def main(local_rank): dist.init_process_group(backend='nccl', init_method='env://') cfg.local_rank = local_rank torch.cuda.set_device(local_rank) cfg.rank = dist.get_rank() cfg.world_size = dist.get_world_size() trainset = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank) train_sampler = torch.utils.data.distributed.DistributedSampler( trainset, shuffle=True) train_loader = DataLoaderX(local_rank=local_rank, dataset=trainset, batch_size=cfg.batch_size, sampler=train_sampler, num_workers=0, pin_memory=True, drop_last=False) backbone = backbones.iresnet100(False).to(local_rank) backbone.train() # Broadcast init parameters for ps in backbone.parameters(): dist.broadcast(ps, 0) # DDP backbone = torch.nn.parallel.DistributedDataParallel( module=backbone, broadcast_buffers=False, device_ids=[cfg.local_rank]) backbone.train() # Memory classifer dist_sample_classifer = DistSampleClassifier(rank=dist.get_rank(), local_rank=local_rank, world_size=cfg.world_size) # Margin softmax margin_softmax = MarginSoftmax(s=64.0, m=0.4) # Optimizer for backbone and classifer optimizer = SGD([{ 'params': backbone.parameters() }, { 'params': dist_sample_classifer.parameters() }], lr=cfg.lr, momentum=0.9, weight_decay=cfg.weight_decay, rescale=cfg.world_size) # Lr scheduler scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=cfg.lr_func) n_epochs = cfg.num_epoch start_epoch = 0 if local_rank == 0: writer = SummaryWriter(log_dir='logs/shows') # total_step = int( len(trainset) / cfg.batch_size / dist.get_world_size() * cfg.num_epoch) if dist.get_rank() == 0: print("Total Step is: %d" % total_step) losses = AverageMeter() global_step = 0 train_start = time.time() for epoch in range(start_epoch, n_epochs): train_sampler.set_epoch(epoch) for step, (img, label) in enumerate(train_loader): total_label, norm_weight = dist_sample_classifer.prepare( label, optimizer) features = F.normalize(backbone(img)) # Features all-gather total_features = torch.zeros(features.size()[0] * cfg.world_size, cfg.embedding_size, device=local_rank) dist.all_gather(list(total_features.chunk(cfg.world_size, dim=0)), features.data) total_features.requires_grad = True # Calculate logits logits = dist_sample_classifer(total_features, norm_weight) logits = margin_softmax(logits, total_label) with torch.no_grad(): max_fc = torch.max(logits, dim=1, keepdim=True)[0] dist.all_reduce(max_fc, dist.ReduceOp.MAX) # Calculate exp(logits) and all-reduce logits_exp = torch.exp(logits - max_fc) logits_sum_exp = logits_exp.sum(dim=1, keepdims=True) dist.all_reduce(logits_sum_exp, dist.ReduceOp.SUM) # Calculate prob logits_exp.div_(logits_sum_exp) # Get one-hot grad = logits_exp index = torch.where(total_label != -1)[0] one_hot = torch.zeros(index.size()[0], grad.size()[1], device=grad.device) one_hot.scatter_(1, total_label[index, None], 1) # Calculate loss loss = torch.zeros(grad.size()[0], 1, device=grad.device) loss[index] = grad[index].gather(1, total_label[index, None]) dist.all_reduce(loss, dist.ReduceOp.SUM) loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1) # Calculate grad grad[index] -= one_hot grad.div_(features.size()[0]) logits.backward(grad) if total_features.grad is not None: total_features.grad.detach_() x_grad = torch.zeros_like(features) # Feature gradient all-reduce dist.reduce_scatter( x_grad, list(total_features.grad.chunk(cfg.world_size, dim=0))) x_grad.mul_(cfg.world_size) # Backward backbone features.backward(x_grad) optimizer.step() # Update classifer dist_sample_classifer.update() optimizer.zero_grad() losses.update(loss_v, 1) if cfg.local_rank == 0 and step % 50 == 0: time_now = (time.time() - train_start) / 3600 time_total = time_now / ((global_step + 1) / total_step) time_for_end = time_total - time_now writer.add_scalar('time_for_end', time_for_end, global_step) writer.add_scalar('loss', loss_v, global_step) print( "Speed %d samples/sec Loss %.4f Epoch: %d Global Step: %d Required: %1.f hours" % ((cfg.batch_size * global_step / (time.time() - train_start) * cfg.world_size), losses.avg, epoch, global_step, time_for_end)) losses.reset() global_step += 1 scheduler.step() if dist.get_rank() == 0: import os if not os.path.exists(cfg.output): os.makedirs(cfg.output) torch.save(backbone.module.state_dict(), os.path.join(cfg.output, str(epoch) + 'backbone.pth')) dist.destroy_process_group()
image_size=(112, 112), batch_size=64, epoch=1): ver_list = [] ver_name_list = [] for name in val_targets: path = os.path.join(data_dir, name + ".bin") if os.path.exists(path): data_set = load_bin(path, image_size) ver_list.append(data_set) ver_name_list.append(name) print('ver', name) for i in range(len(ver_list)): acc1, std1, acc2, std2, xnorm, embeddings_list = test( ver_list[i], model, batch_size, 10, None, None) print('[%s][%d]XNorm: %f' % (ver_name_list[i], epoch, xnorm)) print('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (ver_name_list[i], epoch, acc2, std2)) if __name__ == "__main__": data_dir = "/data/zhaoxin_data/face_data/Glint360k/glint360k/glint360k" model_path = "/data/zhaoxin_data/face_classifier_logs/partial_fc/r100_glint350k/r100_glint360k_epoch8.pth" ckpt = torch.load(model_path) model = backbones.iresnet100(False).cuda() model.load_state_dict(ckpt, strict=True) eval(model, data_dir, ['lfw', 'cfp_fp', 'agedb_30'], batch_size=32, epoch=1)