def get_ball(): return make_ball_gif(n_frames=n_time_steps, f_height=f_height, f_width=f_width, ball_size=ball_size, max_1=True, vector_output=True)
# combined.append(x_reconstruct[i]) # combined.append(x_reconstruct[i+1]) # combined.append(x_reconstruct[i+2]) # kargs = { 'duration': .8 } # imageio.mimsave(home+"/Downloads/comb_gif.gif", combined, 'GIF', **kargs) #PREDICT batch = [] while len(batch) != batch_size: frame=make_ball_gif(n_frames=1, f_height=f_height, f_width=f_width, ball_size=ball_size, max_1=True, vector_output=True) batch.append(frame) batch = np.array(batch) batch = np.reshape(batch, [batch_size, 1 , f_height*f_width]) print batch.shape # predicted = vae.call_predict_next(batch) # print predicted.shape # together = [batch[0][0], predicted[0]] # together = np.array(together) # together = np.reshape(together, [2, f_height,f_width, 1]) # for i in range(len(together)): # together[i] = together[i] * (255. / np.max(together[i]))
from __future__ import absolute_import # from __future__ import print_function import matplotlib.pyplot as plt import autograd.numpy as np import autograd.numpy.random as npr import autograd.scipy.stats.norm as norm # from black_box_svi import black_box_variational_inference from autograd.optimizers import adam from ball_sequence import make_ball_gif sequence, action_list = (make_ball_gif()) print sequence.shape