def cluster_comparison_optics(self, radius, neighbors, visualize=False): self.logger.info("Starting default optics Algorithm on All Points") comparison_clustering = ComparisonClustering(self.data_frame) comparison_clustering.cluster_optics(radius, neighbors) if visualize and self.data_frame.dimensions == 2: DataVisualization.visualize_plot_2d( self.data_frame.df, hue=comparison_clustering.clustering_name, palette=DataVisualization.create_categorical_palette( comparison_clustering.cluster_count))
def cluster_comparison_clique(self, intervals, threshold, visualize=False): self.logger.info("Starting default clique Algorithm on All Points") comparison_clustering = ComparisonClustering(self.data_frame) comparison_clustering.cluster_clique(intervals, threshold) if visualize and self.data_frame.dimensions == 2: DataVisualization.visualize_plot_2d( self.data_frame.df, hue=comparison_clustering.clustering_name, palette=DataVisualization.create_categorical_palette( comparison_clustering.cluster_count))
def cluster_comparison_mean_shift(self, bandwidth=None, visualize=False): self.logger.info("Starting default mean shift Algorithm on All Points") comparison_clustering = ComparisonClustering(self.data_frame) comparison_clustering.cluster_mean_shift(bandwidth) if visualize and self.data_frame.dimensions == 2: DataVisualization.visualize_plot_2d( self.data_frame.df, hue=comparison_clustering.clustering_name, palette=DataVisualization.create_categorical_palette( comparison_clustering.cluster_count))
def cluster_comparison_DBSCAN(self, eps, min_samples, visualize=False): self.logger.info("Starting default DBSCAN Algorithm on All Points") comparison_clustering = ComparisonClustering(self.data_frame) comparison_clustering.cluster_DBSCAN(eps, min_samples) if visualize and self.data_frame.dimensions == 2: DataVisualization.visualize_plot_2d( self.data_frame.df, hue=comparison_clustering.clustering_name, palette=DataVisualization.create_categorical_palette( comparison_clustering.cluster_count))
def cluster_comparison_k_means(self, k, visualize=False): self.logger.info('Starting default k-Means Algorithm on All Points') comparison_clustering = ComparisonClustering(self.data_frame) comparison_clustering.cluster_k_means(k) if visualize and self.data_frame.dimensions == 2: DataVisualization.visualize_plot_2d( self.data_frame.df, hue=comparison_clustering.clustering_name, palette=DataVisualization.create_categorical_palette( comparison_clustering.cluster_count))
def cluster_comparison_hierarchical_single_link(self, cluster_count, visualize=False): self.logger.info( "Starting default hierarchical single link Algorithm on All Points" ) comparison_clustering = ComparisonClustering(self.data_frame) comparison_clustering.cluster_hierarchical(cluster_count) if visualize and self.data_frame.dimensions == 2: DataVisualization.visualize_plot_2d( self.data_frame.df, hue=comparison_clustering.clustering_name, palette=DataVisualization.create_categorical_palette( comparison_clustering.cluster_count))