示例#1
0
 dict_annualized_volatility = {'m': moneyness}
 dict_max_drawdown = {'m': moneyness}
 dict_sharpe_ratio = {'m': moneyness}
 dict_pct_option_amt = {'m': moneyness}
 # for target_delta in [-0.1,-0.2,-0.3,-0.4]:
 for target_delta in [None]:
     option_amt = []
     optionset = BaseOptionSet(df_metrics)
     optionset.init()
     underlying = BaseInstrument(df_underlying)
     underlying.init()
     account = BaseAccount(init_fund=10000000, leverage=1.0, rf=0.03)
     """ init open position """
     unit_underlying = np.floor(pct_underlying_invest * account.cash /
                                underlying.mktprice_close() /
                                underlying.multiplier())
     order_underlying = account.create_trade_order(underlying,
                                                   c.LongShort.LONG,
                                                   unit_underlying)
     record_underlying = underlying.execute_order(order_underlying,
                                                  slippage=slippage)
     account.add_record(record_underlying, underlying)
     maturity1 = optionset.select_maturity_date(nbr_maturity=nbr_maturity,
                                                min_holding=min_holding)
     list_atm_call, list_atm_put = optionset.get_options_list_by_moneyness_mthd1(
         moneyness, maturity1)
     if list_atm_put is None:
         # list_atm_call, list_atm_put = optionset.get_options_list_by_moneyness_mthd1(0, maturity1)
         print('choose min strike')
         list_atm_put = optionset.get_deepest_otm_put_list(maturity1)
     atm_put = optionset.select_higher_volume(list_atm_put)
示例#2
0
class ParityArbitrage(object):
    def __init__(self,name_code, df_option, df_etf=None, df_future_all=None,df_index=None):
        self.name_code = name_code
        self.df_option = df_option
        self.df_etf = df_etf
        self.df_future_all = df_future_all
        self.df_index = df_index
        self.rf = 0.03
        self.m = 0.9
        self.account = BaseAccount(c.Util.BILLION / 10,rf=self.rf)
        self.unit = 50
        self.min_holding = 6 # 50ETF与IH到期日相差5天
        self.nbr_maturity = 0
        self.rank = 3
        self.slippage = 0
        self.aggregate_costs = 0.5/100.0
        self.cd_price = c.CdTradePrice.CLOSE
        self.df_arbitrage_window = pd.DataFrame()

    def init(self):
        self.underlying = None
        self.futureset = None
        self.baseindex = None
        self.optionset = BaseOptionSet(self.df_option)
        self.optionset.init()
        if self.name_code == c.Util.STR_50ETF:
            if self.df_etf is not None:
                self.underlying = BaseInstrument(self.df_etf) # 50ETF
                self.underlying.init()
            if self.df_future_all is not None:
                self.futureset = BaseFutureSet(self.df_future_all) # IH
                self.futureset.init()
                self.future_unit_ratio = 1/1000.0
            if self.df_index is not None:
                self.baseindex = BaseInstrument(self.df_index) # SH50
                self.baseindex.init()
        else: # 商品期权
            if self.df_future_all is not None:
                self.futureset = BaseFutureSet(self.df_future_all) # IH
                self.futureset.init()
                self.future_unit_ratio = 1.0
            # self.optionset = BaseOptionSet(self.df_option)
            # self.optionset.init()

    def update_sythetics(self):
        if self.name_code == c.Util.STR_50ETF:
            dt_maturity = self.optionset.select_maturity_date(nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
            contract_month = self.optionset.get_dict_options_by_maturities()[dt_maturity][0].contract_month()

            self.t_quote = self.optionset.get_T_quotes(dt_maturity, self.cd_price)
            self.t_quote.loc[:, 'diff'] = abs(
                self.t_quote.loc[:, c.Util.AMT_APPLICABLE_STRIKE] - self.t_quote.loc[:, c.Util.AMT_UNDERLYING_CLOSE])
            self.t_quote.loc[:, 'rank'] = self.t_quote.index - self.t_quote['diff'].idxmin()
            discount = c.PricingUtil.get_discount(self.optionset.eval_date, dt_maturity, self.rf)
            self.t_quote.loc[:, 'sythetic_underlying'] = self.t_quote.loc[:, c.Util.AMT_CALL_QUOTE] \
                                                    - self.t_quote.loc[:,c.Util.AMT_PUT_QUOTE] \
                                                    + self.t_quote.loc[:,c.Util.AMT_APPLICABLE_STRIKE] * discount
            df_window = self.t_quote[(self.t_quote['rank']<=self.rank)&(self.t_quote['rank']>=-self.rank)] # 只考虑rank以内期权
            self.row_max_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmax()]
            self.row_min_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmin()]
            self.df_arbitrage_window.loc[self.optionset.eval_date,'50etf'] = self.underlying.mktprice_close()
            self.df_arbitrage_window.loc[self.optionset.eval_date,'sythetic_underlying_max'] = self.row_max_sythetic['sythetic_underlying']
            self.df_arbitrage_window.loc[self.optionset.eval_date,'sythetic_underlying_min'] = self.row_min_sythetic['sythetic_underlying']
            if self.futureset is not None:
                future = self.futureset.select_future_by_contract_month(contract_month)
                self.row_max_sythetic['future'] = future
                if future is None:
                    return
                self.basis_to_etf = future.mktprice_close() - self.underlying.mktprice_close()/self.future_unit_ratio
                self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_etf'] = self.basis_to_etf
                self.df_arbitrage_window.loc[self.optionset.eval_date, 'ih'] = future.mktprice_close()
                if self.baseindex is not None:
                    self.basis_to_index = future.mktprice_close() - self.baseindex.mktprice_close()
                    self.tracking_error = self.underlying.mktprice_close()/self.future_unit_ratio - self.baseindex.mktprice_close()
                    self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_index'] = self.basis_to_index
                    self.df_arbitrage_window.loc[self.optionset.eval_date, 'tracking_error'] = self.tracking_error
                    self.df_arbitrage_window.loc[self.optionset.eval_date, 'index_50'] = self.baseindex.mktprice_close()
        else:
            dt_maturity = self.optionset.select_maturity_date(nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
            contract_month = self.optionset.get_dict_options_by_maturities()[dt_maturity][0].contract_month()
            self.t_quote = self.optionset.get_T_quotes(dt_maturity, self.cd_price)
            self.t_quote.loc[:, 'diff'] = abs(
                self.t_quote.loc[:, c.Util.AMT_APPLICABLE_STRIKE] - self.t_quote.loc[:, c.Util.AMT_UNDERLYING_CLOSE])
            self.t_quote.loc[:, 'rank'] = self.t_quote.index - self.t_quote['diff'].idxmin()
            discount = c.PricingUtil.get_discount(self.optionset.eval_date, dt_maturity, self.rf)
            self.t_quote.loc[:, 'sythetic_underlying'] = self.t_quote.loc[:, c.Util.AMT_CALL_QUOTE] \
                                                    - self.t_quote.loc[:,c.Util.AMT_PUT_QUOTE] \
                                                    + self.t_quote.loc[:,c.Util.AMT_APPLICABLE_STRIKE] * discount
            df_window = self.t_quote[(self.t_quote['rank']<=self.rank)&(self.t_quote['rank']>=-self.rank)] # 只考虑rank以内期权
            self.row_max_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmax()]
            self.row_min_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmin()]
            future = self.futureset.select_future_by_contract_month(contract_month)
            self.underlying = future
            self.df_arbitrage_window.loc[self.optionset.eval_date, 'underlying'] = self.underlying.mktprice_close()
            self.df_arbitrage_window.loc[self.optionset.eval_date, 'sythetic_underlying_max'] = self.row_max_sythetic[
                'sythetic_underlying']
            self.df_arbitrage_window.loc[self.optionset.eval_date, 'sythetic_underlying_min'] = self.row_min_sythetic[
                'sythetic_underlying']


    def open_signal(self,cd_strategy):
        if cd_strategy == 'box':
            if (self.row_max_sythetic['sythetic_underlying'] - self.row_min_sythetic['sythetic_underlying'])/self.underlying.mktprice_close() > self.aggregate_costs:
                df = pd.DataFrame(columns=['dt_date','id_instrument','base_instrument','long_short'])
                df = self.short_sythetic(df)
                df = self.long_sythetic(df)
                return df
            else:
                return None
        elif cd_strategy == 'conversion': # Converion : Short Sythetic, Long ETF
            if (self.row_max_sythetic['sythetic_underlying'] - self.underlying.mktprice_close())/self.underlying.mktprice_close() > self.aggregate_costs:
                df = pd.DataFrame(columns=['dt_date','id_instrument','base_instrument','long_short'])
                df = self.short_sythetic(df)
                df = self.long_etf(df)
                return df
            else:
                return None
        elif cd_strategy == 'conversion_ih': # Converion : Short Sythetic, Long IH # 主要布局IH负基差套利
            if self.optionset.eval_date.month ==5: return None #5月由于股票集中现金分红不做空Synthetic
            future = self.row_max_sythetic['future']
            if future is None: return None
            self.future = future
            if (self.row_max_sythetic['sythetic_underlying']/self.future_unit_ratio - future.mktprice_close()-
                    self.df_arbitrage_window.loc[self.optionset.eval_date,'tracking_error'])/future.mktprice_close() > self.aggregate_costs:
                df = pd.DataFrame(columns=['dt_date', 'id_instrument', 'base_instrument', 'long_short'])
                df = self.short_sythetic(df)
                df = self.long_ih(df,future)
                return df
            else:
                return None
        elif cd_strategy == 'ih_basis_arbitrage':
            future = self.row_max_sythetic['future']
            if future is None: return None
            self.future = future
            if self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_index'] < -self.aggregate_costs:  # 期货贴水
                df = pd.DataFrame(columns=['dt_date', 'id_instrument', 'base_instrument', 'long_short'])
                df = self.short_sythetic(df)
                df = self.long_ih(df,future)
                return df
            else:
                return None
        elif cd_strategy == 'may_effect': # Reverse: Long Sythetic, Short IH # 5-9月分红期
            if self.optionset.eval_date.month ==5: #5月由于股票集中现金分红不做空Synthetic
                df = pd.DataFrame(columns=['dt_date', 'id_instrument', 'base_instrument', 'long_short'])
                df = self.long_sythetic(df)
                df = self.short_ih(df)
                return df
            else:
                return None

    def close_signal(self,cd_strategy,df_position):
        if cd_strategy == 'box':
            if self.reverse_call.maturitydt() == self.optionset.eval_date or self.conversion_call.maturitydt() == self.optionset.eval_date :
                return True
            discount_r = c.PricingUtil.get_discount(self.optionset.eval_date, self.reverse_put.maturitydt(), self.rf)
            discount_c = c.PricingUtil.get_discount(self.optionset.eval_date, self.conversion_put.maturitydt(), self.rf)
            reverse_sythetic = self.reverse_call.mktprice_close()-self.reverse_put.mktprice_close()+self.reverse_put.applicable_strike()*discount_r # Longed
            conversion_sythetic = self.conversion_call.mktprice_close()-self.conversion_put.mktprice_close()+self.conversion_put.applicable_strike()*discount_c # shorted
            if conversion_sythetic <= reverse_sythetic:
                return True
            else:
                return False
        elif cd_strategy == 'conversion': # Short Sythetic, Long Underlying # 主要布局IH负基差套利
            if self.conversion_call.maturitydt() == self.optionset.eval_date:
                return True
            discount_c = c.PricingUtil.get_discount(self.optionset.eval_date, self.conversion_put.maturitydt(), self.rf)
            conversion_sythetic = self.conversion_call.mktprice_close() - self.conversion_put.mktprice_close() + self.conversion_put.applicable_strike() * discount_c  # shorted
            if conversion_sythetic/self.future_unit_ratio <= self.underlying.mktprice_close():
                return True
            else:
                return False
        elif cd_strategy == 'conversion_ih': # Short Sythetic, Long IH # 主要布局IH负基差套利
            if self.conversion_call.maturitydt() == self.optionset.eval_date or self.future.maturitydt() == self.optionset.eval_date:
                return True
            discount_c = c.PricingUtil.get_discount(self.optionset.eval_date, self.conversion_put.maturitydt(), self.rf)
            conversion_sythetic = self.conversion_call.mktprice_close() - self.conversion_put.mktprice_close() + self.conversion_put.applicable_strike() * discount_c  # shorted
            if conversion_sythetic/self.future_unit_ratio <= self.future.mktprice_close():
                return True
            else:
                return False
        elif cd_strategy == 'ih_basis_arbitrage':
            if self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_index'] >= 0:
                return True
            else:
                return False
        elif cd_strategy == 'may_effect': # Reverse: Long Sythetic, Short IH # 5-9月分红期
            if self.optionset.eval_date.month !=5: #5月由于股票集中现金分红不做空Synthetic
                return True
            else:
                return False

    def open_excute(self,open_signal):
        if open_signal is None:
            return False
        else:
            fund_per_unit = open_signal['fund_requirement'].sum()
            unit = np.floor(self.account.cash*self.m/fund_per_unit)
            for (idx,row) in open_signal.iterrows():
                option = row['base_instrument']
                order = self.account.create_trade_order(option, row['long_short'], unit*row['unit_ratio'],
                                                        cd_trade_price=self.cd_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)
            print(self.optionset.eval_date, ' open position')
            return True


    def close_excute(self):
        self.close_out()
        print(self.optionset.eval_date, ' close position')
        return True
        # else:
        #     for (idx,row) in close_signal.iterrows():
        #         option = row['base_instrument']
        #         order = self.account.create_trade_order(option, row['long_short'], row['unit'],
        #                                                 cd_trade_price=self.cd_price)
        #         record = option.execute_order(order, slippage=self.slippage)
        #         self.account.add_record(record, option)
        #     return True

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(execution_record, self.account.dict_holding[order.id_instrument])


    def short_sythetic(self,df):
        # Short Sythetic
        self.conversion_call = self.optionset.get_baseoption_by_id(self.row_max_sythetic[c.Util.ID_CALL])
        fund_requirement = self.conversion_call.get_fund_required(c.LongShort.SHORT)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'C_call',
                        'id_instrument': self.row_max_sythetic[c.Util.ID_CALL],
                        'base_instrument': self.conversion_call,
                        'long_short': c.LongShort.SHORT,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': self.conversion_call.mktprice_close() * self.conversion_call.multiplier(),
                        'unit_ratio' : 1},
                       ignore_index=True)
        self.conversion_put = self.optionset.get_baseoption_by_id(self.row_max_sythetic[c.Util.ID_PUT])
        fund_requirement = self.conversion_put.get_fund_required(c.LongShort.LONG)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'C_put',
                        'id_instrument': self.row_max_sythetic[c.Util.ID_PUT],
                        'base_instrument': self.conversion_put,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.conversion_put.mktprice_close() * self.conversion_put.multiplier(),
                        'unit_ratio' : 1},
                       ignore_index=True)
        return df

    def long_sythetic(self,df):
        # Reverse : Long Sythetic
        self.reverse_call = self.optionset.get_baseoption_by_id(self.row_min_sythetic[c.Util.ID_CALL])
        fund_requirement = self.reverse_call.get_fund_required(c.LongShort.LONG)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'R_call',
                        'id_instrument': self.row_min_sythetic[c.Util.ID_CALL],
                        'base_instrument': self.reverse_call,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.reverse_call.mktprice_close() * self.reverse_call.multiplier()},
                       ignore_index=True)
        self.reverse_put = self.optionset.get_baseoption_by_id(self.row_min_sythetic[c.Util.ID_PUT])
        fund_requirement = self.reverse_put.get_fund_required(c.LongShort.SHORT)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'R_put',
                        'id_instrument': self.row_min_sythetic[c.Util.ID_PUT],
                        'base_instrument': self.reverse_put,
                        'long_short': c.LongShort.SHORT,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': self.reverse_put.mktprice_close() * self.reverse_put.multiplier()},
                       ignore_index=True)
        return df

    def long_etf(self,df):
        unit_ratio = self.conversion_put.multiplier()
        fund_requirement = self.conversion_put.multiplier() * self.underlying.mktprice_close()
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'underlying',
                        'id_instrument': self.underlying.id_instrument(),
                        'base_instrument': self.underlying,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.underlying.mktprice_close() * self.underlying.multiplier()*unit_ratio,
                        'unit_ratio' : unit_ratio},
                       ignore_index=True)
        return df

    def long_ih(self,df,future):
        unit_ratio = self.conversion_put.multiplier()/future.multiplier()/1000.0
        fund_requirement = future.mktprice_close()*future.multiplier()*unit_ratio
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'underlying',
                        'id_instrument': future.id_instrument(),
                        'base_instrument': future,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -future.mktprice_close() * future.multiplier()*unit_ratio,
                        'unit_ratio' : unit_ratio},
                       ignore_index=True)
        return df

    def short_ih(self,df):
        unit_ratio = self.reverse_put.multiplier()/self.future.multiplier()/1000.0
        fund_requirement = self.future.mktprice_close()*self.future.multiplier()*unit_ratio
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'underlying',
                        'id_instrument': self.future.id_instrument(),
                        'base_instrument': self.future,
                        'long_short': c.LongShort.SHORT,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.future.mktprice_close() * self.future.multiplier()*unit_ratio,
                        'unit_ratio' : unit_ratio},
                       ignore_index=True)
        return df


    def back_test(self, cd_strategy):
        # TODO: DIVIDEND
        empty_position = True
        df_position = None
        while self.optionset.has_next():
            # if self.optionset.eval_date == datetime.date(2015,5,18):
            #     print('')
            self.update_sythetics()
            if empty_position:
                df_position = self.open_signal(cd_strategy)
                empty_position = not self.open_excute(df_position)
            elif self.close_signal(cd_strategy,df_position):
                empty_position = self.close_excute()
            # if isinstance(self.underlying,BaseFutureCoutinuous):
            #     self.underlying.shift_contract_month(self.account,self.slippage)
            self.account.daily_accounting(self.optionset.eval_date)
            self.optionset.next()
            self.underlying.next()
            if self.futureset is not None: self.futureset.next()
            if self.baseindex is not None: self.baseindex.next()
            # print(self.optionset.eval_date)
        return self.account

    def back_test_comdty(self, cd_strategy):
        empty_position = True
        df_position = None
        while self.optionset.has_next():
            # if self.optionset.eval_date == datetime.date(2015,5,18):
            #     print('')
            self.update_sythetics()
            if empty_position:
                df_position = self.open_signal(cd_strategy)
                empty_position = not self.open_excute(df_position)
            elif self.close_signal(cd_strategy,df_position):
                empty_position = self.close_excute()
            # if isinstance(self.underlying,BaseFutureCoutinuous):
            #     self.underlying.shift_contract_month(self.account,self.slippage)
            self.account.daily_accounting(self.optionset.eval_date)
            self.optionset.next()
            self.futureset.next()
            # if self.baseindex is not None: self.baseindex.next()
            # print(self.optionset.eval_date)
        return self.account
示例#3
0
index = BaseInstrument(df_index)
index.init()
stock = BaseInstrument(df_stocks)
stock.init()
account = BaseAccount(init_fund=c.Util.BILLION, leverage=1.0, rf=0.0)
maturity = optionset.select_maturity_date(nbr_maturity=nbr_maturity, min_holding=min_holding)

# 标的指数开仓
# unit_index =  np.floor(m*account.cash/index.mktprice_close()/index.multiplier())
# init_mktvalue = unit_index*index.mktprice_close()*index.multiplier()
# order_index = account.create_trade_order(index, c.LongShort.LONG, unit_index, cd_trade_price=c.CdTradePrice.CLOSE)
# record_index = index.execute_order(order_index, slippage=slippage)
# account.add_record(record_index, index)
# 标的换成股票指数
init_mktvalue = m*account.cash
unit_stock = np.floor(init_mktvalue/stock.mktprice_close()/stock.multiplier())
order_underlying = account.create_trade_order(stock, c.LongShort.LONG, unit_stock , cd_trade_price=c.CdTradePrice.CLOSE)
record_underlying = stock.execute_order(order_underlying, slippage=slippage)
account.add_record(record_underlying, stock)
init_stock = stock.mktprice_close()
empty_position = True
put = None
while optionset.has_next():
    if maturity > end_date:  # Final close out all.
        close_out_orders = account.creat_close_out_order()
        for order in close_out_orders:
            execution_record = account.dict_holding[order.id_instrument].execute_order(order, slippage=0,
                                                                                       execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            account.add_record(execution_record, account.dict_holding[order.id_instrument])

        account.daily_accounting(optionset.eval_date)
示例#4
0
class HoldFutureContinuous(object):
    def __init__(self, df_c1, df_all, df_baseindex):
        self.slippage = 0
        self.cd_trade_price = c.CdTradePrice.VOLUME_WEIGHTED
        dt_start = max(df_baseindex[c.Util.DT_DATE].values[0],
                       df_c1[c.Util.DT_DATE].values[0])
        self.end_date = min(df_baseindex[c.Util.DT_DATE].values[-1],
                            df_c1[c.Util.DT_DATE].values[-1])
        df_baseindex = df_baseindex[
            df_baseindex[c.Util.DT_DATE] >= dt_start].reset_index(drop=True)
        df_c1 = df_c1[df_c1[c.Util.DT_DATE] >= dt_start].reset_index(drop=True)
        df_all = df_all[df_all[c.Util.DT_DATE] >= dt_start].reset_index(
            drop=True)
        self.invst_portfolio = BaseFutureCoutinuous(
            df_c1,
            df_futures_all_daily=df_all)  # e.g., top 50 low volatility index
        self.invst_portfolio.init()
        self.index = BaseInstrument(df_baseindex)
        self.index.init()
        self.account = BaseAccount(init_fund=c.Util.BILLION,
                                   leverage=1.0,
                                   rf=0.03)

    def close_all_options(self):
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption):
                order = self.account.create_close_order(
                    option, cd_trade_price=self.cd_trade_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)
        self.dict_strategy = {}

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(
            cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(
                execution_record,
                self.account.dict_holding[order.id_instrument])

    def back_test(self):
        self.unit_index = np.floor(self.account.cash /
                                   self.index.mktprice_close() /
                                   self.index.multiplier())

        unit_portfolio = np.floor(self.account.cash /
                                  self.invst_portfolio.mktprice_close() /
                                  self.invst_portfolio.multiplier())
        order_index = self.account.create_trade_order(
            self.invst_portfolio,
            c.LongShort.LONG,
            unit_portfolio,
            cd_trade_price=c.CdTradePrice.CLOSE)
        record_index = self.invst_portfolio.execute_order(
            order_index, slippage=self.slippage)
        self.account.add_record(record_index, self.invst_portfolio)
        init_index = self.index.mktprice_close()
        index_npv = []
        while self.invst_portfolio.eval_date <= self.end_date:
            if self.invst_portfolio.eval_date >= self.end_date:  # Final close out all.
                close_out_orders = self.account.creat_close_out_order()
                for order in close_out_orders:
                    execution_record = self.account.dict_holding[order.id_instrument] \
                        .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
                    self.account.add_record(
                        execution_record,
                        self.account.dict_holding[order.id_instrument])
                self.account.daily_accounting(self.invst_portfolio.eval_date)
                index_npv.append(self.index.mktprice_close() / init_index)
                print(self.invst_portfolio.eval_date, ' close out ')
                break

            #移仓换月
            self.invst_portfolio.shift_contract_month(self.account,
                                                      self.slippage)

            self.account.daily_accounting(self.invst_portfolio.eval_date)
            index_npv.append(self.index.mktprice_close() / init_index)
            if not self.invst_portfolio.has_next(): break
            self.invst_portfolio.next()
            self.index.next()
        self.account.account['baseindex_npv'] = index_npv
        return self.account
示例#5
0
        c.Util.DT_DATE, c.Util.ID_INSTRUMENT, c.Util.AMT_CLOSE, 'close_alpha'
    ]].rename(columns={c.Util.AMT_CLOSE: 'etf_close'})
    df_underlying_with_alpha = df_underlying_with_alpha.rename(
        columns={'close_alpha': c.Util.AMT_CLOSE})
    # df_underlying_with_alpha.to_csv('../accounts_data/df_underlying_with_alpha='+str(alpha)+'.csv')
    """ Init Portfolio and Account """
    init_fund = 10000000
    optionset = BaseOptionSet(df_metrics_1)
    optionset.init()
    underlying = BaseInstrument(df_underlying_with_alpha)
    underlying.init()
    account = BaseAccount(init_fund, leverage=1.0, rf=0.03)
    """ 初始开仓 """
    unit_underlying = np.floor(pct_underlying_invest * account.cash /
                               underlying.mktprice_close() /
                               underlying.multiplier())
    order_underlying = account.create_trade_order(underlying, c.LongShort.LONG,
                                                  unit_underlying)
    record_underlying = underlying.execute_order(order_underlying,
                                                 slippage=slippage)
    account.add_record(record_underlying, underlying)
    maturity1 = optionset.select_maturity_date(nbr_maturity=nbr_maturity,
                                               min_holding=min_holding)
    equal_50etf_unit = unit_underlying * underlying.mktprice_close(
    ) / optionset.eligible_options[0].underlying_close()
    atm_put, premium = buy_put(moneyness, maturity1)

    # SH300指数

    total_premium = premium
    while optionset.has_next():
示例#6
0
class HedgeIndexByOptions(object):
    def __init__(self,
                 df_baseindex,
                 df_option_metrics,
                 df_c1=None,
                 df_all=None,
                 cd_direction_timing='ma',
                 cd_strategy='bull_spread',
                 cd_volatility='close_std',
                 cd_short_ma='ma_5',
                 cd_long_ma='ma_60',
                 cd_std='std_10'):
        self.min_holding = 20
        self.slippage = 0
        self.nbr_maturity = 0
        self.moneyness_rank = 0
        self.cd_trade_price = c.CdTradePrice.VOLUME_WEIGHTED
        # self.cd_trade_price = c.CdTradePrice.CLOSE
        if df_c1 is None:
            dt_start = max(df_option_metrics[c.Util.DT_DATE].values[0],
                           df_baseindex[c.Util.DT_DATE].values[0])
            self.end_date = min(df_option_metrics[c.Util.DT_DATE].values[-1],
                                df_baseindex[c.Util.DT_DATE].values[-1])
            df_metrics = df_option_metrics[
                df_option_metrics[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            df_baseindex = df_baseindex[
                df_baseindex[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            self.invst_portfolio = BaseInstrument(
                df_baseindex)  # e.g., top 50 low volatility index
            self.invst_portfolio.init()
        else:
            dt_start = max(df_option_metrics[c.Util.DT_DATE].values[0],
                           df_baseindex[c.Util.DT_DATE].values[0],
                           df_c1[c.Util.DT_DATE].values[0])
            self.end_date = min(df_option_metrics[c.Util.DT_DATE].values[-1],
                                df_baseindex[c.Util.DT_DATE].values[-1],
                                df_c1[c.Util.DT_DATE].values[-1])
            df_metrics = df_option_metrics[
                df_option_metrics[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            df_baseindex = df_baseindex[
                df_baseindex[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            df_c1 = df_c1[df_c1[c.Util.DT_DATE] >= dt_start].reset_index(
                drop=True)
            df_all = df_all[df_all[c.Util.DT_DATE] >= dt_start].reset_index(
                drop=True)
            self.invst_portfolio = BaseFutureCoutinuous(
                df_c1, df_futures_all_daily=df_all
            )  # e.g., top 50 low volatility index
            self.invst_portfolio.init()
        self.optionset = BaseOptionSet(df_metrics)
        self.index = BaseInstrument(df_baseindex)
        self.optionset.init()
        self.index.init()
        self.account = BaseAccount(init_fund=c.Util.BILLION,
                                   leverage=1.0,
                                   rf=0.03)
        self.prepare_timing(df_baseindex)
        self.cd_direction_timing = cd_direction_timing
        self.cd_strategy = cd_strategy
        self.cd_volatility = cd_volatility
        self.cd_short_ma = cd_short_ma
        self.cd_long_ma = cd_long_ma
        self.cd_std = cd_std
        self.dict_strategy = {}
        self.nbr_timing = 0
        self.nbr_stop_loss = 0
        self.nvp_adjustment = 0
        self.sl_npv_high_point = 1.0
        self.strategy_pause = False

    def prepare_timing(self, df_index):
        df_index['ma_3'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=3).shift()
        df_index['ma_5'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=5).shift()
        df_index['ma_10'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=10).shift()
        df_index['ma_15'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=15).shift()
        df_index['ma_20'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=20).shift()
        df_index['ma_30'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=30).shift()
        df_index['ma_40'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=40).shift()
        df_index['ma_50'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=50).shift()
        df_index['ma_60'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=60).shift()
        df_index['ma_120'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=120).shift()
        df_index['std_5'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=5).shift()
        df_index['std_10'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=10).shift()
        df_index['std_15'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=15).shift()
        df_index['std_20'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=20).shift()
        df_index['ma_3-20'] = df_index['ma_3'] - df_index['ma_20']
        self.df_timing = df_index.set_index(c.Util.DT_DATE)

    def open_signal(self):
        if self.cd_direction_timing == 'ma':
            return self.open_position_ma()

    def close_signal(self):
        if self.cd_direction_timing == 'ma':
            return self.close_position_ma()

    def stop_loss_beg(self, drawdown, P_mdd):
        if drawdown.loc[self.optionset.eval_date, c.Util.DRAWDOWN] <= P_mdd:
            return True

    def stop_loss_end(self, drawdown, P_mdd):
        if drawdown.loc[
                self.optionset.eval_date,
                c.Util.PORTFOLIO_NPV] >= self.account.account[
                    c.Util.PORTFOLIO_NPV].values[-1] + self.nvp_adjustment:
            self.nvp_adjustment = drawdown.loc[
                self.optionset.eval_date,
                c.Util.PORTFOLIO_NPV] - self.account.account[
                    c.Util.PORTFOLIO_NPV].values[-1]
            self.nbr_stop_loss += 1
            print(self.optionset.eval_date, ' stop loss end ')
            print(self.nvp_adjustment,
                  self.account.account[c.Util.PORTFOLIO_NPV].values[-1],
                  drawdown.loc[self.optionset.eval_date, c.Util.PORTFOLIO_NPV])
            return True

    def strategy(self, cd_price=c.CdPriceType.OPEN):
        if self.cd_strategy == 'bull_spread':
            if self.cd_volatility == 'close_std':
                dt_date = self.optionset.eval_date
                std_close = self.df_timing.loc[dt_date, self.cd_std]
                k_short = self.index.mktprice_open() - std_close
                put_long, put_short = self.bull_spread(k_short, cd_price)
                return {
                    c.LongShort.SHORT: put_short,
                    c.LongShort.LONG: put_long
                }

    def shift(self):
        if self.cd_strategy == 'bull_spread':
            return self.shift_bull_spread()

    def open_position_ma(self):
        dt_date = self.optionset.eval_date
        if dt_date not in self.df_timing.index:
            return False
        ma_5 = self.df_timing.loc[dt_date, self.cd_short_ma]
        ma_60 = self.df_timing.loc[dt_date, self.cd_long_ma]
        if ma_5 < ma_60:
            return True
        else:
            return False

    def close_position_ma(self):
        dt_date = self.optionset.eval_date
        dt_maturity = None
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption) and option is not None:
                dt_maturity = option.maturitydt()
                break
        if dt_maturity is not None and (dt_maturity - dt_date).days <= 5:
            return True
        ma_5 = self.df_timing.loc[dt_date, self.cd_short_ma]
        ma_60 = self.df_timing.loc[dt_date, self.cd_long_ma]
        if ma_5 >= ma_60:
            print(self.optionset.eval_date)
            self.nbr_timing += 1
            return True
        else:
            return False

    def bull_spread(self, k_short, cd_price=c.CdPriceType.OPEN):
        maturity = self.optionset.select_maturity_date(
            nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
        xx, list_put0 = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=self.moneyness_rank,
            maturity=maturity,
            cd_price=cd_price)
        put_long = self.optionset.select_higher_volume(list_put0)
        # if put_long is None:
        #     xxx, list_put0 = optionset.get_options_list_by_moneyness_mthd1(moneyness_rank=0,
        #                                                                   maturity=maturity,
        #                                                                   cd_price=c.CdPriceType.OPEN)
        #     put_long = optionset.select_higher_volume(list_put0)
        put_short = self.optionset.select_higher_volume(
            self.optionset.get_option_closest_strike(c.OptionType.PUT, k_short,
                                                     maturity))
        if put_short is not None:
            if put_short.strike() >= (k_short + put_long.strike()) / 2.0:
                put_short = None
            elif put_short.id_instrument() == put_long.id_instrument():
                xx, list_put1 = self.optionset.get_options_list_by_moneyness_mthd1(
                    moneyness_rank=-1, maturity=maturity, cd_price=cd_price)
                put_short = self.optionset.select_higher_volume(list_put1)
                # put_short = None
        return put_long, put_short

    def shift_bull_spread(self):
        option_short = self.dict_strategy[c.LongShort.SHORT]
        option_long = self.dict_strategy[c.LongShort.LONG]
        if option_short is None:
            return self.strategy()
        else:
            if self.index.mktprice_last_close() <= (option_long.strike() +
                                                    option_short.strike()) / 2:
                return self.strategy()
            else:
                return None

    def excute(self, dict_strategy, cd_trade_price=None):
        if cd_trade_price is None:
            cd_trade_price = self.cd_trade_price
        if dict_strategy is None: return
        for long_short in dict_strategy.keys():
            option = dict_strategy[long_short]
            if option is None:
                continue
            elif long_short in self.dict_strategy.keys() and self.dict_strategy[long_short] is not None \
                    and option.id_instrument() == self.dict_strategy[long_short].id_instrument():
                continue
            unit = self.unit_index / option.multiplier()
            order = self.account.create_trade_order(
                option, long_short, unit, cd_trade_price=cd_trade_price)
            record = option.execute_order(order, slippage=self.slippage)
            self.account.add_record(record, option)
        self.dict_strategy = dict_strategy

    def close_options(self):
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption):
                order = self.account.create_close_order(
                    option, cd_trade_price=self.cd_trade_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)
        self.dict_strategy = {}

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(
            cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(
                execution_record,
                self.account.dict_holding[order.id_instrument])

    def back_test(self):
        self.unit_index = np.floor(self.account.cash /
                                   self.index.mktprice_close() /
                                   self.index.multiplier())

        unit_portfolio = np.floor(self.account.cash /
                                  self.invst_portfolio.mktprice_close() /
                                  self.invst_portfolio.multiplier())
        order_index = self.account.create_trade_order(
            self.invst_portfolio,
            c.LongShort.LONG,
            unit_portfolio,
            cd_trade_price=c.CdTradePrice.CLOSE)
        record_index = self.invst_portfolio.execute_order(
            order_index, slippage=self.slippage)
        self.account.add_record(record_index, self.invst_portfolio)
        empty_position = True
        init_index = self.index.mktprice_close()
        init_portfolio = self.invst_portfolio.mktprice_close()

        base_npv = []
        index_npv = []
        while self.optionset.eval_date <= self.end_date:
            # if self.optionset.eval_date == datetime.date(2016,5,20):
            #     print('')
            # print(self.optionset.eval_date)
            if self.optionset.eval_date >= self.end_date:  # Final close out all.
                close_out_orders = self.account.creat_close_out_order()
                for order in close_out_orders:
                    execution_record = self.account.dict_holding[order.id_instrument] \
                        .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
                    self.account.add_record(
                        execution_record,
                        self.account.dict_holding[order.id_instrument])
                self.account.daily_accounting(self.optionset.eval_date)
                base_npv.append(self.invst_portfolio.mktprice_close() /
                                init_portfolio)
                index_npv.append(self.index.mktprice_close() / init_index)
                print(self.optionset.eval_date, ' close out ')
                break

            if not empty_position:
                if self.close_signal():
                    self.close_options()
                    empty_position = True
                else:
                    strategy = self.shift()
                    if strategy is not None:
                        self.close_options()
                        self.excute(strategy)

            if empty_position and self.open_signal():
                self.excute(self.strategy())
                empty_position = False

            #TODO:移仓换月
            if isinstance(self.invst_portfolio, BaseFutureCoutinuous):
                self.invst_portfolio.shift_contract_month(
                    self.account, self.slippage)

            self.account.daily_accounting(self.optionset.eval_date)
            self.account.account.loc[self.optionset.eval_date,
                                     'unit_index'] = self.unit_index
            self.account.account.loc[
                self.optionset.eval_date,
                'close_index'] = self.index.mktprice_close()
            # print(self.optionset.eval_date,estimated_npv1,estimated_npv2,estimated_npv3,self.account.account.loc[self.optionset.eval_date,c.Util.PORTFOLIO_NPV])
            base_npv.append(self.invst_portfolio.mktprice_close() /
                            init_portfolio)
            index_npv.append(self.index.mktprice_close() / init_index)
            # print(self.invst_portfolio.eval_date, self.account.account.loc[self.optionset.eval_date,c.Util.PORTFOLIO_NPV],
            #       self.invst_portfolio.mktprice_close() / init_index)
            if not self.optionset.has_next(): break
            self.optionset.next()
            self.index.next()
            self.invst_portfolio.next()
        self.account.account['base_npv'] = base_npv
        self.account.account['index_npv'] = index_npv
        # active_npv = self.df_index[self.df_index[c.Util.DT_DATE]<=self.optionset.eval_date].reset_index(drop=True)
        # self.account.account['active_npv'] = active_npv[c.Util.AMT_CLOSE]
        self.account.nbr_timing = self.nbr_timing
        # print(self.account.account.loc[self.invst_portfolio.eval_date,c.Util.PORTFOLIO_NPV])
        return self.account

    def back_test_with_stop_loss(self, drawdown, P_mdd):
        self.P_mdd = P_mdd
        self.unit_index = np.floor(self.account.cash /
                                   self.index.mktprice_close() /
                                   self.index.multiplier())

        order_index = self.account.create_trade_order(
            self.index,
            c.LongShort.LONG,
            self.unit_index,
            cd_trade_price=c.CdTradePrice.CLOSE)
        record_index = self.index.execute_order(order_index,
                                                slippage=self.slippage)
        self.account.add_record(record_index, self.index)
        empty_position = True
        init_index = self.index.mktprice_close()
        base_npv = []
        stop_loss_paused = False
        while self.optionset.eval_date <= self.end_date:
            # if self.optionset.eval_date == datetime.date(2016,5,20):
            #     print('')
            # print(self.optionset.eval_date)
            if self.optionset.eval_date >= self.end_date:  # Final close out all.
                close_out_orders = self.account.creat_close_out_order()
                for order in close_out_orders:
                    execution_record = self.account.dict_holding[order.id_instrument] \
                        .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
                    self.account.add_record(
                        execution_record,
                        self.account.dict_holding[order.id_instrument])
                self.account.daily_accounting(self.optionset.eval_date)
                base_npv.append(self.index.mktprice_close() / init_index)
                print(self.optionset.eval_date, ' close out ')
                break

            # Option Hedge
            if not stop_loss_paused:
                if not empty_position:
                    if self.close_signal():
                        self.close_all_options()
                        empty_position = True
                    else:
                        strategy = self.shift()
                        if strategy is not None:
                            self.close_all_options()
                            self.excute(strategy)

                if empty_position and self.open_signal():
                    self.excute(self.strategy())
                    empty_position = False

            estimated_npv = self.account.estimate_npv()
            self.sl_npv_high_point = max(self.sl_npv_high_point, estimated_npv)
            # if self.account.account.loc[self.optionset.eval_date, c.Util.DRAWDOWN]>= 0.0:
            #     self.P_mdd = P_mdd
            # 止损控制
            if (estimated_npv - self.sl_npv_high_point
                ) / self.sl_npv_high_point < self.P_mdd:
                self.close_out()
                self.sl_npv_high_point = estimated_npv
                self.strategy_npv_paused = drawdown.loc[
                    self.optionset.eval_date, c.Util.PORTFOLIO_NPV]
                print(self.optionset.eval_date, 'stop loss',
                      self.sl_npv_high_point, self.P_mdd)
                self.account.daily_accounting(self.optionset.eval_date, False)
                base_npv.append(self.index.mktprice_close() / init_index)
                if not self.optionset.has_next(): break
                self.optionset.next()
                self.index.next()
                stop_loss_paused = True
                empty_position = True
                # self.P_mdd = -0.02
                continue

            if stop_loss_paused:
                strategy_npv = drawdown.loc[self.optionset.eval_date,
                                            c.Util.PORTFOLIO_NPV]
                # 止损后空仓
                # if strategy_npv <= self.strategy_npv_paused:
                if (strategy_npv - self.strategy_npv_paused
                    ) / self.strategy_npv_paused < 0.01:
                    self.account.daily_accounting(self.optionset.eval_date)
                    base_npv.append(self.index.mktprice_close() / init_index)
                    if not self.optionset.has_next(): break
                    self.optionset.next()
                    self.index.next()
                    continue
                # 止损信号解除
                else:
                    order_index = self.account.create_trade_order(
                        self.index,
                        c.LongShort.LONG,
                        self.unit_index,
                        cd_trade_price=c.CdTradePrice.CLOSE)
                    record_index = self.index.execute_order(
                        order_index, slippage=self.slippage)
                    self.account.add_record(record_index, self.index)
                    stop_loss_paused = False
                    self.nbr_stop_loss += 1
                    print(self.optionset.eval_date, 'stop loss end')
                    # if empty_position and self.open_signal():
                    #     self.excute(self.strategy(cd_price=c.CdPriceType.CLOSE),cd_trade_price=c.CdTradePrice.CLOSE)
                    #     empty_position = False

            # 每日结算
            self.account.daily_accounting(self.optionset.eval_date)

            base_npv.append(self.index.mktprice_close() / init_index)
            if not self.optionset.has_next(): break
            self.optionset.next()
            self.index.next()
        self.account.account['base_npv'] = base_npv
        # active_npv = self.df_index[self.df_index[c.Util.DT_DATE] <= self.optionset.eval_date].reset_index(drop=True)
        # self.account.account['active_npv'] = active_npv[c.Util.AMT_CLOSE]
        self.account.nbr_timing = self.nbr_timing
        self.account.nbr_stop_loss = self.nbr_stop_loss
        return self.account
示例#7
0
""" Collar """
optionset = BaseOptionSet(df_metrics)
optionset.init()
index = BaseInstrument(df_index)
index.init()
stock = BaseInstrument(df_stocks)
stock.init()
account = BaseAccount(init_fund=c.Util.BILLION, leverage=1.0, rf=0.03)
maturity1 = optionset.select_maturity_date(nbr_maturity=0,
                                           min_holding=min_holding)
maturity2 = optionset.select_maturity_date(nbr_maturity=0,
                                           min_holding=min_holding)

# 标的指数开仓
unit_index = np.floor(m * account.cash / index.mktprice_close() /
                      index.multiplier())
option_shares = unit_index
init_mktvalue = unit_index * index.mktprice_close() * index.multiplier()
# order_index = account.create_trade_order(index, c.LongShort.LONG, unit_index, cd_trade_price=c.CdTradePrice.CLOSE)
# record_index = index.execute_order(order_index, slippage=slippage)
# account.add_record(record_index, index)
# 标的换成股票指数
unit_stock = np.floor(init_mktvalue / stock.mktprice_close() /
                      stock.multiplier())
order_underlying = account.create_trade_order(
    stock, c.LongShort.LONG, unit_stock, cd_trade_price=c.CdTradePrice.CLOSE)
record_underlying = stock.execute_order(order_underlying, slippage=slippage)
account.add_record(record_underlying, stock)
init_stock = stock.mktprice_close()
empty_position = True
call = None