_line=cmd_line, resource_files=[batchmodels.ResourceFile(script_url, script)], constraints=batchmodels.TaskConstraints( max_task_retry_count=3), user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin))) for i in range(total_nodes): task.id = str(uuid.uuid4()) client.task.add(job_id=job.id, task=task) except batchmodels.BatchErrorException as be: if be.error: print('Error creating job, code={}, message={}'.format( be.error.code, be.error.message)) if be.error.values: for e in be.error.values: print('Key={}, Value={}'.format(e.key, e.value)) raise
def create_pool(batch_service_client, pool_id): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # The start task installs ffmpeg on each node from an available repository, using # an administrator user identity. new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference(publisher="Canonical", offer="UbuntuServer", sku="16.04-LTS", version="latest"), node_agent_sku_id="batch.node.ubuntu 16.04"), vm_size=os.environ['POOL_VM_SIZE'], target_dedicated_nodes=os.environ['DEDICATED_POOL_NODE_COUNT'], target_low_priority_nodes=os.environ['LOW_PRIORITY_POOL_NODE_COUNT'], start_task=batchmodels.StartTask( command_line="/bin/bash -c \"apt-get update && \ apt-get install -y apt-transport-https ca-certificates curl software-properties-common &&\ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add - && \ add-apt-repository 'deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable' && \ apt-get update && \ apt-get install -y docker-ce\"", wait_for_success=True, user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)), )) batch_service_client.pool.add(new_pool)
def create_pool(batch_service_client, pool_id, publisher, offer, sku, pool_vm_size, pool_node_count, low_priority_node_count, task_commands): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param list resource_files: A collection of resource files for the pool's start task. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku """ print('Creating pool [{}]...'.format(pool_id)) # Get the node agent SKU and image reference for the virtual machine # configuration. # For more information about the virtual machine configuration, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ sku_to_use, image_ref_to_use = \ common.helpers.select_latest_verified_vm_image_with_node_agent_sku( batch_service_client, publisher, offer, sku) user = batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin) new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=image_ref_to_use, node_agent_sku_id=sku_to_use), vm_size=pool_vm_size, target_dedicated_nodes=pool_node_count, target_low_priority_nodes=low_priority_node_count, start_task=batch.models.StartTask( command_line=common.helpers.wrap_commands_in_shell('linux', task_commands), user_identity=batchmodels.UserIdentity(auto_user=user), wait_for_success=True, max_task_retry_count=-1) ) try: batch_service_client.pool.add(new_pool) except batchmodels.batch_error.BatchErrorException as err: print_batch_exception(err) raise
def create_pool(batch_service_client, pool_id, application_files): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # The start task installs ffmpeg on each node from an available repository, using # an administrator user identity. new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference( publisher="MicrosoftWindowsServer", offer="WindowsServer", sku="2016-Datacenter", version="latest" ), node_agent_sku_id="batch.node.windows amd64"), vm_size=config._POOL_VM_SIZE, target_dedicated_nodes=config._DEDICATED_POOL_NODE_COUNT, target_low_priority_nodes=config._LOW_PRIORITY_POOL_NODE_COUNT, start_task=batchmodels.StartTask( command_line="cmd /c starttask.cmd", resource_files=application_files, wait_for_success=True, user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)), ) ) batch_service_client.pool.add(new_pool)
def add_tasks(batch_service_client, job_id, input_files, output_container_sas_url): """Adds a task for each pair with input file and command line in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: A collection of input files. :param output_container_sas_url: A SAS token granting write access to the specified Azure Blob storage container.""" print('Adding [{}] tasks to job [{}]'.format(_MAX_TASKS, job_id)) tasks = list() mcr = "".join(input_files[-4].file_path) program = "".join(input_files[-3].file_path) data = "".join(input_files[-2].file_path) design = "".join(input_files[-1].file_path) output_file_pattern = '*.mat' cogns = ['cogn_ps', 'cogn_po'] for idx in range(1, _MAX_TASKS + 1): command = "/bin/bash -c 'sudo apt-get update -qq && sudo apt-get install libxt6 default-jre -y;tar xf {};" \ "mcr/install -destinationFolder /tmp/mcr18b -mode silent -agreeToLicense yes;rm -rf mcr {} /tmp/ma*" \ ";./{} /tmp/mcr18b/v95 {} {} {} {} {} 15'".format( mcr, mcr, program, data, design, cogns[1], 'batch' + str(idx) + '.mat', idx) tasks.append( batchmodels.TaskAddParameter( id='Task{}'.format(idx), command_line=command, resource_files=input_files, output_files=[ batchmodels.OutputFile( file_pattern=output_file_pattern, destination=batchmodels.OutputFileDestination( container=batchmodels. OutputFileBlobContainerDestination( container_url=output_container_sas_url)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition='taskCompletion')) ], user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)))) batch_service_client.task.add_collection(job_id, tasks)
def add_tasks(batch_service_client, job_id, input_files, output_container_sas_url): """Adds a task for each pair with input file and command line in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: A collection of input files. One task will be created for each input file :param output_container_sas_url: A SAS token granting write access to the specified Azure Blob storage container.""" print('Adding [{}] tasks to job [{}]'.format(len(input_files) - 2, job_id)) tasks = list() output_file_pattern = '*-[01w]*' template = "".join(input_files[-1].file_path.split('.')[:-2]) script = "".join(input_files[-2].file_path) for idx, input_file in enumerate(input_files[:-2]): input_file_path = input_file.file_path subjid = "".join(input_file_path.split('.')[:-2]) command = "/bin/bash -c 'source /usr/local/software/addpaths;./{} {} {}'".format( script, template, subjid) tasks.append( batchmodels.TaskAddParameter( id='Task{}'.format(idx + 1), command_line=command, resource_files=[input_file, input_files[-2], input_files[-1]], output_files=[ batchmodels.OutputFile( file_pattern=output_file_pattern, destination=batchmodels.OutputFileDestination( container=batchmodels. OutputFileBlobContainerDestination( container_url=output_container_sas_url)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition='taskCompletion')) ], user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)))) batch_service_client.task.add_collection(job_id, tasks)
def create_pool(batch_service_client, pool_id): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # The start task installs ffmpeg on each node from an available repository, using # an administrator user identity. new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference(publisher="Canonical", offer="UbuntuServer", sku="18.04-LTS", version="latest"), node_agent_sku_id="batch.node.ubuntu 18.04"), vm_size=config._POOL_VM_SIZE, target_dedicated_nodes=config._DEDICATED_POOL_NODE_COUNT, target_low_priority_nodes=config._LOW_PRIORITY_POOL_NODE_COUNT, start_task=batchmodels.StartTask( command_line= "/bin/bash -c \"apt-get update && apt-get install wget && wget http://cab.spbu.ru/files/release3.14.0/SPAdes-3.14.0-Linux.tar.gz && tar -xf SPAdes-3.14.0-Linux.tar.gz\"", wait_for_success=True, user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)), )) batch_service_client.pool.add(new_pool)
def create_pool(batch_service_client: batch.BatchServiceClient, pool_id: str, publisher: str = "Canonical", offer: str = "UbuntuServer", sku: str = "18.04-LTS") -> None: """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :param pool_id: An ID for the new pool. :param publisher: Marketplace image publisher :param offer: Marketplace image offer :param sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference(publisher=publisher, offer=offer, sku=sku, version="latest"), node_agent_sku_id="batch.node.ubuntu 18.04"), vm_size=config._POOL_VM_SIZE, target_dedicated_nodes=config._DEDICATED_POOL_NODE_COUNT, target_low_priority_nodes=config._LOW_PRIORITY_POOL_NODE_COUNT, start_task=batchmodels.StartTask( command_line= "/bin/bash -c \"apt-get update && apt-get -y install python3.7 python3-pip\"", wait_for_success=True, user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)), )) batch_service_client.pool.add(new_pool)
def add_tasks(batch_service_client, job_id, input_files, output_container_sas_url, num_tasks): """Adds a task for each pair with input file and command line in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: A collection of input files. :param output_container_sas_url: A SAS token granting write access to the specified Azure Blob storage container. :param num_tasks: Total number of tasks.""" print('Adding [{}] tasks to job [{}]'.format(num_tasks, job_id)) tasks = list() output_file_pattern = '[ts]*' for idx in range(num_tasks): # input_file_path = input_file.file_path # subjid = "".join(input_file_path.split('.')[:-2]) command = "/bin/bash -c 'source /usr/local/software/addpaths;" \ "randomise -i all_FA_skeletonised -m mean_FA_skeleton_mask -d design.mat -t design.con " \ "-D --T2 --uncorrp --seed={} -n {} -o {}_SEED{};cp -p ../stdout.txt stdout{}.txt'" \ "".format(idx+1, int(_RANDOMISE_ITER/_NUM_TASKS), _OUTPUT_PREFIX, idx+1, idx+1) tasks.append( batchmodels.TaskAddParameter( id='Task{}'.format(idx + 1), command_line=command, resource_files=input_files, output_files=[ batchmodels.OutputFile( file_pattern=output_file_pattern, destination=batchmodels.OutputFileDestination( container=batchmodels. OutputFileBlobContainerDestination( container_url=output_container_sas_url)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition='taskCompletion')) ], user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)))) batch_service_client.task.add_collection(job_id, tasks)