def publish_automl_pipeline(ws, pipeline, build_id):
    published_pipeline = pipeline.publish(name=PIPELINE_NAME,
                                          description=build_id,
                                          version=build_id)

    try:
        pipeline_endpoint = PipelineEndpoint.get(workspace=ws,
                                                 name=PIPELINE_ENDPOINT_NAME)
        print("pipeline endpoint exists, add a version")
        pipeline_endpoint.add_default(published_pipeline)
    except Exception:
        print("publish a new pipeline endpoint")
        pipeline_endpoint = PipelineEndpoint.publish(
            workspace=ws,
            name=PIPELINE_ENDPOINT_NAME,
            pipeline=published_pipeline,
            description='NYCtaxi_automl_training_pipeline_endpoint')

    print(f'Published pipeline: {published_pipeline.name}')
    print(f' version: {published_pipeline.version}')
    print(f'Pipeline endpoint: {pipeline_endpoint.name}')
    print('##vso[task.setvariable variable=PIPELINE_ENDPOINT_NAME;]{}'.format(
        pipeline_endpoint.name))
    print('##vso[task.setvariable variable=PIPELINE_ENDPOINT_DEFAULT_VER;]{}'.
          format(pipeline_endpoint.default_version))
    print('##vso[task.setvariable variable=PUBLISHED_PIPELINE_VERSION;]{}'.
          format(published_pipeline.version))
    return pipeline_endpoint
示例#2
0
def add_endpoint(ws: Workspace, pipeline: PublishedPipeline,
                 endpoint_name: str) -> PipelineEndpoint:
    endpoint_list = [p.name for p in PipelineEndpoint.list(ws)]
    endpoint = None
    # endpoint does not exist so add
    if endpoint_name in endpoint_list:
        endpoint = PipelineEndpoint.get(workspace=ws, name=endpoint_name)
        endpoint.add_default(published_pipeline)
    else:
        endpoint = PipelineEndpoint.publish(
            workspace=ws,
            name=endpoint_name,
            pipeline=published_pipeline,
            description="Seer Pipeline Endpoint")
    return endpoint
示例#3
0
def publish_pipeline(workspace: Workspace,
                     steps: List,
                     name: str,
                     description: str = "") -> Tuple[str, PipelineEndpoint]:

    published_pipeline = Pipeline(workspace=workspace,
                                  steps=steps).publish(name)

    try:
        pipeline_endpoint = PipelineEndpoint.get(workspace, name=name)
        pipeline_endpoint.add_default(published_pipeline)
    except ErrorResponseException:
        pipeline_endpoint = PipelineEndpoint.publish(
            workspace,
            name=name,
            pipeline=published_pipeline,
            description=description)

    return published_pipeline.id, pipeline_endpoint
示例#4
0
def main(workspace):
    ws = Workspace.from_config()
    print(ws)
    print("------------")

    published_pipeline = PipelineEndpoint.get(workspace=ws, name="aml-run-val")
    print(published_pipeline)

    print("------------")

    pipeline_run = published_pipeline.submit("aml-run-val")

    print("run completed")

    return pipeline_run
def start_sonntagsfrage_pipeline():
    # --- read params
    pipelineName = "Sonntagsfrage-Forecaster-Pipeline"
    workspaceName = "Sonntagsfrage-predictor"

    # --- load configuration
    print("Loading configuration...")
    for p in sys.path:
        print(p)
    env = Env()
    env.read_env("Azure_ML/foundation.env")

    azure_subscription_id = env("AZURE_SUBSCRIPTION_ID")
    resource_group = env("RESOURCE_GROUP")
    workspaceName = env("WORKSPACE_NAME")

    # --- get creds for aservice principalv
    with open('Azure_ML/service_principals/sonntagsfrage-ml-auth-file.json'
              ) as f:
        svcpr_data = json.load(f)

    # --- get service principal
    svc_pr = ServicePrincipalAuthentication(
        tenant_id=svcpr_data['tenantId'],
        service_principal_id=svcpr_data['clientId'],
        service_principal_password=svcpr_data['clientSecret'])

    # --- get workspace, compute target, run config
    print("Getting workspace and compute target...")
    workspace = Workspace(subscription_id=azure_subscription_id,
                          resource_group=resource_group,
                          workspace_name=workspaceName,
                          auth=svc_pr)

    print(f"Get pipeline endpoint '{pipelineName}' (as configured)...")
    pipeline_endpoint = PipelineEndpoint.get(workspace=workspace,
                                             name=pipelineName)

    print(f"Triggering pipeline endpoint '{pipelineName}' (as configured)...")
    pipeline_run = Experiment(workspace,
                              pipelineName).submit(pipeline_endpoint)

    return f"Pipeline {pipelineName} has been successfully started!", pipeline_run
示例#6
0
def clean_azml_workspace(ctx):
    """
    [WARNING] Only use in test-only workspace. Remove or disable all compute clusters, published pipelines, published pipeline endpoints and schedules from Azure ML workspace.
    """

    ws = Workspace.from_config()

    # remove compute clusters
    for _, compute in ws.compute_targets.items():
        if not compute.provisioning_state == "Deleting":
            compute.delete()

    # deactivate schedules
    for s in Schedule.list(ws):
        s.disable()

    # remove pipeline endpoints
    for pe in PipelineEndpoint.list(ws):
        pe.disable()

    # remove pipelines
    for p in PublishedPipeline.list(ws):
        p.disable()
示例#7
0
def main(req: func.HttpRequest) -> func.HttpResponse:
    logging.info('Python HTTP trigger function processed a request.')

    # Retrieve environment variables
    subscriptionId = os.environ["SUBSCRIPTION_ID"]
    rg_name = os.environ["RESOURCE_GROUP"]
    ws_name = os.environ["WORKSPACE_NAME"]
    pipeline_endpoint_name = os.environ["PIPELINE_ENDPOINT_NAME"]
    experiment_name = os.environ["EXPERIMENT_NAME"]

    # Managed identity authentication
    msi_auth = MsiAuthentication()

    # Azure ML workspace
    aml_workspace = Workspace(subscription_id=subscriptionId,
                              resource_group=rg_name,
                              workspace_name=ws_name,
                              auth=msi_auth)
    logging.info(f"Connected to workspace: {aml_workspace}")

    try:

        # Submit a job to a pipeline endpoint
        pipeline_endpoint_by_name = PipelineEndpoint.get(
            workspace=aml_workspace, name=pipeline_endpoint_name)
        run_id = pipeline_endpoint_by_name.submit(experiment_name)
        logging.info(f"Pipeline Endpoint: {run_id}")
        logging.info(
            "Successfully submit a job to the default version of a pipeline endpoint"
        )
        return func.HttpResponse(f"run_id: {run_id}")

    except Exception as ex:
        logging.exception(
            f'main function stopped execution due to the following error: {ex}'
        )
print("Azure ML SDK version:", azureml.core.VERSION)

parser = argparse.ArgumentParser("publish_to_pipeline_endpoint")
parser.add_argument("--pipeline_id", type=str, help="Id of the published pipeline that should get added to the Pipeline Endpoint", required=True)
parser.add_argument("--pipeline_endpoint_name", type=str, help="Name of the Pipeline Endpoint that the the pipeline should be added to", required=True)
parser.add_argument("--pipeline_endpoint_description", type=str, help="Description for the Pipeline Endpoint", default="Pipeline Endpoint", required=False)
args = parser.parse_args()
print(f'Arguments: {args}')

print('Connecting to workspace')
ws = Workspace.from_config()
print(f'WS name: {ws.name}\nRegion: {ws.location}\nSubscription id: {ws.subscription_id}\nResource group: {ws.resource_group}')

endpoint_name = args.pipeline_endpoint_name
pipeline_description = args.pipeline_endpoint_description
pipeline_id = args.pipeline_id
published_pipeline = PublishedPipeline.get(workspace=ws, id=pipeline_id)

# Add tested published pipeline to pipeline endpoint
try:
    pl_endpoint = PipelineEndpoint.get(workspace=ws, name=endpoint_name)
    pl_endpoint.add_default(published_pipeline)
    print(f'Added pipeline {pipeline_id} to Pipeline Endpoint with name {endpoint_name}')
except Exception:
    print(f'Will create new Pipeline Endpoint with name {endpoint_name} with pipeline {pipeline_id}')
    pl_endpoint = PipelineEndpoint.publish(workspace=ws,
                                           name=endpoint_name,
                                           pipeline=published_pipeline,
                                           description=pipeline_description)
示例#9
0
from azureml.pipeline.core import PipelineEndpoint
from azureml.core import Workspace
from azureml.core.authentication import ServicePrincipalAuthentication
from azureml.core.authentication import AzureCliAuthentication
import os

from azureml.core import Run
run = Run.get_context()
ws = run.experiment.workspace

published_pipeline = PipelineEndpoint.get(workspace=ws,
                                          name="aml-run-regression")
print(published_pipeline)

print("submitting pipeline aml-run-val")
pipeline_run = published_pipeline.submit("github-val-yueyue")
print("pipeline aml-run-val run completed")
def main():
    """Build pipeline."""
    # Environment variables
    env = Env()

    # Azure ML workspace
    aml_workspace = Workspace.get(
        name=env.workspace_name,
        subscription_id=env.subscription_id,
        resource_group=env.resource_group,
    )
    logger.info(f"Azure ML workspace: {aml_workspace}")

    # Azure ML compute cluster
    aml_compute = get_compute(aml_workspace, env.compute_name)
    logger.info(f"Aazure ML compute cluster: {aml_compute}")

    # Azure ML environment
    environment = Environment(name=env.aml_env_name)
    conda_dep = CondaDependencies(
        conda_dependencies_file_path="./local_development/dev_dependencies.yml"
    )
    environment.python.conda_dependencies = conda_dep

    run_config = RunConfiguration()
    run_config.environment = environment

    # Pipeline Data
    preparation_pipelinedata = PipelineData("preparation_pipelinedata",
                                            is_directory=True).as_dataset()
    extraction_pipelinedata = PipelineData("extraction_pipelinedata",
                                           is_directory=True)
    training_pipelinedata = PipelineData("training_pipelinedata",
                                         is_directory=True)

    # List of pipeline steps
    step_list = list()
    preparation_step = PythonScriptStep(
        name="preparation-step",
        compute_target=aml_compute,
        source_directory=env.sources_directory_train,
        script_name=env.preparation_step_script_path,
        outputs=[preparation_pipelinedata],
        arguments=[
            "--input_path", env.input_dir, "--output_path",
            preparation_pipelinedata, "--datastore_name",
            env.blob_datastore_name
        ],
        runconfig=run_config)

    step_list.append(preparation_step)

    parallel_run_config = ParallelRunConfig(
        source_directory=env.sources_directory_train,
        entry_script=env.extraction_step_script_path,
        mini_batch_size=env.mini_batch_size,
        error_threshold=env.error_threshold,
        output_action="append_row",
        environment=environment,
        compute_target=aml_compute,
        node_count=env.node_count,
        run_invocation_timeout=env.run_invocation_timeout,
        process_count_per_node=env.process_count_per_node,
        append_row_file_name="extraction_output.txt")

    extraction_step = ParallelRunStep(
        name="extraction-step",
        inputs=[preparation_pipelinedata],
        output=extraction_pipelinedata,
        arguments=["--output_dir", extraction_pipelinedata],
        parallel_run_config=parallel_run_config)
    step_list.append(extraction_step)

    training_step = PythonScriptStep(
        name="traning-step",
        compute_target=aml_compute,
        source_directory=env.sources_directory_train,
        script_name=env.training_step_script_path,
        inputs=[extraction_pipelinedata],
        outputs=[training_pipelinedata],
        arguments=[
            "--input_dir", extraction_pipelinedata, "--output_dir",
            training_pipelinedata
        ],
        runconfig=run_config)

    step_list.append(training_step)

    # Build pipeline
    pipeline = Pipeline(workspace=aml_workspace, steps=step_list)
    pipeline.validate()
    logger.info(f"Built pipeline {pipeline}")

    # Publish pipeline
    published_pipeline = pipeline.publish(
        env.pipeline_name,
        description=env.pipeline_name,
        version=datetime.utcnow().isoformat())
    try:
        pipeline_endpoint = PipelineEndpoint.get(
            workspace=aml_workspace, name=env.pipeline_endpoint_name)
        pipeline_endpoint.add_default(published_pipeline)
    except ErrorResponseException:
        pipeline_endpoint = PipelineEndpoint.publish(
            workspace=aml_workspace,
            name=env.pipeline_endpoint_name,
            pipeline=published_pipeline,
            description=env.pipeline_endpoint_name)
示例#11
0
pipeline = Pipeline(
    workspace=workspace,
    steps=pipeline_steps,
    description=pipeline_description,
)
pipeline.validate()

published_pipeline = pipeline.publish(
    # name=pipeline_name, description=pipeline_description, version={...some version...}
    name=pipeline_name,
    description=pipeline_description,
)
print(f"Newly published pipeline id: {published_pipeline.id}")

try:
    pipeline_endpoint = PipelineEndpoint.get(workspace=workspace,
                                             name=pipeline_name)
    pipeline_endpoint.add(published_pipeline)
except:
    pipeline_endpoint = PipelineEndpoint.publish(
        workspace=workspace,
        name=pipeline_name,
        pipeline=published_pipeline,
        description=f"Pipeline Endpoint for {pipeline_name}",
    )

# TODO: cleanup older pipeline endpoints(?)

# --- add a schedule for the pipeline (if told to do so)
# note: this is a sample schedule which runs time-based.
#       there is also the option to trigger the pipeline based on changes.
#       details at https://github.com/Azure/MachineLearningNotebooks/blob/4e7b3784d50e81c313c62bcdf9a330194153d9cd/how-t
示例#12
0
"""
$ python -m ml_service.pipelines.run_pipeline --test_size=0.2
"""

if __name__ == "__main__":
    # Environment variables
    env = Env()

    # Parse args
    parser = argparse.ArgumentParser()
    parser.add_argument('--test_size', type=float, default=0.2)
    args = parser.parse_args()

    # get workspace
    ws = Workspace.from_config()
    exp = Experiment(workspace=ws, name=env.aml_experiment_name)

    # customize parameters
    custom_pipeline_parameters = {
        "pipeparam_test_size": args.test_size
    }
    print('custom_pipeline_parameters=', custom_pipeline_parameters)

    # run pipeline
    pipeline_endpoint = PipelineEndpoint.get(workspace=ws, name=env.aml_pipeline_endpoint_name)
    pipeline_run = exp.submit(pipeline_endpoint, pipeline_parameters=custom_pipeline_parameters)

    # print url
    aml_url = pipeline_run.get_portal_url()
    print(aml_url)
示例#13
0
from azureml.core import Workspace, Datastore, Dataset
from azureml.pipeline.core import Pipeline, PublishedPipeline, PipelineEndpoint
from azureml.data.datapath import DataPath
import requests

#multi tenant with my account
from azureml.core.authentication import InteractiveLoginAuthentication
int_auth = InteractiveLoginAuthentication(tenant_id='your_tenant_id')
ws = Workspace.from_config(auth=int_auth)
ws.name

pipe = PipelineEndpoint.get(workspace=ws,
                            name="Wine_demo_dry_run-batch inference")

#submit with default parameters and a new experiment name
run = pipe.submit("wine_exp_submitted")
run.wait_for_completion(show_output=True)
from azureml.pipeline.core import Pipeline, PublishedPipeline, PipelineEndpoint

print(f'Azure ML SDK version: {azureml.core.VERSION}')

endpoint_name = "training-pipeline-endpoint"
pipeline_id = os.getenv('PIPELINE_ID')

# Connect to the workspace
ws = Workspace.from_config()
print(f'WS name: {ws.name}')
print(f'Region: {ws.location}')
print(f'Subscription id: {ws.subscription_id}')
print(f'Resource group: {ws.resource_group}')

print(f'Pipeline ID: {pipeline_id}')
published_pipeline = PublishedPipeline.get(workspace=ws, id=pipeline_id)
print(f'Published Pipeline: {published_pipeline}')

# Check if PipelineEndpoint already exists
if any(pe.name == endpoint_name for pe in PipelineEndpoint.list(ws)):
    print(f'Pipeline Endpoint with name {endpoint_name} already exists, will add pipeline to it')
    pipeline_endpoint = PipelineEndpoint.get(workspace=ws, name=endpoint_name)
    pipeline_endpoint.add(published_pipeline)
    # Set it to default, as we already tested it beforehand!
    pipeline_endpoint.set_default(published_pipeline)
else:
    print(f'Will create Pipeline Endpoint with name {endpoint_name}')
    pipeline_endpoint = PipelineEndpoint.publish(workspace=ws,
                                                name=endpoint_name,
                                                pipeline=published_pipeline,
                                                description="New Training Pipeline Endpoint")
示例#15
0
print(f'Azure ML SDK version: {azureml.core.VERSION}')

endpoint_name = "training-pipeline-endpoint"
pipeline_id = os.getenv('PIPELINE_ID')

# Connect to the workspace
ws = Workspace.from_config()
print(f'WS name: {ws.name}')
print(f'Region: {ws.location}')
print(f'Subscription id: {ws.subscription_id}')
print(f'Resource group: {ws.resource_group}')

print(f'Pipeline ID: {pipeline_id}')
published_pipeline = PublishedPipeline.get(workspace=ws, id=pipeline_id)
print(f'Published Pipeline: {published_pipeline}')

try:
    print(
        f'Pipeline Endpoint with name {endpoint_name} already exists, will add pipeline to it'
    )
    pipeline_endpoint = PipelineEndpoint.get(workspace=ws, name=endpoint_name)
    pipeline_endpoint.add_default(published_pipeline)
except Exception:
    print(f'Will create Pipeline Endpoint with name {endpoint_name}')
    pipeline_endpoint = PipelineEndpoint.publish(
        workspace=ws,
        name=endpoint_name,
        pipeline=published_pipeline,
        description="New Training Pipeline Endpoint")
示例#16
0
def main():
    # Environment variables
    env = Env()

    # Azure ML workspace
    aml_workspace = Workspace.get(
        name=env.workspace_name,
        subscription_id=env.subscription_id,
        resource_group=env.resource_group,
    )
    logger.info(f"Azure ML workspace: {aml_workspace}")

    # Azure ML compute cluster
    aml_compute = get_compute(aml_workspace, env.compute_name)
    logger.info(f"Aazure ML compute cluster: {aml_compute}")

    # Azure ML environment
    environment = Environment(name=env.aml_env_name)
    conda_dep = CondaDependencies(
        conda_dependencies_file_path="./local_development/dev_dependencies.yml"
    )
    environment.docker.enabled = True
    environment.docker.base_image = env.acr_image
    environment.docker.base_image_registry.address = env.acr_address
    environment.docker.base_image_registry.username = env.acr_username
    environment.docker.base_image_registry.password = env.acr_password
    environment.python.conda_dependencies = conda_dep

    run_config = RunConfiguration()
    run_config.environment = environment

    # List of pipeline steps
    step_list = list()
    first_step = PythonScriptStep(name="first_step",
                                  compute_target=aml_compute,
                                  source_directory=env.sources_directory_train,
                                  script_name=env.first_step_script_path,
                                  outputs=[],
                                  arguments=[
                                      "--input_dataset_name",
                                      env.input_dataset_name,
                                      "--waves_dataset_name",
                                      env.waves_dataset_name
                                  ],
                                  runconfig=run_config)

    step_list.append(first_step)

    # Build pipeline
    pipeline = Pipeline(workspace=aml_workspace, steps=step_list)
    pipeline.validate()
    logger.info(f"Built pipeline {pipeline}")

    # Publish pipeline
    published_pipeline = pipeline.publish(
        env.pipeline_name,
        description=env.pipeline_name,
        version=datetime.utcnow().isoformat())
    try:
        pipeline_endpoint = PipelineEndpoint.get(
            workspace=aml_workspace, name=env.pipeline_endpoint_name)
        pipeline_endpoint.add_default(published_pipeline)
    except ErrorResponseException:
        pipeline_endpoint = PipelineEndpoint.publish(
            workspace=aml_workspace,
            name=env.pipeline_endpoint_name,
            pipeline=published_pipeline,
            description=env.pipeline_endpoint_name)