示例#1
0
class TestKernelSematics(object):

    # To calculate each element by hand, type in the following into wolfram alpha
    # f(x)=(1+sqrt(3)*x)exp(−sqrt(3)*x)
    # And calculate each r individually
    #

    def init(self):
        self.real_dim = 3
        self.active_dim = 2
        self.no_samples = 5
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

    def test_kernel_identity_W_zero_inp(self):
        self.init()
        X = np.asarray([[0, 0, 0], [0, 0, 0]])

        W = np.asarray([[1, 0], [0, 1], [0, 0]])

        self.kernel.update_params(W=W,
                                  l=np.asarray(
                                      [1. for i in range(self.active_dim)]),
                                  s=1.)

        self.real_kernel = Matern32(
            self.active_dim,
            ARD=True,
            lengthscale=self.kernel.inner_kernel.lengthscale)

        y_hat = self.kernel.K(X)

        y = np.asarray([[1, 1], [1, 1]])

        assert np.isclose(y, y_hat, rtol=1e-16).all()

    def test_kernel_reverted_W(self):
        self.init()
        X = np.asarray([[0, 0.5, 0], [0, 0, 0.5]])

        W = np.asarray([[0, 1], [0, 0], [1, 0]])

        # After projection, we get
        # X_new = [
        #     [0, 0],
        #     [0.5, 0]
        # ]
        # r = 0.25

        self.kernel.update_params(W=W,
                                  l=np.asarray(
                                      [1. for i in range(self.active_dim)]),
                                  s=1.)

        y_hat = self.kernel.K(X)

        y = np.asarray([[1, 0.784888], [0.784888, 1]])

        assert np.isclose(y, y_hat, rtol=1e-4).all()

    def test_kernel_some_random_W(self):
        self.init()

        for i in range(100):
            X = np.random.rand(5, self.real_dim)

            # Sample and re-assign
            # TODO: just let the kernel resample all parameters
            W = self.kernel.sample_W()
            s = self.kernel.sample_variance()
            l = self.kernel.sample_lengthscale()

            self.kernel.update_params(W=W, l=l, s=s)

            y_hat = self.kernel.K(X)

            y = self.kernel.inner_kernel.K(np.dot(X, W))

            assert np.isclose(y, y_hat).all()

    def test_kernel_some_random_W_independent_inner_kernel(self):
        self.init()

        for i in range(100):
            X = np.random.rand(5, self.real_dim)

            # Sample and re-assign
            # TODO: change this by just resampling using a function within the kernel
            W = self.kernel.sample_W()
            s = self.kernel.sample_variance()
            l = self.kernel.sample_lengthscale()

            self.kernel.update_params(W=W, l=l, s=s)

            y_hat = self.kernel.K(X)

            # Define the new kernel
            real_kernel = Matern32(self.active_dim,
                                   variance=s,
                                   ARD=True,
                                   lengthscale=l)

            y = real_kernel.K(np.dot(X, W))

            assert np.isclose(y, y_hat).all()
class TestMatrixRecoveryNaive(object):

    def __init__(self):
        pass
        # This skips the test

    def init(self):
        self.real_dim = 3
        self.active_dim = 2

        self.no_samples = 20 # 50
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

        # Parameters
        self.sn = 0.1
        self.W = self.kernel.sample_W()

        self.function = Camelback()
        self.real_W = np.asarray([
            [0, 1],
            [1, 0],
            [0, 0]
        ])
        self.real_W = self.real_W / np.linalg.norm(self.real_W)

        # [[0.9486833]
        #  [0.31622777]]

        self.X = np.random.rand(self.no_samples, self.real_dim)
        print(self.X.shape)
        Z = np.dot(self.X, self.real_W)
        print(Z.shape)
        self.Y = self.function.f(Z.T).reshape(-1, 1)

        self.no_tries = 2

    def test_visualize_augmented_sinusoidal_function(self):

        self.init()

        import os
        if not os.path.exists("./pics/camelback/"):
            os.makedirs("./pics/")
            os.makedirs("./pics/camelback/")

        #################################
        #     TRAIN THE W_OPTIMIZER     #
        #################################

        Opt = TripathyOptimizer()

        print("Real hidden matrix is: ", self.real_W)

        for j in range(self.no_tries):
            print("Try number : ", j)

            W_hat = self.kernel.sample_W()
            self.kernel.update_params(
                W=W_hat,
                s=self.kernel.inner_kernel.variance,
                l=self.kernel.inner_kernel.lengthscale
            )

            W_hat, sn, l, s = Opt.run_two_step_optimization(self.kernel, self.sn, self.X, self.Y)

            # Create the gp_regression function and pass in the predictor function as f_hat
            self.kernel.update_params(W=W_hat, l=l, s=s)
            gp_reg = GPRegression(self.X, self.Y, self.kernel, noise_var=sn)
            y_hat = gp_reg.predict(self.X)[0].squeeze()

            #################################
            #   END TRAIN THE W_OPTIMIZER   #
            #################################

            # Save the W just in case
            l = loss(
                self.kernel,
                W_hat,
                sn,
                s,
                l,
                self.X,
                self.Y
            )
            np.savetxt("./pics/camelback/Iter_" + str(j) + "__" + "Loss_" + str(l) + ".txt", W_hat)
示例#3
0
class TestKernel(object):
    def init(self):
        self.real_dim = 3
        self.active_dim = 2
        self.no_samples = 5
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

    def test_parameters_are_set_successfully(self):
        """
        Check if parameters are set successfully / setters work correctly
        :return:
        """
        self.init()

        W1, l1, s1 = self.kernel.W, self.kernel.inner_kernel.lengthscale, self.kernel.inner_kernel.variance
        W1 = W1.copy()
        l1 = l1.copy()
        s1 = s1.copy()

        new_W = np.zeros((self.real_dim, self.active_dim), dtype=np.float64)
        for i in range(self.real_dim):
            for j in range(self.active_dim):
                new_W[i, j] = np.random.normal(0, 1)
        Q, R = np.linalg.qr(new_W)

        # Set new parameters
        self.kernel.update_params(W=Q,
                                  l=np.random.rand(self.active_dim, ),
                                  s=5.22)

        assert not np.isclose(np.asarray(self.kernel.inner_kernel.lengthscale),
                              np.asarray(l1)).all()
        assert not np.isclose(np.asarray(self.kernel.inner_kernel.variance),
                              np.asarray(s1))
        assert not np.isclose(self.kernel.W, W1).all()

    def test_kernel_returns_gram_matrix_correct_shape(self):
        """
        Check
        :return:
        """
        self.init()

        A = np.random.rand(self.no_samples, self.real_dim)
        B = np.random.rand(self.no_samples, self.real_dim)

        # print("Before we go into the function: ")
        # print(A)
        # print(B)

        Cov = self.kernel.K(A, B)

        assert Cov.shape == (self.no_samples, self.no_samples)

    def test_kernel_returns_diag_correct_shape(self):
        self.init()

        A = np.random.rand(self.no_samples, self.real_dim)

        # print("Before we go into the function Kdiag: ")
        # print(A)

        Kdiag = self.kernel.Kdiag(A)

        assert Kdiag.shape == (self.no_samples, ), (Kdiag.shape, )

    def test_kernel_K_of_r_words_for_vectors(self):
        self.init()

        x = np.random.rand(self.no_samples)

        # print("Before we go into the function Kdiag: ")
        # print(x)

        kr = self.kernel.K_of_r(x)

        assert kr.shape == (self.no_samples, ), (kr.shape, )
class TestMatrixRecovery(object):
    """
        We hide a function depending on a matrix A within a higher dimension.
        We then test if our algorithm can successfully approximate/find this matrix
        (A_hat is the approximated one).

        More specifically, check if:

        f(A x) = f(A_hat x)
    """

    def init(self):

        self.real_dim = 2
        self.active_dim = 1
        self.no_samples = 75
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

        # Hide the matrix over here!
        if self.real_dim == 3 and self.active_dim == 2:
            self.function = Camelback()
            self.real_W = np.asarray([
                [0, 1],
                [1, 0],
                [0, 0]
            ])
        elif self.real_dim == 2 and self.active_dim == 1:
            self.function = Parabola()
            self.real_W = np.asarray([
                [1],
                [1],
            ])
            self.real_W = self.real_W / np.linalg.norm(self.real_W)
        else:
            assert False, "W was not set!"

        self.sn = 0.1

        self.X = np.random.rand(self.no_samples, self.real_dim)
        Z = np.dot(self.X, self.real_W)
        self.Y = self.function.f(Z.T).reshape(-1, 1)

        self.w_optimizer = t_WOptimizer(
            self.kernel,
            self.sn,
            np.asscalar(self.kernel.inner_kernel.variance),
            self.kernel.inner_kernel.lengthscale,
            self.X, self.Y
        )

        # We create the following kernel just to have access to the sample_W function!
        # TripathyMaternKernel(self.real_dim)

        self.tries = 10
        self.max_iter =  1 # 150

        assert False

        self.metrics = Metrics(self.no_samples)

    def test_if_function_is_found(self):
        """
            Replace these tests by the actual optimizer function!
        :return:
        """
        self.init()

        print("Real matrix is: ", self.real_W)

        all_tries = []
        for i in range(self.tries):
            # Initialize random guess
            W_hat = self.kernel.sample_W()

            # Find a good W!
            for i in range(self.max_iter):
                W_hat = self.w_optimizer.optimize_stiefel_manifold(W_hat)

            print("Difference to real W is: ", (W_hat - self.real_W))

            assert W_hat.shape == self.real_W.shape
            self.kernel.update_params(
                W=W_hat,
                l=self.kernel.inner_kernel.lengthscale,
                s=self.kernel.inner_kernel.variance
            )

            # TODO: update the gaussian process with the new kernels parameters! (i.e. W_hat)

            # Create the gp_regression function and pass in the predictor function as f_hat
            gp_reg = GPRegression(self.X, self.Y, self.kernel, noise_var=self.sn)
            res = self.metrics.mean_difference_points(
                fnc=self.function._f,
                fnc_hat=gp_reg.predict,
                A=self.real_W,
                A_hat=W_hat,
                X=self.X
            )

            all_tries.append(res)

        print(all_tries)

        assert np.asarray(all_tries).any()

    def test_if_hidden_matrix_is_found_multiple_initializations(self):
        self.init()

        print("Real matrix is: ", self.real_W)

        all_tries = []

        for i in range(self.tries):
            # Initialize random guess
            W_hat = self.kernel.sample_W()

            # Find a good W!
            for i in range(self.max_iter):
                W_hat = self.w_optimizer.optimize_stiefel_manifold(W_hat)

            print("Difference to real (AA.T) W is: ", (W_hat - self.real_W))

            assert W_hat.shape == self.real_W.shape
            assert not (W_hat == self.real_W).all()
            res = self.metrics.projects_into_same_original_point(self.real_W, W_hat)
            all_tries.append(res)

        assert True in all_tries
示例#5
0
class TestMatrixRecoveryHighDegreePolynomial:

    def __init__(self):
        self.real_dim = 5
        self.active_dim = 1

        self.no_samples = 20 # This should be proportional to the number of dimensions
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

        self.function = PolynomialKernel() # Change the function

        # Generate the positive semi-definite matrix
        self.real_W = np.random.random((self.real_dim, self.active_dim))
        # Take the real W to be completely random
        # assert np.isclose( np.dot(self.real_W.T, self.real_W), np.eye(self.active_dim) )

        self.X = np.random.rand(self.no_samples, self.real_dim)

        #self.X = np.random.rand(self.no_samples, self.real_dim)
        print(self.X.shape)
        Z = np.dot(self.X, self.real_W).reshape(-1, self.active_dim)
        print("The projected input matrix: ", Z.shape)
        print(Z.shape)
        self.Y = self.function.f(Z.T).reshape(-1, 1)

        print("Shapes of X and Y: ", (self.X.shape, self.Y.shape) )

        self.optimizer = TripathyOptimizer()

    def check_if_matrix_is_found(self):

        import os
        if not os.path.exists("./highD/"):
            os.makedirs("./highD/")

        #################################
        #     TRAIN THE W_OPTIMIZER     #
        #################################

        Opt = TripathyOptimizer()

        # print("Real hidden matrix is: ", self.real_W)

        W_hat = self.kernel.sample_W()
        self.kernel.update_params(
            W=W_hat,
            s=self.kernel.inner_kernel.variance,
            l=self.kernel.inner_kernel.lengthscale
        )

        W_hat, sn, l, s = Opt.try_two_step_optimization_with_restarts(self.kernel, self.X, self.Y)

        # Create the gp_regression function and pass in the predictor function as f_hat
        self.kernel.update_params(W=W_hat, l=l, s=s)

        #################################
        #   END TRAIN THE W_OPTIMIZER   #
        #################################

        # Save the W just in case
        l = loss(
            self.kernel,
            W_hat,
            sn,
            s,
            l,
            self.X,
            self.Y
        )

        np.savetxt("./highD/" + str(l) + "_BestLoss.txt", W_hat)
        np.savetxt("./highD/" + str(l) + "_realMatr.txt", self.real_W)
示例#6
0
class VisualizeTwoStepOptimizationWithRestarts:

    def __init__(self):
        self.real_dim = 2
        self.active_dim = 1

        self.no_samples = 100
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

        # Parameters
        self.sn = 0.1 # 1e-7 # 0.1
        self.W = self.kernel.sample_W()

        self.function = AugmentedSinusoidal()
        self.real_W = np.asarray([
            [3],
            [1]
        ])
        self.real_W = self.real_W / np.linalg.norm(self.real_W)

        # [[0.9486833]
        #  [0.31622777]]

        x_range = np.linspace(0., 1., int(np.sqrt(self.no_samples)))
        y_range = np.linspace(0., 1., int(np.sqrt(self.no_samples)))
        self.X = cartesian([x_range, y_range])

        #self.X = np.random.rand(self.no_samples, self.real_dim)
        print(self.X.shape)
        Z = np.dot(self.X, self.real_W).reshape(-1, 1)
        print(Z.shape)
        self.Y = self.function.f(Z.T).reshape(-1, 1)

        self.optimizer = TripathyOptimizer()

        # self.w_optimizer = t_WOptimizer(
        #     self.kernel, # TODO: does the kernel take over the W?
        #     self.sn,
        #     np.asscalar(self.kernel.inner_kernel.variance),
        #     self.kernel.inner_kernel.lengthscale,
        #     self.X, self.Y
        # )

        self.PLOT_MEAN = True

    def visualize_augmented_sinusoidal_function(self):
        x_range = np.linspace(0., 1., 80)
        y_range = np.linspace(0., 1., 80)
        X = cartesian([x_range, y_range])

        import os
        if not os.path.exists("./pics-twostep/"):
            os.makedirs("./pics-twostep/")

        #################################
        #     TRAIN THE W_OPTIMIZER     #
        #################################

        Opt = TripathyOptimizer()

        print("Real hidden matrix is: ", self.real_W)

        W_hat = self.kernel.sample_W()
        self.kernel.update_params(
            W=W_hat,
            s=self.kernel.inner_kernel.variance,
            l=self.kernel.inner_kernel.lengthscale
        )

        W_hat, sn, l, s = Opt.try_two_step_optimization_with_restarts(self.kernel, self.X, self.Y)

        # TODO: Check if these values are attained over multiple iterations (check if assert otherwise fails)

        # Create the gp_regression function and pass in the predictor function as f_hat
        self.kernel.update_params(W=W_hat, l=l, s=s)
        gp_reg = GPRegression(self.X, self.Y, self.kernel, noise_var=sn)

        y = self.function.f( np.dot(X, self.real_W).T )

        if self.PLOT_MEAN:
            y_hat = gp_reg.predict(X)[0].squeeze()
        else:
            y_hat = gp_reg.predict(self.X)[0].squeeze()

        #################################
        #   END TRAIN THE W_OPTIMIZER   #
        #################################

        fig = plt.figure()
        ax = Axes3D(fig)

        # First plot the real function
        ax.scatter(X[:,0], X[:, 1], y, s=1)

        if self.PLOT_MEAN:
            ax.scatter(X[:, 0], X[:, 1], y_hat, cmap=plt.cm.jet)
        else:
            ax.scatter(self.X[:,0], self.X[:, 1], y_hat, cmap=plt.cm.jet)

        # Save the W just in case
        l = loss(
            self.kernel,
            W_hat,
            sn,
            s,
            l,
            self.X,
            self.Y
        )

        fig.savefig('./pics-twostep/BestLoss_' + str(l) + '.png', )
        plt.show()
        plt.close(fig)

        np.savetxt("./pics-twostep/BestLoss_" + str(l) + ".txt", W_hat)
示例#7
0
class VisualizedTestingWParabola:

    def __init__(self):
        self.real_dim = 2
        self.active_dim = 1

        self.no_samples = 50
        self.kernel = TripathyMaternKernel(self.real_dim, self.active_dim)

        # Parameters
        self.sn = 0.1
        self.W = self.kernel.sample_W()

        self.function = Parabola()
        self.real_W = np.asarray([
            [1],
            [1]
        ])
        self.real_W = self.real_W / np.linalg.norm(self.real_W)

        self.X = np.random.rand(self.no_samples, self.real_dim)
        Z = np.dot(self.X, self.real_W)
        self.Y = self.function.f(Z.T).reshape(-1, 1)

        self.w_optimizer = t_WOptimizer(
            self.kernel, # TODO: does the kernel take over the W?
            self.sn,
            np.asscalar(self.kernel.inner_kernel.variance),
            self.kernel.inner_kernel.lengthscale,
            self.X, self.Y
        )

        self.no_tries = 1000

    def visualize_quadratic_function(self):
        x_range = np.linspace(0., 1., 80)
        y_range = np.linspace(0., 1., 80)
        X = cartesian([x_range, y_range])

        import os
        if not os.path.exists("./pics/"):
            os.makedirs("./pics/")

        #################################
        #     TRAIN THE W_OPTIMIZER     #
        #################################

        Opt = TripathyOptimizer()

        for j in range(self.no_tries):
            print("Try number : ", j)

            W_hat = self.kernel.sample_W()
            self.kernel.update_params(
                W=W_hat,
                s=self.kernel.inner_kernel.variance,
                l=self.kernel.inner_kernel.lengthscale
            )

            W_hat, sn, l, s = Opt.run_two_step_optimization(self.kernel, self.sn, self.X, self.Y)

            # Create the gp_regression function and pass in the predictor function as f_hat
            self.kernel.update_params(W=W_hat, l=l, s=s)
            gp_reg = GPRegression(self.X, self.Y, self.kernel, noise_var=sn)

            y = self.function.f( np.dot(X, self.real_W).T )
            y_hat = gp_reg.predict(self.X)[0].squeeze()

            #################################
            #   END TRAIN THE W_OPTIMIZER   #
            #################################

            fig = plt.figure()
            ax = Axes3D(fig)

            # First plot the real function
            ax.scatter(X[:,0], X[:, 1], y, s=1)
            ax.scatter(self.X[:,0], self.X[:, 1], y_hat, cmap=plt.cm.jet)
            fig.savefig('./pics/Iter_' + str(j) + '.png', )
            # plt.show()
            plt.close(fig)

            # Save the W just in case
            l = loss(
                self.kernel,
                W_hat,
                sn,
                s,
                l,
                self.X,
                self.Y
            )
            np.savetxt("./pics/Iter_" + str(j) + "__" + "Loss_" + str(l) + ".txt", W_hat)
示例#8
0
class VisualizeFeatureSelection:

    # F dependent functions
    def setup_environment(self):

        # Environment dimensions
        self.f_input_dim = 2

        # Environment coefficients
        self.a1 = -0.1
        self.a2 = 0.1

        # Setup the projection matrix
        # self.real_W = self.kernel.sample_W()
        # self.real_W = np.random.random((self.f_input_dim, self.active_dim))
        # self.real_W = self.real_W / np.linalg.norm(self.real_W)
        self.real_W = np.asarray(
            [[5.889490030086947936e-01, 8.081701998063678394e-01]]).T

    def f_env(self, x, disp=False):
        real_phi_x = np.concatenate([
            np.square(x[:, 0] - self.a1).reshape(x.shape[0], -1),
            np.square(x[:, 1] - self.a2).reshape(x.shape[0], -1)
        ],
                                    axis=1)

        Z = np.dot(real_phi_x, self.real_W).reshape(-1, self.active_dim)
        if not disp:
            assert Z.shape == (self.no_samples,
                               self.active_dim), (Z.shape, (self.no_samples,
                                                            self.active_dim))
        # print("The projected input matrix: ", Z.shape)
        # print(Z.shape)
        # self.Y = self.function.f(Z.T).reshape(-1, 1)
        out = self.function.f(Z.T).reshape(-1, 1)
        if not disp:
            assert out.shape == (self.no_samples, 1)
        return out

    # G dependent function
    def setup_approximation(self):
        self.g_input_dim = 5
        self.kernel = TripathyMaternKernel(self.g_input_dim, self.active_dim)

    def phi(self, x):
        assert x.shape[1] == 2
        # We could just do x, but at this point it doesn't matter
        phi_x = np.concatenate(
            [np.square(x), x,
             np.ones((x.shape[0], )).reshape(-1, 1)], axis=1)
        # print("Phi x is: ", phi_x)
        assert phi_x.shape == (self.no_samples, self.g_input_dim)
        return phi_x

    # Part where we generate the data
    def generate_data(self):
        self.X = (np.random.rand(self.no_samples, self.init_dimension) -
                  0.5) * 2.

        # Generate the real Y
        self.Y = self.f_env(self.X).reshape(-1, 1)
        assert self.Y.shape == (self.no_samples, 1)

        # Generate the kernelized X to use to figure it out
        self.phi_X = self.phi(self.X)

    def __init__(self):
        self.function = Parabola()
        self.init_dimension = 2  # All the input at the beginning is always 1D!
        self.active_dim = self.function.d
        self.no_samples = 50  # 200

        self.setup_environment()
        self.setup_approximation()
        self.generate_data()

        print("Data shape is: ")
        print(self.X.shape)
        print(self.phi_X.shape)

    def plot_3d(self, y_hat, title):

        # Plot real function
        x1 = np.linspace(-1, 1, 100)
        x2 = np.linspace(-1, 1, 100)
        x_real = cartesian([x1, x2])
        y_real = self.f_env(x_real, disp=True)

        # Create the plot
        fig = plt.figure()
        ax = Axes3D(fig)
        ax.view_init(azim=30)

        # First plot the real function
        ax.scatter(x_real[:, 0], x_real[:, 1], y_real, 'k.', alpha=.3, s=1)
        ax.scatter(self.X[:, 0], self.X[:, 1], y_hat, cmap=plt.cm.jet)
        fig.savefig('./featureSelection/' + title + '.png')
        plt.show()
        # plt.close(fig)

    def check_if_matrix_is_found(self):

        print("Starting to optimize stuf...")

        import os
        if not os.path.exists("./featureSelection/"):
            os.makedirs("./featureSelection/")

        #################################
        #     TRAIN THE W_OPTIMIZER     #
        #################################

        Opt = TripathyOptimizer()

        print("Real hidden matrix is: ", self.real_W)
        # Start with the approximation of the real matrix

        W_hat = self.kernel.sample_W()
        self.kernel.update_params(W=W_hat,
                                  s=self.kernel.inner_kernel.variance,
                                  l=self.kernel.inner_kernel.lengthscale)

        W_hat, sn, l, s = Opt.try_two_step_optimization_with_restarts(
            self.kernel, self.phi_X, self.Y)

        # Create the gp_regression function and pass in the predictor function as f_hat
        self.kernel.update_params(W=W_hat, l=l, s=s)
        gp_reg = GPRegression(self.phi_X, self.Y, self.kernel, noise_var=sn)

        # Maybe predict even more values ? (plot the entire surface?)
        y_hat = gp_reg.predict(self.phi_X)[0].squeeze()

        #################################
        #   END TRAIN THE W_OPTIMIZER   #
        #################################

        # Save the W just in case
        l = loss(self.kernel, W_hat, sn, s, l, self.phi_X, self.Y)

        np.savetxt(
            config['basepath'] + "/featureSelection/" + str(l) +
            "_BestLoss.txt", W_hat)
        np.savetxt(
            config['basepath'] + "/featureSelection/" + str(l) +
            "_realMatr.txt", self.real_W)

        # Create the gp_regression function and pass in the predictor function as f_hat
        self.plot_3d(y_hat, title=str(l) + "_BestLoss")