def get_auth(): """Authentication to access workspace""" try: auth = AzureCliAuthentication() auth.get_authentication_header() except AuthenticationException: logger.info("Authentication Error Occured") return auth
def get_auth(): logger = logging.getLogger(__name__) logger.debug("Trying to create Workspace with CLI Authentication") try: auth = AzureCliAuthentication() auth.get_authentication_header() except AuthenticationException: logger.debug("Trying to create Workspace with Interactive login") auth = InteractiveLoginAuthentication() return auth
def get_auth(): ''' Authentication to access workspace ''' try: auth = AzureCliAuthentication() auth.get_authentication_header() except AuthenticationException: print("Authentication Error Occured") return auth
def get_auth(): """ Method to get the correct Azure ML Authentication type Always start with CLI Authentication and if it fails, fall back to interactive login """ try: auth_type = AzureCliAuthentication() auth_type.get_authentication_header() except AuthenticationException: auth_type = InteractiveLoginAuthentication() return auth_type
def get_auth(): ''' Retreive the user authentication. If they aren't logged in this will prompt the standard interactive login method. PARAMS: None RETURNS: Authentication object ''' auth = None print("Get auth...") try: auth = AzureCliAuthentication() auth.get_authentication_header() except AuthenticationException: auth = InteractiveLoginAuthentication() return auth
from azureml.pipeline.core import PublishedPipeline from azureml.core.authentication import AzureCliAuthentication cli_auth = AzureCliAuthentication() ##------------- Get Workspace subscriptionId = "<your subscription id>" # make this a parameter resourceGroup = "<your resource group>" # make this a parameter workspaceName = "<your ml workspace name>" # make this a parameter ws = Workspace(subscriptionId, resourceGroup, workspaceName, auth=cli_auth) ##------------- Run Published pipeline using REST endpoint aad_token = cli_auth.get_authentication_header() published_pipeline_id = "ab0691a9-438f-416b-a146-5c7660d1be11" # Replace this with the published pipeline id published_pipeline = PublishedPipeline.get(ws, published_pipeline_id) rest_endpoint = published_pipeline.endpoint print("Rest endpoint: " + rest_endpoint) response = requests.post(rest_endpoint, headers=aad_token, json={ "ExperimentName": "quality_prediction_gb", "RunSource": "SDK", "ParameterAssignments": { "modelName": "quality_gbm_model.pkl", "datasetName": "qualitydataset", "datasetStorePath": "/inputdata/train.csv" }