示例#1
0
    def cluster_comparison_optics(self, radius, neighbors, visualize=False):

        self.logger.info("Starting default optics Algorithm on All Points")
        comparison_clustering = ComparisonClustering(self.data_frame)
        comparison_clustering.cluster_optics(radius, neighbors)

        if visualize and self.data_frame.dimensions == 2:
            DataVisualization.visualize_plot_2d(
                self.data_frame.df,
                hue=comparison_clustering.clustering_name,
                palette=DataVisualization.create_categorical_palette(
                    comparison_clustering.cluster_count))
示例#2
0
    def cluster_comparison_clique(self, intervals, threshold, visualize=False):

        self.logger.info("Starting default clique Algorithm on All Points")
        comparison_clustering = ComparisonClustering(self.data_frame)
        comparison_clustering.cluster_clique(intervals, threshold)

        if visualize and self.data_frame.dimensions == 2:
            DataVisualization.visualize_plot_2d(
                self.data_frame.df,
                hue=comparison_clustering.clustering_name,
                palette=DataVisualization.create_categorical_palette(
                    comparison_clustering.cluster_count))
示例#3
0
    def cluster_comparison_mean_shift(self, bandwidth=None, visualize=False):

        self.logger.info("Starting default mean shift Algorithm on All Points")
        comparison_clustering = ComparisonClustering(self.data_frame)
        comparison_clustering.cluster_mean_shift(bandwidth)

        if visualize and self.data_frame.dimensions == 2:
            DataVisualization.visualize_plot_2d(
                self.data_frame.df,
                hue=comparison_clustering.clustering_name,
                palette=DataVisualization.create_categorical_palette(
                    comparison_clustering.cluster_count))
示例#4
0
    def cluster_comparison_DBSCAN(self, eps, min_samples, visualize=False):

        self.logger.info("Starting default DBSCAN Algorithm on All Points")
        comparison_clustering = ComparisonClustering(self.data_frame)
        comparison_clustering.cluster_DBSCAN(eps, min_samples)

        if visualize and self.data_frame.dimensions == 2:
            DataVisualization.visualize_plot_2d(
                self.data_frame.df,
                hue=comparison_clustering.clustering_name,
                palette=DataVisualization.create_categorical_palette(
                    comparison_clustering.cluster_count))
示例#5
0
    def cluster_comparison_k_means(self, k, visualize=False):

        self.logger.info('Starting default k-Means Algorithm on All Points')
        comparison_clustering = ComparisonClustering(self.data_frame)
        comparison_clustering.cluster_k_means(k)

        if visualize and self.data_frame.dimensions == 2:
            DataVisualization.visualize_plot_2d(
                self.data_frame.df,
                hue=comparison_clustering.clustering_name,
                palette=DataVisualization.create_categorical_palette(
                    comparison_clustering.cluster_count))
示例#6
0
    def cluster_comparison_hierarchical_single_link(self,
                                                    cluster_count,
                                                    visualize=False):

        self.logger.info(
            "Starting default hierarchical single link Algorithm on All Points"
        )
        comparison_clustering = ComparisonClustering(self.data_frame)
        comparison_clustering.cluster_hierarchical(cluster_count)

        if visualize and self.data_frame.dimensions == 2:
            DataVisualization.visualize_plot_2d(
                self.data_frame.df,
                hue=comparison_clustering.clustering_name,
                palette=DataVisualization.create_categorical_palette(
                    comparison_clustering.cluster_count))