def kfac(self, mc_samples=1): with backpack(new_ext.KFAC(mc_samples=mc_samples)): _, _, loss = self.problem.forward_pass() loss.backward() kfac = [p.kfac for p in self.problem.model.parameters()] return kfac
def test_interface_kfac_conv(): interface_test(new_ext.KFAC(), use_conv=True)
def test_interface_kfac(): interface_test(new_ext.KFAC())
# %% # We can now evaluate the loss and do a backward pass with Backpack # ----------------------------------------------------------------- loss = lossfunc(model(X), y) with backpack( extensions.BatchGrad(), extensions.Variance(), extensions.SumGradSquared(), extensions.BatchL2Grad(), extensions.DiagGGNMC(mc_samples=1), extensions.DiagGGNExact(), extensions.DiagHessian(), extensions.KFAC(mc_samples=1), extensions.KFLR(), extensions.KFRA(), ): loss.backward() # %% # And here are the results # ----------------------------------------------------------------- for name, param in model.named_parameters(): print(name) print(".grad.shape: ", param.grad.shape) print(".grad_batch.shape: ", param.grad_batch.shape) print(".variance.shape: ", param.variance.shape) print(".sum_grad_squared.shape: ", param.sum_grad_squared.shape)
from torch.nn import CrossEntropyLoss, Flatten, Linear, Sequential from backpack import backpack, extend, extensions from backpack.utils.examples import load_mnist_data B = 4 X, y = load_mnist_data(B) print("# Gradient with PyTorch, KFAC approximation with BackPACK | B =", B) model = Sequential( Flatten(), Linear(784, 10), ) lossfunc = CrossEntropyLoss() model = extend(model) lossfunc = extend(lossfunc) loss = lossfunc(model(X), y) # number of MC samples is optional, defaults to 1 with backpack(extensions.KFAC(mc_samples=1)): loss.backward() for name, param in model.named_parameters(): print(name) print(".grad.shape: ", param.grad.shape) print(".kfac (shapes): ", [kfac.shape for kfac in param.kfac])
def kfac(self, mc_samples: int = 1) -> List[List[Tensor]]: # noqa:D102 with backpack(new_ext.KFAC(mc_samples=mc_samples)): _, _, loss = self.problem.forward_pass() loss.backward() return self.problem.collect_data("kfac")