def test_name_register(self): a = RandomRewardFunc() self.assertTrue(a.allow_duplicate_name) b = RandomRewardFunc() a = Basic(name='s') try: b = Basic(name='s') except GlobalNameExistedError as e: pass else: raise NotCatchCorrectExceptionError()
def create_mpc(self, env_id='Acrobot-v1', name='mpc', policy=None, mlp_dyna=None, env_spec=None, env=None): if mlp_dyna is None: mlp_dyna, local = self.create_continue_dynamics_model( env_id, name + 'mlp_dyna') env_spec = local['env_spec'] env = local['env'] policy = policy if policy else UniformRandomPolicy(env_spec=env_spec, name='unp') algo = ModelPredictiveControl(dynamics_model=mlp_dyna, env_spec=env_spec, config_or_config_dict=dict( SAMPLED_HORIZON=2, SAMPLED_PATH_NUM=5, dynamics_model_train_iter=10), name=name, policy=policy) algo.set_terminal_reward_function_for_dynamics_env( terminal_func=RandomTerminalFunc(name='random_p'), reward_func=RandomRewardFunc('re_fun')) return algo, locals()
def create_dyna(self, env_spec=None, model_free_algo=None, dyanmics_model=None, name='dyna'): if not env_spec: model_free_algo, local = self.create_ddpg() dyanmics_model, _ = self.create_continuous_mlp_global_dynamics_model( env_spec=local['env_spec']) env_spec = local['env_spec'] env = local['env'] algo = Dyna(env_spec=env_spec, name=name, model_free_algo=model_free_algo, dynamics_model=dyanmics_model, config_or_config_dict=dict(dynamics_model_train_iter=1, model_free_algo_train_iter=1)) algo.set_terminal_reward_function_for_dynamics_env( terminal_func=RandomTerminalFunc(), reward_func=RandomRewardFunc()) return algo, locals()
def test_dynamics_as_env(self): env = self.create_env('Pendulum-v0') env_spec = self.create_env_spec(env) mlp_dyna = self.create_continuous_mlp_global_dynamics_model(env_spec=env_spec)[0] env = mlp_dyna.return_as_env() env.init() env.set_terminal_reward_func(terminal_func=FixedEpisodeLengthTerminalFunc(max_step_length=10, step_count_fn=lambda: env.total_step_count_fn() - env._last_reset_point), reward_func=RandomRewardFunc()) env.reset() self.assertEqual(env._last_reset_point, 0) for i in range(11): new_st, re, done, _ = env.step(action=env_spec.action_space.sample()) self.assertEqual(env.total_step_count_fn(), i + 1) if done is True: self.assertEqual(i, 9) env.reset() self.assertEqual(env._last_reset_point, env.total_step_count_fn()) self.assertEqual(env._last_reset_point, i + 1)
st = env.reset() for i in range(100): ac = policy.forward(st) new_st, re, _, _ = env.step(ac) data.append(state=st, new_state=new_st, action=ac, reward=re, done=False) st = new_st gp = GaussianProcessDyanmicsModel(env_spec=env_spec, batch_data=data) gp.init() gp.train() dyna_env = DynamicsEnvWrapper(dynamics=gp) # Since we only care about the prediction here, so we pass the terminal function and reward function setting with # random one dyna_env.set_terminal_reward_func(terminal_func=RandomTerminalFunc(), reward_func=RandomRewardFunc()) st = env.reset() real_state_list = [] dynamics_state_list = [] test_sample_count = 100 for i in range(test_sample_count): ac = env_spec.action_space.sample() gp.reset_state(state=st) new_state_dynamics, _, _, _ = dyna_env.step(action=ac, allow_clip=True) new_state_real, _, done, _ = env.step(action=ac) real_state_list.append(new_state_real) dynamics_state_list.append(new_state_dynamics) st = new_state_real if done is True: env.reset()
def task_fn(): env = make('Pendulum-v0') name = 'demo_exp' env_spec = EnvSpec(obs_space=env.observation_space, action_space=env.action_space) mlp_dyna = ContinuousMLPGlobalDynamicsModel( env_spec=env_spec, name_scope=name + '_mlp_dyna', name=name + '_mlp_dyna', output_low=env_spec.obs_space.low, output_high=env_spec.obs_space.high, learning_rate=0.01, mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": env_spec.flat_obs_dim, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }]) algo = ModelPredictiveControl( dynamics_model=mlp_dyna, env_spec=env_spec, config_or_config_dict=dict(SAMPLED_HORIZON=2, SAMPLED_PATH_NUM=5, dynamics_model_train_iter=10), name=name + '_mpc', policy=UniformRandomPolicy(env_spec=env_spec, name='uni_policy')) algo.set_terminal_reward_function_for_dynamics_env( reward_func=RandomRewardFunc(name='reward_func'), terminal_func=RandomTerminalFunc(name='random_terminal'), ) agent = Agent( env=env, env_spec=env_spec, algo=algo, name=name + '_agent', exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space, init_random_prob=0.5)) flow = TrainTestFlow( train_sample_count_func=lambda: get_global_status_collect() ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'), config_or_config_dict={ "TEST_EVERY_SAMPLE_COUNT": 10, "TRAIN_EVERY_SAMPLE_COUNT": 10, "START_TRAIN_AFTER_SAMPLE_COUNT": 5, "START_TEST_AFTER_SAMPLE_COUNT": 5, }, func_dict={ 'test': { 'func': agent.test, 'args': list(), 'kwargs': dict(sample_count=10), }, 'train': { 'func': agent.train, 'args': list(), 'kwargs': dict(), }, 'sample': { 'func': agent.sample, 'args': list(), 'kwargs': dict(sample_count=100, env=agent.env, in_which_status='TRAIN', store_flag=True), }, }) experiment = Experiment(tuner=None, env=env, agent=agent, flow=flow, name=name) experiment.run()
def task_fn(): env = make('Pendulum-v0') name = 'demo_exp' env_spec = env.env_spec mlp_dyna = ContinuousMLPGlobalDynamicsModel(env_spec=env_spec, name_scope=name + '_mlp_dyna', name=name + '_mlp_dyna', learning_rate=0.01, mlp_config=[{ "ACT": "TANH", "B_INIT_VALUE": 0.0, "NAME": "1", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": 128, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": env_spec.flat_obs_dim, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }]) algo = ModelPredictiveControl( dynamics_model=mlp_dyna, env_spec=env_spec, config_or_config_dict=dict(SAMPLED_HORIZON=2, SAMPLED_PATH_NUM=5, dynamics_model_train_iter=10), name=name + '_mpc', policy=UniformRandomPolicy(env_spec=env_spec, name='uni_policy')) algo.set_terminal_reward_function_for_dynamics_env( reward_func=RandomRewardFunc(name='reward_func'), terminal_func=RandomTerminalFunc(name='random_terminal'), ) agent = Agent( env=env, env_spec=env_spec, algo=algo, name=name + '_agent', exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space, init_random_prob=0.5)) flow = create_train_test_flow(test_every_sample_count=10, train_every_sample_count=10, start_test_after_sample_count=5, start_train_after_sample_count=5, train_func_and_args=(agent.train, (), dict()), test_func_and_args=(agent.test, (), dict(sample_count=10)), sample_func_and_args=(agent.sample, (), dict(sample_count=100, env=agent.env, store_flag=True))) experiment = Experiment(tuner=None, env=env, agent=agent, flow=flow, name=name) experiment.run()
def task_fn(): env = make('Pendulum-v0') name = 'demo_exp' env_spec = EnvSpec(obs_space=env.observation_space, action_space=env.action_space) mlp_q = MLPQValueFunction(env_spec=env_spec, name_scope=name + '_mlp_q', name=name + '_mlp_q', mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "N_UNITS": 1, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }]) policy = DeterministicMLPPolicy(env_spec=env_spec, name_scope=name + '_mlp_policy', name=name + '_mlp_policy', mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "N_UNITS": env_spec.flat_action_dim, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }], reuse=False) ddpg = DDPG(env_spec=env_spec, config_or_config_dict={ "REPLAY_BUFFER_SIZE": 10000, "GAMMA": 0.999, "CRITIC_LEARNING_RATE": 0.001, "ACTOR_LEARNING_RATE": 0.001, "DECAY": 0.5, "BATCH_SIZE": 50, "TRAIN_ITERATION": 1, "critic_clip_norm": 0.1, "actor_clip_norm": 0.1, }, value_func=mlp_q, policy=policy, name=name + '_ddpg', replay_buffer=None) mlp_dyna = ContinuousMLPGlobalDynamicsModel( env_spec=env_spec, name_scope=name + '_mlp_dyna', name=name + '_mlp_dyna', learning_rate=0.01, state_input_scaler=RunningStandardScaler(dims=env_spec.flat_obs_dim), action_input_scaler=RunningStandardScaler( dims=env_spec.flat_action_dim), output_delta_state_scaler=RunningStandardScaler( dims=env_spec.flat_obs_dim), mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": env_spec.flat_obs_dim, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }]) algo = Dyna(env_spec=env_spec, name=name + '_dyna_algo', model_free_algo=ddpg, dynamics_model=mlp_dyna, config_or_config_dict=dict(dynamics_model_train_iter=10, model_free_algo_train_iter=10)) # For examples only, we use random reward function and terminal function with fixed episode length. algo.set_terminal_reward_function_for_dynamics_env( terminal_func=FixedEpisodeLengthTerminalFunc( max_step_length=env.unwrapped._max_episode_steps, step_count_fn=algo.dynamics_env.total_step_count_fn), reward_func=RandomRewardFunc()) agent = Agent( env=env, env_spec=env_spec, algo=algo, algo_saving_scheduler=PeriodicalEventSchedule( t_fn=lambda: get_global_status_collect() ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'), trigger_every_step=20, after_t=10), name=name + '_agent', exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space, init_random_prob=0.5)) flow = create_dyna_flow( train_algo_func=(agent.train, (), dict(state='state_agent_training')), train_algo_from_synthesized_data_func=( agent.train, (), dict(state='state_agent_training')), train_dynamics_func=(agent.train, (), dict(state='state_dynamics_training')), test_algo_func=(agent.test, (), dict(sample_count=10)), test_dynamics_func=(agent.algo.test_dynamics, (), dict(sample_count=10, env=env)), sample_from_real_env_func=(agent.sample, (), dict(sample_count=10, env=agent.env, in_which_status='TRAIN', store_flag=True)), sample_from_dynamics_env_func=(agent.sample, (), dict(sample_count=10, env=agent.algo.dynamics_env, in_which_status='TRAIN', store_flag=True)), train_algo_every_real_sample_count_by_data_from_real_env=10, train_algo_every_real_sample_count_by_data_from_dynamics_env=10, test_algo_every_real_sample_count=10, test_dynamics_every_real_sample_count=10, train_dynamics_ever_real_sample_count=10, start_train_algo_after_sample_count=1, start_train_dynamics_after_sample_count=1, start_test_algo_after_sample_count=1, start_test_dynamics_after_sample_count=1, warm_up_dynamics_samples=1) experiment = Experiment(tuner=None, env=env, agent=agent, flow=flow, name=name + '_exp') experiment.run()
def task_fn(): # create the gym environment by make function env = make('Pendulum-v0') # give your experiment a name which is used to generate the log path etc. name = 'demo_exp' # construct the environment specification env_spec = EnvSpec(obs_space=env.observation_space, action_space=env.action_space) # construct the neural network to approximate q function of DDPG mlp_q = MLPQValueFunction(env_spec=env_spec, name_scope=name + '_mlp_q', name=name + '_mlp_q', mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "N_UNITS": 1, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }]) # construct the neural network to approximate policy for DDPG policy = DeterministicMLPPolicy(env_spec=env_spec, name_scope=name + '_mlp_policy', name=name + '_mlp_policy', mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "N_UNITS": env_spec.flat_action_dim, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }], reuse=False) # construct the DDPG algorithms ddpg = DDPG(env_spec=env_spec, config_or_config_dict={ "REPLAY_BUFFER_SIZE": 10000, "GAMMA": 0.999, "CRITIC_LEARNING_RATE": 0.001, "ACTOR_LEARNING_RATE": 0.001, "DECAY": 0.5, "BATCH_SIZE": 50, "TRAIN_ITERATION": 1, "critic_clip_norm": 0.1, "actor_clip_norm": 0.1, }, value_func=mlp_q, policy=policy, name=name + '_ddpg', replay_buffer=None) # construct a neural network based global dynamics model to approximate the state transition of environment mlp_dyna = ContinuousMLPGlobalDynamicsModel( env_spec=env_spec, name_scope=name + '_mlp_dyna', name=name + '_mlp_dyna', learning_rate=0.01, state_input_scaler=RunningStandardScaler(dims=env_spec.flat_obs_dim), action_input_scaler=RunningStandardScaler( dims=env_spec.flat_action_dim), output_delta_state_scaler=RunningStandardScaler( dims=env_spec.flat_obs_dim), mlp_config=[{ "ACT": "RELU", "B_INIT_VALUE": 0.0, "NAME": "1", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": 16, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }, { "ACT": "LINEAR", "B_INIT_VALUE": 0.0, "NAME": "OUPTUT", "L1_NORM": 0.0, "L2_NORM": 0.0, "N_UNITS": env_spec.flat_obs_dim, "TYPE": "DENSE", "W_NORMAL_STDDEV": 0.03 }]) # finally, construct the Dyna algorithms with a model free algorithm DDGP, and a NN model. algo = Dyna(env_spec=env_spec, name=name + '_dyna_algo', model_free_algo=ddpg, dynamics_model=mlp_dyna, config_or_config_dict=dict(dynamics_model_train_iter=10, model_free_algo_train_iter=10)) # To make the NN based dynamics model a proper environment so be a sampling source for DDPG, reward function and # terminal function need to be set. # For examples only, we use random reward function and terminal function with fixed episode length. algo.set_terminal_reward_function_for_dynamics_env( terminal_func=FixedEpisodeLengthTerminalFunc( max_step_length=env.unwrapped._max_episode_steps, step_count_fn=algo.dynamics_env.total_step_count_fn), reward_func=RandomRewardFunc()) # construct agent with additional exploration strategy if needed. agent = Agent( env=env, env_spec=env_spec, algo=algo, algo_saving_scheduler=PeriodicalEventSchedule( t_fn=lambda: get_global_status_collect() ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'), trigger_every_step=20, after_t=10), name=name + '_agent', exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space, init_random_prob=0.5)) # construct the training flow, called Dyna flow. It defines how the training proceed, and the terminal condition flow = create_dyna_flow( train_algo_func=(agent.train, (), dict(state='state_agent_training')), train_algo_from_synthesized_data_func=( agent.train, (), dict(state='state_agent_training')), train_dynamics_func=(agent.train, (), dict(state='state_dynamics_training')), test_algo_func=(agent.test, (), dict(sample_count=1)), test_dynamics_func=(agent.algo.test_dynamics, (), dict(sample_count=10, env=env)), sample_from_real_env_func=(agent.sample, (), dict(sample_count=10, env=agent.env, store_flag=True)), sample_from_dynamics_env_func=(agent.sample, (), dict(sample_count=10, env=agent.algo.dynamics_env, store_flag=True)), train_algo_every_real_sample_count_by_data_from_real_env=40, train_algo_every_real_sample_count_by_data_from_dynamics_env=40, test_algo_every_real_sample_count=40, test_dynamics_every_real_sample_count=40, train_dynamics_ever_real_sample_count=20, start_train_algo_after_sample_count=1, start_train_dynamics_after_sample_count=1, start_test_algo_after_sample_count=1, start_test_dynamics_after_sample_count=1, warm_up_dynamics_samples=1) # construct the experiment experiment = Experiment(tuner=None, env=env, agent=agent, flow=flow, name=name + '_exp') # run! experiment.run()