示例#1
0
def test_split_even():
    prepare_dist()
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
    for i in range(num_parts):
        dgl.distributed.set_num_client(num_parts)
        part_g, node_feats, edge_feats, gpb = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes = node_split(node_mask, gpb, i, force_even=True)
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        nodes1 = node_split(node_mask, gpb, i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, i * 2 + 1, force_even=True)
        nodes3 = F.cat([nodes1, nodes2], 0)
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

        dgl.distributed.set_num_client(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges = edge_split(edge_mask, gpb, i, force_even=True)
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        edges1 = edge_split(edge_mask, gpb, i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, i * 2 + 1, force_even=True)
        edges3 = F.cat([edges1, edges2], 0)
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))
示例#2
0
def test_split():
    #prepare_dist()
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

    for i in range(num_parts):
        set_roles(num_parts)
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, rank=i, force_even=False)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

        set_roles(num_parts * 2)
        nodes3 = node_split(node_mask, gpb, rank=i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=False)
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

        set_roles(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, rank=i, force_even=False)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

        set_roles(num_parts * 2)
        edges3 = edge_split(edge_mask, gpb, rank=i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=False)
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))
示例#3
0
def test_split():
    prepare_dist()
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g,
                    'dist_graph_test',
                    num_parts,
                    '/tmp/dist_graph',
                    num_hops=num_hops,
                    part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
        dgl.distributed.set_num_client(num_parts)
        part_g, node_feats, edge_feats, gpb, _ = load_partition(
            '/tmp/dist_graph/dist_graph_test.json', i)
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, i, force_even=False)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

        dgl.distributed.set_num_client(num_parts * 2)
        nodes3 = node_split(node_mask, gpb, i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, i * 2 + 1, force_even=False)
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

        dgl.distributed.set_num_client(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, i, force_even=False)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

        dgl.distributed.set_num_client(num_parts * 2)
        edges3 = edge_split(edge_mask, gpb, i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, i * 2 + 1, force_even=False)
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))
示例#4
0
def check_rpc_bipartite_etype_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1,
                                                     nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block is not None
    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)
示例#5
0
def check_rpc_hetero_etype_sampling_empty_shuffle(tmpdir, num_server):
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_hetero(dense=True, empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)
示例#6
0
def test_split():
    prepare_dist()
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g,
                    'test',
                    num_parts,
                    '/tmp',
                    num_hops=num_hops,
                    part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
        part_g, node_feats, edge_feats, meta = load_partition(
            '/tmp/test.json', i)
        num_nodes, num_edges, node_map, edge_map, num_partitions = meta
        gpb = GraphPartitionBook(part_id=i,
                                 num_parts=num_partitions,
                                 node_map=node_map,
                                 edge_map=edge_map,
                                 part_graph=part_g)
        local_nids = F.nonzero_1d(part_g.ndata['local_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, i)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

        local_eids = F.nonzero_1d(part_g.edata['local_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, i)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids
示例#7
0
 def tensor_topo_traverse():
     n = g.number_of_nodes()
     mask = F.copy_to(F.ones((n, 1)), F.cpu())
     degree = F.spmm(adjmat, mask)
     while F.reduce_sum(mask) != 0.:
         v = F.astype((degree == 0.), F.float32)
         v = v * mask
         mask = mask - v
         frontier = F.copy_to(F.nonzero_1d(F.squeeze(v, 1)), F.cpu())
         yield frontier
         degree -= F.spmm(adjmat, v)
示例#8
0
def test_split_even():
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g,
                    'dist_graph_test',
                    num_parts,
                    '/tmp/dist_graph',
                    num_hops=num_hops,
                    part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i: i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {
            i: i
            for i in range(num_clients)
        }

    for i in range(num_parts):
        set_roles(num_parts)
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition(
            '/tmp/dist_graph/dist_graph_test.json', i)
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes = node_split(node_mask, gpb, rank=i, force_even=True)
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(
            i, len(nodes), len(subset)))

        set_roles(num_parts * 2)
        nodes1 = node_split(node_mask, gpb, rank=i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=True)
        nodes3, _ = F.sort_1d(F.cat([nodes1, nodes2], 0))
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

        set_roles(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges = edge_split(edge_mask, gpb, rank=i, force_even=True)
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(
            i, len(edges), len(subset)))

        set_roles(num_parts * 2)
        edges1 = edge_split(edge_mask, gpb, rank=i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=True)
        edges3, _ = F.sort_1d(F.cat([edges1, edges2], 0))
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))
示例#9
0
def check_partition(part_method, reshuffle):
    g = create_random_graph(10000)
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10))
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10))
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
    num_parts = 4
    num_hops = 2

    partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
                    part_method=part_method, reshuffle=reshuffle)
    part_sizes = []
    for i in range(num_parts):
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/partition/test.json', i)

        # Check the metadata
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

        local_nid = gpb.nid2localnid(F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node']), i)
        assert F.dtype(local_nid) in (F.int64, F.int32)
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
        local_eid = gpb.eid2localeid(F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge']), i)
        assert F.dtype(local_eid) in (F.int64, F.int32)
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))

        # Check the node map.
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
        assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1)))

        # Check the edge map.
        local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_edges1 = gpb.partid2eids(i)
        assert F.dtype(local_edges1) in (F.int32, F.int64)
        assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1)))

        if reshuffle:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata['orig_id'])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata['orig_id'])
            # when we read node data from the original global graph, we should use orig_id.
            local_nodes = F.boolean_mask(part_g.ndata['orig_id'], part_g.ndata['inner_node'])
            local_edges = F.boolean_mask(part_g.edata['orig_id'], part_g.edata['inner_edge'])
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID])
        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))

        for name in ['labels', 'feats']:
            assert name in node_feats
            assert node_feats[name].shape[0] == len(local_nodes)
            assert np.all(F.asnumpy(g.ndata[name])[F.asnumpy(local_nodes)] == F.asnumpy(node_feats[name]))
        for name in ['feats']:
            assert name in edge_feats
            assert edge_feats[name].shape[0] == len(local_edges)
            assert np.all(F.asnumpy(g.edata[name])[F.asnumpy(local_edges)] == F.asnumpy(edge_feats[name]))

    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
示例#10
0
def check_partition(g, part_method, reshuffle):
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10),
                                F.float32)
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10),
                                F.float32)
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
    num_parts = 4
    num_hops = 2

    orig_nids, orig_eids = partition_graph(g,
                                           'test',
                                           num_parts,
                                           '/tmp/partition',
                                           num_hops=num_hops,
                                           part_method=part_method,
                                           reshuffle=reshuffle,
                                           return_mapping=True)
    part_sizes = []
    shuffled_labels = []
    shuffled_edata = []
    for i in range(num_parts):
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition(
            '/tmp/partition/test.json', i)

        # Check the metadata
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

        nid = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        local_nid = gpb.nid2localnid(nid, i)
        assert F.dtype(local_nid) in (F.int64, F.int32)
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
        eid = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_eid = gpb.eid2localeid(eid, i)
        assert F.dtype(local_eid) in (F.int64, F.int32)
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))

        # Check the node map.
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID],
                                     part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
        assert np.all(
            np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(
                local_nodes1)))
        assert np.all(F.asnumpy(llocal_nodes) == np.arange(len(llocal_nodes)))

        # Check the edge map.
        local_edges = F.boolean_mask(part_g.edata[dgl.EID],
                                     part_g.edata['inner_edge'])
        llocal_edges = F.nonzero_1d(part_g.edata['inner_edge'])
        local_edges1 = gpb.partid2eids(i)
        assert F.dtype(local_edges1) in (F.int32, F.int64)
        assert np.all(
            np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(
                local_edges1)))
        assert np.all(F.asnumpy(llocal_edges) == np.arange(len(llocal_edges)))

        # Verify the mapping between the reshuffled IDs and the original IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        orig_src_ids = F.gather_row(orig_nids, part_src_ids)
        orig_dst_ids = F.gather_row(orig_nids, part_dst_ids)
        orig_eids1 = F.gather_row(orig_eids, part_eids)
        orig_eids2 = g.edge_ids(orig_src_ids, orig_dst_ids)
        assert F.shape(orig_eids1)[0] == F.shape(orig_eids2)[0]
        assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))

        if reshuffle:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'],
                                                 part_g.ndata['orig_id'])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'],
                                                 part_g.edata['orig_id'])
            # when we read node data from the original global graph, we should use orig_id.
            local_nodes = F.boolean_mask(part_g.ndata['orig_id'],
                                         part_g.ndata['inner_node'])
            local_edges = F.boolean_mask(part_g.edata['orig_id'],
                                         part_g.edata['inner_edge'])
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'],
                                                 part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'],
                                                 part_g.edata[dgl.NID])

        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))

        for name in ['labels', 'feats']:
            assert '_N/' + name in node_feats
            assert node_feats['_N/' + name].shape[0] == len(local_nodes)
            true_feats = F.gather_row(g.ndata[name], local_nodes)
            ndata = F.gather_row(node_feats['_N/' + name], local_nid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(ndata))
        for name in ['feats']:
            assert '_E/' + name in edge_feats
            assert edge_feats['_E/' + name].shape[0] == len(local_edges)
            true_feats = F.gather_row(g.edata[name], local_edges)
            edata = F.gather_row(edge_feats['_E/' + name], local_eid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(edata))

        # This only works if node/edge IDs are shuffled.
        if reshuffle:
            shuffled_labels.append(node_feats['_N/labels'])
            shuffled_edata.append(edge_feats['_E/feats'])

    # Verify that we can reconstruct node/edge data for original IDs.
    if reshuffle:
        shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
        shuffled_edata = F.asnumpy(F.cat(shuffled_edata, 0))
        orig_labels = np.zeros(shuffled_labels.shape,
                               dtype=shuffled_labels.dtype)
        orig_edata = np.zeros(shuffled_edata.shape, dtype=shuffled_edata.dtype)
        orig_labels[F.asnumpy(orig_nids)] = shuffled_labels
        orig_edata[F.asnumpy(orig_eids)] = shuffled_edata
        assert np.all(orig_labels == F.asnumpy(g.ndata['labels']))
        assert np.all(orig_edata == F.asnumpy(g.edata['feats']))

    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
示例#11
0
def check_rpc_bipartite_etype_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g,
                                   'test_sampling',
                                   num_parts,
                                   tmpdir,
                                   num_hops=num_hops,
                                   part_method='metis',
                                   reshuffle=True,
                                   return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server,
                        args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['game'], 'game')
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_etype_sample_client(0,
                                                     tmpdir,
                                                     num_server > 1,
                                                     fanout,
                                                     nodes={
                                                         'game': nids,
                                                         'user': [0]
                                                     })
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid_map = {
        ntype: F.zeros((g.number_of_nodes(ntype), ), dtype=F.int64)
        for ntype in g.ntypes
    }
    orig_eid_map = {
        etype: F.zeros((g.number_of_edges(etype), ), dtype=F.int64)
        for etype in g.etypes
    }
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json',
                                                i)
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype],
                                  F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype],
                                  F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID],
                                    src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID],
                                    dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type],
                                          shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type],
                                          shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)
示例#12
0
def test_sample_neighbors_etype_homogeneous(format_, direction, replace):
    num_nodes = 100
    rare_cnt = 4
    g = create_etype_test_graph(100, 30, rare_cnt)
    h_g = dgl.to_homogeneous(g)
    seed_ntype = g.get_ntype_id("u")
    seeds = F.nonzero_1d(h_g.ndata[dgl.NTYPE] == seed_ntype)
    fanouts = F.tensor([6, 5, 4, 3, 2], dtype=F.int64)

    def check_num(h_g, all_src, all_dst, subg, replace, fanouts, direction):
        src, dst = subg.edges()
        num_etypes = F.asnumpy(h_g.edata[dgl.ETYPE]).max()
        etype_array = F.asnumpy(subg.edata[dgl.ETYPE])
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        fanouts = F.asnumpy(fanouts)

        all_etype_array = F.asnumpy(h_g.edata[dgl.ETYPE])
        all_src = F.asnumpy(all_src)
        all_dst = F.asnumpy(all_dst)

        src_per_etype = []
        dst_per_etype = []
        for etype in range(num_etypes):
            src_per_etype.append(src[etype_array == etype])
            dst_per_etype.append(dst[etype_array == etype])

        if replace:
            if direction == 'in':
                in_degree_per_etype = [np.bincount(d) for d in dst_per_etype]
                for in_degree, fanout in zip(in_degree_per_etype, fanouts):
                    assert np.all(in_degree == fanout)
            else:
                out_degree_per_etype = [np.bincount(s) for s in src_per_etype]
                for out_degree, fanout in zip(out_degree_per_etype, fanouts):
                    assert np.all(out_degree == fanout)
        else:
            if direction == 'in':
                for v in set(dst):
                    u = src[dst == v]
                    et = etype_array[dst == v]
                    all_u = all_src[all_dst == v]
                    all_et = all_etype_array[all_dst == v]
                    for etype in set(et):
                        u_etype = set(u[et == etype])
                        all_u_etype = set(all_u[all_et == etype])
                        assert (len(u_etype) == fanouts[etype]) or (u_etype == all_u_etype)
            else:
                for u in set(src):
                    v = dst[src == u]
                    et = etype_array[src == u]
                    all_v = all_dst[all_src == u]
                    all_et = all_etype_array[all_src == u]
                    for etype in set(et):
                        v_etype = set(v[et == etype])
                        all_v_etype = set(all_v[all_et == etype])
                        assert (len(v_etype) == fanouts[etype]) or (v_etype == all_v_etype)

    all_src, all_dst = h_g.edges()
    h_g = h_g.formats(format_)
    if (direction, format_) in [('in', 'csr'), ('out', 'csc')]:
        h_g = h_g.formats(['csc', 'csr', 'coo'])
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            h_g, seeds, dgl.ETYPE, fanouts, replace=replace, edge_dir=direction)
        check_num(h_g, all_src, all_dst, subg, replace, fanouts, direction)