import pandas import pandas as pd import sklearn from backend import db_connection2 as db from backend import db_connection2 import sys conn, meta, session = db.connect("postgres", "1234", db="luther_survey") #temp2 all = session.query(db.Process_Rate_Flex_Test_User).all() process1 = all[1] t_p_o = all[1].task_parameters_obj print t_p_o.body_of_task print t_p_o.result evaluated_content = process1.get_content_produced_by_this_process() content = [] for i in evaluated_content: if i.associated_user == None: continue if len(i.results) > 0: print i #print i.associated_user.name print i.associated_user.alias print i.associated_user.password if process1.is_user_content_acceptable(i) == True: result = 0 if i.results == "Issue": result = -2 else:
import pandas import pandas as pd import sklearn from backend import db_connection2 as db from backend import db_connection2 import sys conn, meta, session = db.connect("postgres", "1234", db="match_girl") #temp2 all_text_manipulations=session.query(db.Process_Text_Manipulation).all() top_level=session.query(db.Process_Text_Manipulation).filter(db.Process_Text_Manipulation.id==90).all() #get result - result.result result=top_level.get_final_results()[0] right_node=top_level.task_parameters_obj.context p_id=top_level.task_parameters_obj.context.process_that_selected_this_content_id next_level=session.query(db.Process_Text_Manipulation).filter(db.Process_Text_Manipulation.id==p_id).all()[0] next_right_node=next_level.task_parameters_obj.context
from python_query_aws import script_current_task_results from python_query_aws import script_turk_performance from sqlalchemy import desc from backend import db_connection2 as db from class_turk_performance_default import Turk_Performance_Default from python_query_aws.env_info import Environment_Info import boto3 db_name = "Task_Crowd_Source_Test" conn, meta, session = db.connect("postgres", "1234", db=db_name) keys = Environment_Info.static_get_special_code() endpoint_type = "live" client_session_turk = boto3.Session(profile_name=None) client = client_session_turk.client( service_name='mturk', region_name='us-east-1', endpoint_url=Environment_Info.environments[endpoint_type]['endpoint'], aws_access_key_id=keys["aws_access_key_id"], aws_secret_access_key=keys["aws_secret_access_key"] ) results = script_current_task_results.get_active_users_in_latest_task(0, endpoint_type) recent_performance= script_turk_performance.get_recently_submitted_results(session, results, max_results=2, time_offset=14395.592572) name=recent_performance[0]["user"]
import pandas import pandas as pd import sklearn from backend import db_connection2 as db from backend import db_connection2 import sys conn, meta, session = db.connect("postgres", "1234", db="sedaris_2") #temp2 all_text_manipulations = session.query(db.Process_Text_Manipulation).all() top_level = session.query(db.Process_Text_Manipulation).filter( db.Process_Text_Manipulation.id == 127).all()[0] #get result - result.result result = top_level.get_final_results()[0] right_node = top_level.task_parameters_obj.context p_id = top_level.task_parameters_obj.context.process_that_selected_this_content_id next_level = session.query(db.Process_Text_Manipulation).filter( db.Process_Text_Manipulation.id == p_id).all()[0] next_right_node = next_level.task_parameters_obj.context top_level = session.query(db.Process_Text_Manipulation).filter( db.Process_Text_Manipulation.id == 127).all()[0] base_case = [] base_case.append(top_level) all_levels = [] current_case = base_case while len(current_case) > 0: all_levels.append(current_case)