示例#1
0
 def submitPipelineRun(self, pipelineUrl, productName, deploymentName,
                       apiVersion, entryPoint, userInput,
                       predecessorOperationId, userId, subscriptionId):
     operationId = str('a' + uuid4().hex[1:])
     experimentName = subscriptionId
     exp = Experiment(self._workspace, experimentName)
     tags = {
         'userId': userId,
         'productName': productName,
         'deploymentName': deploymentName,
         'apiVersion': apiVersion,
         'operationName': entryPoint,
         'operationId': operationId,
         'subscriptionId': subscriptionId,
         'predecessorOperationId': predecessorOperationId
     }
     parameters = {
         'userId': userId,
         'userInput': userInput,
         'productName': productName,
         'deploymentName': deploymentName,
         'apiVersion': apiVersion,
         'operationName': entryPoint,
         'operationId': operationId,
         'subscriptionId': subscriptionId,
         'predecessorOperationId': predecessorOperationId
     }
     pipeline = PublishedPipeline.get(
         workspace=self._workspace,
         id=self.get_pipeline_id_from_url(pipelineUrl))
     exp.submit(pipeline, tags=tags, pipeline_parameters=parameters)
     return operationId
示例#2
0
def run_pipeline_endpoint(workspace: Workspace, pipeline_endpoint_id, experiment_name, config_str,
                          pipeline_version=None):
    pipeline_endpoint_by_name = PublishedPipeline.get(workspace=workspace, id=pipeline_endpoint_id)

    run_id = pipeline_endpoint_by_name.submit(
        workspace=workspace,
        experiment_name=experiment_name,
        pipeline_parameters={
            'config': config_str
        })
    print(run_id)
示例#3
0
def submit_pipeline(
        workspace=None,  # Auto populated args + object
        pipeline_id=None,
        experiment_name=None,
        pipeline_yaml=None,
        pipeline_params=None,
        datapath_params=None,
        output_file=None,
        # We enforce a logger
        logger=None):
    """
    Submit a pipeline run based on a published pipeline ID
    """

    if pipeline_id is None and pipeline_yaml is None:
        raise UserErrorException("Please specify a pipeline ID or a pipeline YAML file")

    published_pipeline = None
    pipeline = None

    if pipeline_id is not None:
        from azureml.pipeline.core import PublishedPipeline
        published_pipeline = PublishedPipeline.get(workspace, pipeline_id)
        if experiment_name is None or experiment_name == '':
            # Use the pipeline name as the experiment name
            experiment_name = published_pipeline._sanitize_name()

    else:
        from azureml.pipeline.core import Pipeline
        pipeline = Pipeline.load_yaml(workspace, pipeline_yaml)

    if experiment_name is None:
        raise UserErrorException("Please specify an experiment name")

    assigned_params = _parse_key_values(pipeline_params, 'Parameter assignment')

    datapaths = _parse_key_values(datapath_params, 'Datapath assignment')
    for datapath_param_name in datapaths:
        datastore_with_path = datapaths[datapath_param_name]
        if '/' not in datastore_with_path:
            raise UserErrorException("Datapath value %s should have format datastore/path" % datastore_with_path)
        path_tokens = datastore_with_path.split('/', 1)
        from azureml.core import Datastore
        from azureml.data.datapath import DataPath
        datastore = Datastore(workspace, path_tokens[0])
        assigned_params[datapath_param_name] = DataPath(datastore=datastore, path_on_datastore=path_tokens[1])

    dict_output = _pipeline_run_submit(experiment_name, assigned_params, published_pipeline, pipeline,
                                       workspace, output_file, logger)

    return dict_output
def get_pipeline(workspace,
                 env,
                 pipeline_id=None):
    if pipeline_id is not None:
        scoring_pipeline = PublishedPipeline.get(workspace,id=pipeline_id)
    else:
        pipeline_list = PublishedPipeline.list(workspace)
        scoring_pipeline = [pl for pl in pipeline_list if pl.name == env.scoring_pipeline_name]
        if len(scoring_pipeline) == 0:
            raise ValueError('no available pipeline to download!')
        else:
            scoring_pipeline = scoring_pipeline[0]
    
    return scoring_pipeline
示例#5
0
def get_pipeline(pipeline_id, ws: Workspace, env: Env):
    if pipeline_id is not None:
        scoringpipeline = PublishedPipeline.get(ws, pipeline_id)
    else:
        pipelines = PublishedPipeline.list(ws)
        scoringpipelinelist = [
            pl for pl in pipelines if pl.name == env.scoring_pipeline_name
        ]  # noqa E501

        if scoringpipelinelist.count == 0:
            raise Exception("No pipeline found matching name:{}".format(
                env.scoring_pipeline_name)  # NOQA: E501
                            )
        else:
            # latest published
            scoringpipeline = scoringpipelinelist[0]

    return scoringpipeline
print("Azure ML SDK version:", azureml.core.VERSION)

parser = argparse.ArgumentParser("publish_to_pipeline_endpoint")
parser.add_argument("--pipeline_id", type=str, help="Id of the published pipeline that should get added to the Pipeline Endpoint", required=True)
parser.add_argument("--pipeline_endpoint_name", type=str, help="Name of the Pipeline Endpoint that the the pipeline should be added to", required=True)
parser.add_argument("--pipeline_endpoint_description", type=str, help="Description for the Pipeline Endpoint", default="Pipeline Endpoint", required=False)
args = parser.parse_args()
print(f'Arguments: {args}')

print('Connecting to workspace')
ws = Workspace.from_config()
print(f'WS name: {ws.name}\nRegion: {ws.location}\nSubscription id: {ws.subscription_id}\nResource group: {ws.resource_group}')

endpoint_name = args.pipeline_endpoint_name
pipeline_description = args.pipeline_endpoint_description
pipeline_id = args.pipeline_id
published_pipeline = PublishedPipeline.get(workspace=ws, id=pipeline_id)

# Add tested published pipeline to pipeline endpoint
try:
    pl_endpoint = PipelineEndpoint.get(workspace=ws, name=endpoint_name)
    pl_endpoint.add_default(published_pipeline)
    print(f'Added pipeline {pipeline_id} to Pipeline Endpoint with name {endpoint_name}')
except Exception:
    print(f'Will create new Pipeline Endpoint with name {endpoint_name} with pipeline {pipeline_id}')
    pl_endpoint = PipelineEndpoint.publish(workspace=ws,
                                           name=endpoint_name,
                                           pipeline=published_pipeline,
                                           description=pipeline_description)
示例#7
0
cli_auth = AzureCliAuthentication()

##------------- Get Workspace

subscriptionId = "<your subscription id>"  # make this a parameter
resourceGroup = "<your resource group>"  # make this a parameter
workspaceName = "<your ml workspace name>"  # make this a parameter

ws = Workspace(subscriptionId, resourceGroup, workspaceName, auth=cli_auth)

##------------- Run Published pipeline using REST endpoint

aad_token = cli_auth.get_authentication_header()
published_pipeline_id = "ab0691a9-438f-416b-a146-5c7660d1be11"  # Replace this with the published pipeline id
published_pipeline = PublishedPipeline.get(ws, published_pipeline_id)
rest_endpoint = published_pipeline.endpoint
print("Rest endpoint: " + rest_endpoint)

response = requests.post(rest_endpoint,
                         headers=aad_token,
                         json={
                             "ExperimentName": "quality_prediction_gb",
                             "RunSource": "SDK",
                             "ParameterAssignments": {
                                 "modelName": "quality_gbm_model.pkl",
                                 "datasetName": "qualitydataset",
                                 "datasetStorePath": "/inputdata/train.csv"
                             }
                         })
print(response)
示例#8
0
def pipeline():
    return PublishedPipeline.get(workspace=ws, id=pipeline_id)