def init(): from sklearn.externals import joblib global model, inputs_dc, prediction_dc # The model we created in our linear_reg.py file is now a model.pkl model = joblib.load('model.pkl') inputs_dc = ModelDataCollector('model.pkl', identifier="inputs") prediction_dc = ModelDataCollector('model.pkl', identifier="prediction")
def init(): from utils import * global model, inputs_dc, prediction_dc model = load_model('saved/model_json_week.h5') word2vec = models.Word2Vec.load(saved_path + 'model_word2vec.pkl') X, invalid_rows = texts_to_word_vec(word2vec, texts) inputs_dc = ModelDataCollector('model.pkl',identifier="inputs") prediction_dc = ModelDataCollector('model.pkl', identifier="prediction")
def init(): from sklearn.externals import joblib import pickle global model, inputs_dc, prediction_dc model = joblib.load('testModel2.pkl') inputs_dc = ModelDataCollector('testModel.pkl', identifier="inputs") prediction_dc = ModelDataCollector('testModel.pkl', identifier="prediction")
def init(): global inputs_dc, prediction_dc from sklearn.externals import joblib global model model = joblib.load('model.pkl') inputs_dc = ModelDataCollector("model.pkl", identifier="inputs") prediction_dc = ModelDataCollector("model.pkl", identifier="prediction")
def init(): from sklearn.externals import joblib global model model = joblib.load('startupfunding.pkl') global inputCollector, predictionCollector inputCollector = ModelDataCollector('model.pkl', identifier="inputs") predictionCollector = ModelDataCollector('model.pkl', identifier="prediction")
def init(): global model, inputs_dc, prediction_dc # Get the path to the model asset # local_path = get_local_path('mymodel.model.link') from sklearn.externals import joblib inputs_dc = ModelDataCollector("model.pkl", identifier="inputs") prediction_dc = ModelDataCollector("model.pkl", identifier="prediction") # model = model_load_function(local_path) model = joblib.load('model.pkl')
def init(): """Web Service Initialization Prepare the web service definition by authoring init() and run() functions. Test the functions before deploying the web service. """ import json global inputs_dc, prediction_dc global model, labels model = load_cntk('model_cntk.pb') labels = json.load(open('labels.json')) inputs_dc = ModelDataCollector("model_tf.pb", identifier="inputs") prediction_dc = ModelDataCollector("model_tf.pb", identifier="prediction")
def init(): global inputs_dc, prediction_dc from sklearn.externals import joblib # load the model from file into a global object global model with open('sgd_automated_learn_v2.pkl', 'rb') as fid: model = pickle.load(fid, encoding='latin1') input_t = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]) print("model has been loaded ~~~~~~") print(model.predict(input_t)) print("prediction test done") inputs_dc = ModelDataCollector("sgd_automated_learn_v2.pkl", identifier="inputs") prediction_dc = ModelDataCollector("sgd_automated_learn_v2.pkl", identifier="prediction")
# Download the model if not os.path.exists(LOCAL_SYSTEM_DIRECTORY): os.makedirs(LOCAL_SYSTEM_DIRECTORY) if os.path.isfile(localFilePath): os.remove(localFilePath) az_blob_service = BlockBlobService(account_name=AZURE_STORAGE_ACCOUNT_NAME, account_key=AZURE_STORAGE_ACCOUNT_KEY) az_blob_service.get_blob_to_path(AZURE_STORAGE_CONTAINER_NAME, AZURE_STORAGE_BLOB_NAME, localFilePath) # load the model file global model model = joblib.load(localFilePath) inputs_dc = ModelDataCollector(localFilePath, identifier="inputs") prediction_dc = ModelDataCollector(localFilePath, identifier="prediction") def upload_schema(localfile): from azure.storage.blob import BlockBlobService from azure.storage.blob import ContentSettings az_blob_service = BlockBlobService(account_name=AZURE_STORAGE_ACCOUNT_NAME, account_key=AZURE_STORAGE_ACCOUNT_KEY) az_blob_service.create_blob_from_path( AZURE_STORAGE_CONTAINER_NAME, AZURE_STORAGE_BLOB_NAME_SCHEMA, localfile, content_settings=ContentSettings(content_type='application/json')) def run(input_df): import json