def learning(cls, total_epoch, n_train, n_valid, n_test, batch_size, left_gram, right_gram, model_file, features_vector, labels_vector, n_hidden1=100, learning_rate=0.01, early_stop_cost=0.001): ngram = left_gram + right_gram n_features = len(features_vector) * ngram # number of features = 17,380 * 4 n_classes = len(labels_vector) if len(labels_vector) >= 3 else 1 # number of classes = 2 but len=1 log.info('load characters list...') log.info('load characters list OK. len: %s\n' % NumUtil.comma_str(len(features_vector))) watch = WatchUtil() train_file = os.path.join(KO_WIKIPEDIA_ORG_DIR, 'datasets', 'word_spacing', 'ko.wikipedia.org.dataset.sentences=%s.left=%d.right=%d.train.gz' % (n_train, left_gram, right_gram)) valid_file = os.path.join(KO_WIKIPEDIA_ORG_DIR, 'datasets', 'word_spacing', 'ko.wikipedia.org.dataset.sentences=%s.left=%d.right=%d.test.gz' % (n_valid, left_gram, right_gram)) test_file = os.path.join(KO_WIKIPEDIA_ORG_DIR, 'datasets', 'word_spacing', 'ko.wikipedia.org.dataset.sentences=%s.left=%d.right=%d.valid.gz' % (n_test, left_gram, right_gram)) if not os.path.exists(train_file) or not os.path.exists(valid_file) or not os.path.exists(test_file): dataset_dir = os.path.dirname(train_file) if not os.path.exists(dataset_dir): os.makedirs(dataset_dir) watch.start('create dataset') log.info('create dataset...') data_files = (('train', KO_WIKIPEDIA_ORG_TRAIN_SENTENCES_FILE, n_train, train_file, False), ('valid', KO_WIKIPEDIA_ORG_VALID_SENTENCES_FILE, n_valid, valid_file, False), ('test', KO_WIKIPEDIA_ORG_TEST_SENTENCES_FILE, n_test, test_file, False)) for name, data_file, total, dataset_file, to_one_hot_vector in data_files: check_interval = 10000 log.info('check_interval: %s' % check_interval) log.info('%s %s total: %s' % (name, os.path.basename(data_file), NumUtil.comma_str(total))) features, labels = [], [] with gzip.open(data_file, 'rt', encoding='utf8') as f: for i, line in enumerate(f, 1): if total < i: break if i % check_interval == 0: time.sleep(0.01) # prevent cpu overload percent = i / total * 100 log.info('create dataset... %.1f%% readed. data len: %s. %s' % (percent, NumUtil.comma_str(len(features)), data_file)) _f, _l = WordSpacing.sentence2features_labels(line.strip(), left_gram=left_gram, right_gram=right_gram) features.extend(_f) labels.extend(_l) dataset = DataSet(features=features, labels=labels, features_vector=features_vector, labels_vector=labels_vector, name=name) log.info('dataset save... %s' % dataset_file) dataset.save(dataset_file, gzip_format=True, verbose=True) log.info('dataset save OK. %s' % dataset_file) log.info('dataset: %s' % dataset) log.info('create dataset OK.') log.info('') watch.stop('create dataset') watch.start('dataset load') log.info('dataset load...') train = DataSet.load(train_file, gzip_format=True, verbose=True) if n_train >= int('100,000'.replace(',', '')): valid = DataSet.load(valid_file, gzip_format=True, verbose=True) else: valid = DataSet.load(train_file, gzip_format=True, verbose=True) log.info('valid.convert_to_one_hot_vector()...') valid = valid.convert_to_one_hot_vector(verbose=True) log.info('valid.convert_to_one_hot_vector() OK.') log.info('train dataset: %s' % train) log.info('valid dataset: %s' % valid) log.info('dataset load OK.') log.info('') watch.stop('dataset load') graph = WordSpacing.build_FFNN(n_features, n_classes, n_hidden1, learning_rate, watch) train_step, X, Y, cost, predicted, accuracy = graph['train_step'], graph['X'], graph['Y'], graph['cost'], graph['predicted'], graph['accuracy'] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) check_interval = 10 # max(1, min(1000, n_train // 10)) nth_train, nth_input, total_input = 0, 0, total_epoch * train.size log.info('learn...') log.info('total: %s' % NumUtil.comma_str(train.size)) watch.start('learn') valid_cost = sys.float_info.max for epoch in range(1, total_epoch + 1): if valid_cost < early_stop_cost: break for step, (features_batch, labels_batch) in enumerate(train.next_batch(batch_size=batch_size), 1): if valid_cost < early_stop_cost: log.info('valid_cost: %s, early_stop_cost: %s, early stopped.' % (valid_cost, early_stop_cost)) break nth_train += 1 nth_input += features_batch.shape[0] sess.run(train_step, feed_dict={X: features_batch, Y: labels_batch}) # if step % check_interval == 1: percent = nth_input / total_input * 100 valid_cost = sess.run(cost, feed_dict={X: valid.features, Y: valid.labels}) log.info('[epoch=%s][%.1f%%] %s cost: %.4f' % (epoch, percent, valid.name, valid_cost)) watch.stop('learn') log.info('learn OK.\n') log.info('model save... %s' % model_file) watch.start('model save...') model_dir = os.path.dirname(model_file) if not os.path.exists(model_dir): os.makedirs(model_dir) saver = tf.train.Saver() saver.save(sess, model_file) watch.stop('model save...') log.info('model save OK. %s' % model_file) log.info('\n') log.info('batch_size: %s' % batch_size) log.info(watch.summary()) log.info('\n')
if n_train >= int('100,000'.replace(',', '')): sentences_file = test_sentences_file else: sentences_file = train_sentences_file with gzip.open(sentences_file, 'rt', encoding='utf8') as f: for i, line in enumerate(f, 1): if len(sentences) >= max_test_sentences: break s = line.strip() if s.count(' ') > 0: # sentence must have one or more space. sentences.append(s) log.info('len(sentences): %s' % NumUtil.comma_str(len(sentences))) watch.stop('read sentences') watch.start('run tensorflow') accuracies, sims = [], [] with tf.Session() as sess: graph = WordSpacing.build_FFNN(n_features, n_classes, n_hidden1, learning_rate) X, Y, predicted, accuracy = graph['X'], graph['Y'], graph['predicted'], graph['accuracy'] saver = tf.train.Saver() try: restored = saver.restore(sess, model_file) except: log.error('restore failed. model_file: %s' % model_file) try: for i, s in enumerate(sentences): log.info('')
if valid_timer.is_over(): valid_rsme, valid_summary = sess.run([rsme, summary], feed_dict={x: x_test, y: y_test}) valid_writer.add_summary(valid_summary, global_step=epoch) valid_writer.flush() if valid_rsme < best_cost: best_cost = valid_rsme best_epoch = epoch saver.save(sess, model_file) model_file_saved = True log.info('[epoch: %s] rsme (train/valid): %.1f / %.1f model saved' % (epoch, train_rsme, valid_rsme)) else: log.info('[epoch: %s] rsme (train/valid): %.1f / %.1f' % (epoch, train_rsme, valid_rsme)) if valid_rsme < early_stop_cost or valid_rsme > max_cost or math.isnan(valid_rsme): running = False break watch.stop('train') if model_file_saved and os.path.exists(model_file + '.index'): restored = saver.restore(sess, model_file) log.info('') log.info('--------TEST----------') watch.start('test') test_rsme, _y_hat = sess.run([rsme, y_hat], feed_dict={x: x_test, y: y_test}) log.info('%s rsme (test): %.1f (epoch best/total: %s/%s), activation: %s, n_hiddens: %s, learning_rate: %s, weights_initializer: %s' % ( func.__name__, test_rsme, NumUtil.comma_str(best_epoch), NumUtil.comma_str(epoch), activation.__name__, n_hiddens, learning_rate, weights_initializer.__name__)) # _y_hat = np.round(_y_hat) for i in range(min(5, _y_hat.shape[0])):
def learning(cls, total_epoch, n_train, n_valid, n_test, batch_size, window_size, noise_rate, model_file, features_vector, labels_vector, n_hidden1, learning_rate, dropout_keep_rate, early_stop_cost=0.001): n_features = len(features_vector) * window_size # number of features = 17,382 * 10 log.info('load characters list...') log.info('load characters list OK. len: %s' % NumUtil.comma_str(len(features_vector))) watch = WatchUtil() train_file = os.path.join(KO_WIKIPEDIA_ORG_DIR, 'datasets', 'spelling_error_correction', 'ko.wikipedia.org.dataset.sentences=%s.window_size=%d.train.gz' % (n_train, window_size)) valid_file = os.path.join(KO_WIKIPEDIA_ORG_DIR, 'datasets', 'spelling_error_correction', 'ko.wikipedia.org.dataset.sentences=%s.window_size=%d.valid.gz' % (n_valid, window_size)) test_file = os.path.join(KO_WIKIPEDIA_ORG_DIR, 'datasets', 'spelling_error_correction', 'ko.wikipedia.org.dataset.sentences=%s.window_size=%d.test.gz' % (n_test, window_size)) log.info('train_file: %s' % train_file) log.info('valid_file: %s' % valid_file) log.info('test_file: %s' % test_file) if not os.path.exists(train_file) or not os.path.exists(valid_file) or not os.path.exists(test_file): dataset_dir = os.path.dirname(train_file) if not os.path.exists(dataset_dir): os.makedirs(dataset_dir) watch.start('create dataset') # FIXME: out of memory (1M sentences) log.info('create dataset...') data_files = (('train', KO_WIKIPEDIA_ORG_TRAIN_SENTENCES_FILE, n_train, train_file, False), ('valid', KO_WIKIPEDIA_ORG_VALID_SENTENCES_FILE, n_valid, valid_file, False), ('test', KO_WIKIPEDIA_ORG_TEST_SENTENCES_FILE, n_test, test_file, False)) for (name, data_file, total, dataset_file, to_one_hot_vector) in data_files: check_interval = 10000 log.info('check_interval: %s' % check_interval) log.info('%s %s total: %s' % (name, os.path.basename(data_file), NumUtil.comma_str(total))) log.info('noise_rate: %s' % noise_rate) features, labels = [], [] with gzip.open(data_file, 'rt') as f: for i, line in enumerate(f, 1): if total < i: break if i % check_interval == 0: time.sleep(0.01) # prevent cpu overload percent = i / total * 100 log.info('create dataset... %.1f%% readed. data len: %s. %s' % (percent, NumUtil.comma_str(len(features)), data_file)) sentence = line.strip() for start in range(0, len(sentence) - window_size + 1): # 문자 단위로 노이즈(공백) 생성 chars = sentence[start: start + window_size] for idx in range(len(chars)): noised_chars = StringUtil.replace_with_index(chars, ' ', idx) features.append(noised_chars) labels.append(chars) log.debug('create dataset... %s "%s" -> "%s"' % (name, noised_chars, chars)) # log.info('noise_sampling: %s' % noise_sampling) # for nth_sample in range(noise_sampling): # 초성, 중성, 종성 단위로 노이즈 생성 # for start in range(0, len(sentence) - window_size + 1): # chars = sentence[start: start + window_size] # noised_chars = SpellingErrorCorrection.encode_noise(chars, noise_rate=noise_rate, noise_with_blank=True) # if chars == noised_chars: # continue # if i % check_interval == 0 and nth_sample == 0: # log.info('create dataset... %s "%s" -> "%s"' % (name, noised_chars, chars)) # features.append(noised_chars) # labels.append(chars) # print('dataset features:', features) # print('dataset labels:', labels) dataset = DataSet(features=features, labels=labels, features_vector=features_vector, labels_vector=labels_vector, name=name) log.info('dataset save... %s' % dataset_file) dataset.save(dataset_file, gzip_format=True, verbose=True) log.info('dataset save OK. %s' % dataset_file) log.info('dataset: %s' % dataset) log.info('create dataset OK.') log.info('') watch.stop('create dataset') watch.start('dataset load') log.info('dataset load...') train = DataSet.load(train_file, gzip_format=True, verbose=True) if n_train >= int('100,000'.replace(',', '')): valid = DataSet.load(valid_file, gzip_format=True, verbose=True) else: valid = DataSet.load(train_file, gzip_format=True, verbose=True) log.info('valid.convert_to_one_hot_vector()...') valid = valid.convert_to_one_hot_vector(verbose=True) log.info('valid.convert_to_one_hot_vector() OK.') log.info('train dataset: %s' % train) log.info('valid dataset: %s' % valid) log.info('dataset load OK.') log.info('') watch.stop('dataset load') X, Y, dropout_keep_prob, train_step, cost, y_hat, accuracy = SpellingErrorCorrection.build_DAE(n_features, window_size, noise_rate, n_hidden1, learning_rate, watch) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) check_interval = max(1, min(1000, n_train // 10)) nth_train, nth_input, total_input = 0, 0, total_epoch * train.size log.info('') log.info('learn...') log.info('total_epoch: %s' % total_epoch) log.info('train.size (total features): %s' % NumUtil.comma_str(train.size)) log.info('check_interval: %s' % check_interval) log.info('total_epoch: %s' % total_epoch) log.info('batch_size: %s' % batch_size) log.info('total_input: %s (total_epoch * train.size)' % total_input) log.info('') watch.start('learn') valid_cost = sys.float_info.max for epoch in range(1, total_epoch + 1): if valid_cost < early_stop_cost: log.info('valid_cost: %s, early_stop_cost: %s, early stopped.' % (valid_cost, early_stop_cost)) break for step, (features_batch, labels_batch) in enumerate(train.next_batch(batch_size=batch_size, to_one_hot_vector=True), 1): if valid_cost < early_stop_cost: break nth_train += 1 nth_input += features_batch.shape[0] sess.run(train_step, feed_dict={X: features_batch, Y: labels_batch, dropout_keep_prob: dropout_keep_rate}) # if nth_train % check_interval == 1: percent = nth_input / total_input * 100 valid_cost = sess.run(cost, feed_dict={X: valid.features, Y: valid.labels, dropout_keep_prob: 1.0}) log.info('[epoch=%s][%.1f%%] %s cost: %.8f' % (epoch, percent, valid.name, valid_cost)) watch.stop('learn') log.info('learn OK.') log.info('') log.info('model save... %s' % model_file) watch.start('model save...') model_dir = os.path.dirname(model_file) if not os.path.exists(model_dir): os.makedirs(model_dir) saver = tf.train.Saver() saver.save(sess, model_file) watch.stop('model save...') log.info('model save OK. %s' % model_file) log.info('') log.info('total_epoch: %s' % total_epoch) log.info('batch_size: %s' % batch_size) log.info('total_input: %s (total_epoch * train.size)' % total_input) log.info('') log.info(watch.summary()) log.info('')
def learning(cls, sentences_file, batch_size, left_gram, right_gram, model_file, features_vector, labels_vector, n_hidden1=100, max_sentences=0, learning_rate=0.01, layers=2): ngram = left_gram + right_gram n_features = len( features_vector) * ngram # number of features = 17,380 * 4 n_classes = len(labels_vector) if len( labels_vector) >= 3 else 1 # number of classes = 2 but len=1 log.info('load characters list...') log.info('load characters list OK. len: %s\n' % NumUtil.comma_str(len(features_vector))) watch = WatchUtil() train_file = os.path.join( KO_WIKIPEDIA_ORG_DATA_DIR, 'datasets', 'ko.wikipedia.org.dataset.sentences=%d.left=%d.right=%d.train.gz' % (max_sentences, left_gram, right_gram)) validation_file = train_file.replace('.train.', '.validation.') test_file = train_file.replace('.train.', '.test.') if not os.path.exists(train_file) or not os.path.exists( validation_file) or not os.path.exists(test_file): watch.start('create dataset') log.info('create dataset...') features, labels = [], [] check_interval = min(10000, math.ceil(max_sentences)) log.info('total: %s' % NumUtil.comma_str(max_sentences)) with gzip.open(sentences_file, 'rt') as f: for i, line in enumerate(f, 1): if max_sentences < i: break if i % check_interval == 0: log.info( 'create dataset... %.1f%% readed. data len: %s' % (i / max_sentences * 100, NumUtil.comma_str(len(features)))) _f, _l = WordSpacing.sentence2features_labels( line.strip(), left_gram=left_gram, right_gram=right_gram) features.extend(_f) labels.extend(_l) dataset = DataSet(features=features, labels=labels, features_vector=features_vector, labels_vector=labels_vector, name='all') log.info('dataset: %s' % dataset) log.info('create dataset OK.\n') watch.stop('create dataset') watch.start('dataset save') log.info('split to train, test, validation...') datasets = DataSets.to_datasets(dataset, test_rate=0.1, valid_rate=0.1, test_max=10000, valid_max=1000, shuffle=True) train, test, validation = datasets.train, datasets.test, datasets.validation log.info(train) log.info(test) log.info(validation) # log.info('%s %s' % (test.features[0], test.labels[0])) log.info('split to train, test, validation OK.\n') log.info('dataset save... %s' % train_file) train.save(train_file, verbose=True) # save as text log.info('dataset save OK.\n') log.info('dataset save... %s' % validation_file) validation = validation.convert_to_one_hot_vector( verbose=True) # save as vector validation.save(validation_file, verbose=True) log.info('dataset save OK.\n') log.info('dataset save... %s' % test_file) test = test.convert_to_one_hot_vector(verbose=True) test.save(test_file, verbose=True) # save as vector log.info('dataset save OK.\n') watch.stop('dataset save') else: watch.start('dataset load') log.info('dataset load...') train = DataSet.load(train_file, verbose=True) validation = DataSet.load(validation_file, verbose=True) test = DataSet.load(test_file, verbose=True) log.info(train) log.info(validation) log.info(test) log.info('dataset load OK.\n') watch.stop('dataset load') log.info('check samples...') for i, (features_batch, labels_batch) in enumerate( train.next_batch(batch_size=5, to_one_hot_vector=True), 1): if i > 2: break for a, b in zip(features_batch, labels_batch): feature, label = a, b _feature = feature.reshape((ngram, len(features_vector))) chars = ''.join(features_vector.to_values(_feature)) has_space = np.argmax(label) log.info('[%s] %s -> %s, %s (len=%s) %s (len=%s)' % (i, chars, has_space, feature, len(feature), label, len(label))) log.info('check samples OK.\n') graph = WordSpacing.build_FFNN(n_features, n_classes, n_hidden1, learning_rate, watch, layers=layers) train_step, X, Y, cost, hypothesis, predicted, accuracy = graph[ 'train_step'], graph['X'], graph['Y'], graph['cost'], graph[ 'hypothesis'], graph['predicted'], graph['accuracy'] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) n_input = 0 log.info('total: %s' % NumUtil.comma_str(train.size)) log.info('learn...') watch.start('learn') for step, (features_batch, labels_batch) in enumerate( train.next_batch(batch_size=batch_size), 1): n_input += batch_size sess.run(train_step, feed_dict={ X: features_batch, Y: labels_batch }) log.info( '[%s][%.1f%%] validation cost: %.4f' % (NumUtil.comma_str(n_input), n_input / train.size * 100, sess.run(cost, feed_dict={ X: validation.features, Y: validation.labels }))) watch.stop('learn') log.info('learn OK.\n') log.info('evaluate...') watch.start('evaluate...') _hypothesis, _correct, _accuracy = sess.run( [hypothesis, predicted, accuracy], feed_dict={ X: test.features, Y: test.labels }) # Accuracy report watch.stop('evaluate...') log.info('evaluate OK.') log.info('model save... %s' % model_file) watch.start('model save...') model_dir = os.path.dirname(model_file) if not os.path.exists(model_dir): os.makedirs(model_dir) saver = tf.train.Saver() saver.save(sess, model_file) watch.stop('model save...') log.info('model save OK. %s' % model_file) log.info('\n') log.info(watch.summary()) # log.info('hypothesis: %s %s' % (_hypothesis.shape, _hypothesis)) # log.info('correct: %s %s' % (_correct.shape, _correct)) log.info('accuracy: %s %s' % (_accuracy.shape, _accuracy)) log.info('\n')