示例#1
0
文件: t2.py 项目: amrka/banana
    def bet_T2s(self, **options):

        pipeline = self.new_pipeline(
            name='BET_T2s',
            inputs=[FilesetSpec('t2s', nifti_gz_format),
                    FilesetSpec('t2s_last_echo', nifti_gz_format)],
            outputs=[FilesetSpec('betted_T2s', nifti_gz_format),
                     FilesetSpec('betted_T2s_mask', nifti_gz_format),
                     FilesetSpec('betted_T2s_last_echo', nifti_gz_format)],
            desc=("python implementation of BET"),
            default_options={},
            citations=[fsl_cite],
            options=options)

        bet = pipeline.create_node(
            fsl.BET(frac=0.1, mask=True), name='bet',
            requirements=[fsl_req.v('5.0.8')], mem_gb=8, wall_time=45)
        pipeline.connect_input('t2s', bet, 'in_file')
        pipeline.connect_output('betted_T2s', bet, 'out_file')
        pipeline.connect_output('betted_T2s_mask', bet, 'mask_file')

        maths = pipeline.create_node(
            fsl.utils.ImageMaths(suffix='_BET_brain', op_string='-mas'),
            name='mask', requirements=[fsl_req.v('5.0.8')], mem_gb=16, wall_time=5)
        pipeline.connect_input('t2s_last_echo', maths, 'in_file')
        pipeline.connect(bet, 'mask_file', maths, 'in_file2')
        pipeline.connect_output('betted_T2s_last_echo', maths, 'out_file')

        return pipeline
示例#2
0
    def smooth_mask_pipeline(self, **name_maps):

        pipeline = self.new_pipeline('smooth_mask',
                                     desc="Smooths and masks a brain image",
                                     name_maps=name_maps,
                                     citations=[fsl_cite])

        # Smoothing process
        smooth = pipeline.add(
            'smooth',
            fsl.IsotropicSmooth(fwhm=self.parameter('smoothing_fwhm')),
            inputs={'in_file': ('magnitude', nifti_gz_format)},
            outputs={'smooth': ('out_file', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.10')])

        pipeline.add('mask',
                     fsl.ApplyMask(),
                     inputs={
                         'in_file': (smooth, 'out_file'),
                         'mask_file': ('brain_mask', nifti_gz_format)
                     },
                     outputs={'smooth_masked': ('out_file', nifti_gz_format)},
                     requirements=[fsl_req.v('5.0.10')])

        return pipeline
示例#3
0
    def rsfMRI_filtering_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='rsfMRI_filtering',
            desc=("Spatial and temporal rsfMRI filtering"),
            citations=[fsl_cite],
            name_maps=name_maps)

        afni_mc = pipeline.add(
            'AFNI_MC',
            Volreg(
                zpad=1,
                out_file='rsfmri_mc.nii.gz',
                oned_file='prefiltered_func_data_mcf.par'),
            inputs={
                'in_file': ('series_preproc', nifti_gz_format)},
            outputs={
                'mc_par': ('oned_file', par_format)},
            wall_time=5,
            requirements=[afni_req.v('16.2.10')])

        filt = pipeline.add(
            'Tproject',
            Tproject(
                stopband=(0, 0.01),
                polort=3,
                blur=3,
                out_file='filtered_func_data.nii.gz'),
            inputs={
                'delta_t': ('tr', float),
                'mask': ('brain_mask', nifti_gz_format),
                'in_file': (afni_mc, 'out_file')},
            wall_time=5,
            requirements=[afni_req.v('16.2.10')])

        meanfunc = pipeline.add(
            'meanfunc',
            ImageMaths(
                op_string='-Tmean',
                suffix='_mean',
                output_type='NIFTI_GZ'),
            wall_time=5,
            inputs={
                'in_file': (afni_mc, 'out_file')},
            requirements=[fsl_req.v('5.0.10')])

        pipeline.add(
            'add_mean',
            ImageMaths(
                op_string='-add',
                output_type='NIFTI_GZ'),
            inputs={
                'in_file': (filt, 'out_file'),
                'in_file2': (meanfunc, 'out_file')},
            outputs={
                'filtered_data': ('out_file', nifti_gz_format)},
            wall_time=5,
            requirements=[fsl_req.v('5.0.10')])

        return pipeline
示例#4
0
    def _flirt_linear_coreg_pipeline(self, **name_maps):
        """
        Registers a MR scan to a refernce MR scan using FSL's FLIRT command
        """

        pipeline = self.new_pipeline(
            name='linear_coreg',
            name_maps=name_maps,
            desc="Registers a MR scan against a reference image using FLIRT",
            citations=[fsl_cite])

        pipeline.add(
            'flirt',
            FLIRT(dof=self.parameter('flirt_degrees_of_freedom'),
                  cost=self.parameter('flirt_cost_func'),
                  cost_func=self.parameter('flirt_cost_func'),
                  output_type='NIFTI_GZ'),
            inputs={
                'in_file': ('mag_preproc', nifti_gz_format),
                'reference': ('coreg_ref', nifti_gz_format)},
            outputs={
                'mag_coreg': ('out_file', nifti_gz_format),
                'coreg_fsl_mat': ('out_matrix_file', text_matrix_format)},
            requirements=[fsl_req.v('5.0.8')],
            wall_time=5)

        return pipeline
示例#5
0
文件: base.py 项目: amrka/banana
    def segmentation_pipeline(self, img_type=2, **name_maps):
        pipeline = self.new_pipeline(
            name='FAST_segmentation',
            name_maps=name_maps,
            inputs=[FilesetSpec('brain', nifti_gz_format)],
            outputs=[FilesetSpec('wm_seg', nifti_gz_format)],
            desc="White matter segmentation of the reference image",
            references=[fsl_cite])

        fast = pipeline.add('fast',
                            fsl.FAST(img_type=img_type,
                                     segments=True,
                                     out_basename='Reference_segmentation'),
                            inputs={'in_files': ('brain', nifti_gz_format)},
                            requirements=[fsl_req.v('5.0.9')]),

        # Determine output field of split to use
        if img_type == 1:
            split_output = 'out3'
        elif img_type == 2:
            split_output = 'out2'
        else:
            raise ArcanaUsageError(
                "'img_type' parameter can either be 1 or 2 (not {})".format(
                    img_type))

        pipeline.add('split',
                     Split(splits=[1, 1, 1], squeeze=True),
                     connect={'inlist': (fast, 'tissue_class_files')},
                     outputs={split_output: ('wm_seg', nifti_gz_format)})

        return pipeline
示例#6
0
    def qform_transform_pipeline(self, **name_maps):
        pipeline = self.new_pipeline(
            name='qform_transform',
            name_maps=name_maps,
            desc="Registers a MR scan against a reference image",
            citations=[fsl_cite])

        if self.provided('coreg_ref'):
            in_file = 'mag_preproc'
            reference = 'coreg_ref'
        elif self.provided('coreg_ref_brain'):
            in_file = 'brain'
            reference = 'coreg_ref_brain'
        else:
            raise BananaUsageError(
                "'coreg_ref' or 'coreg_ref_brain' need to be provided to "
                "study in order to run qform_transform")

        pipeline.add(
            'flirt',
            FLIRT(
                uses_qform=True,
                apply_xfm=True,
                output_type='NIFTI_GZ'),
            inputs={
                'in_file': (in_file, nifti_gz_format),
                'reference': (reference, nifti_gz_format)},
            outputs={
                'qformed': ('out_file', nifti_gz_format),
                'qform_mat': ('out_matrix_file', text_matrix_format)},
            requirements=[fsl_req.v('5.0.8')],
            wall_time=5)

        return pipeline
示例#7
0
文件: epi.py 项目: amrka/banana
    def intrascan_alignment_pipeline(self, **kwargs):

        # inputs=[FilesetSpec('preproc', nifti_gz_format)],
        #   outputs=[FilesetSpec('moco', nifti_gz_format),
        #            FilesetSpec('align_mats', directory_format),
        #            FilesetSpec('moco_par', par_format)],

        pipeline = self.new_pipeline(name='MCFLIRT_pipeline',
                                     desc=("Intra-epi volumes alignment."),
                                     citations=[fsl_cite],
                                     **kwargs)
        mcflirt = pipeline.add('mcflirt',
                               fsl.MCFLIRT(),
                               requirements=[fsl_req.v('5.0.9')])
        mcflirt.inputs.ref_vol = 0
        mcflirt.inputs.save_mats = True
        mcflirt.inputs.save_plots = True
        mcflirt.inputs.output_type = 'NIFTI_GZ'
        mcflirt.inputs.out_file = 'moco.nii.gz'
        pipeline.connect_input('preproc', mcflirt, 'in_file')
        pipeline.connect_output('moco', mcflirt, 'out_file')
        pipeline.connect_output('moco_par', mcflirt, 'par_file')

        merge = pipeline.add('merge', MergeListMotionMat())
        pipeline.connect(mcflirt, 'mat_file', merge, 'file_list')
        pipeline.connect_output('align_mats', merge, 'out_dir')

        return pipeline
示例#8
0
    def bet_T1(self, **name_maps):

        pipeline = self.new_pipeline(name='BET_T1',
                                     name_maps=name_maps,
                                     desc=("python implementation of BET"),
                                     references=[fsl_cite])

        bias = pipeline.add('n4_bias_correction',
                            ants.N4BiasFieldCorrection(),
                            inputs={'input_image': ('t1', nifti_gz_format)},
                            requirements=[ants_req.v('1.9')],
                            wall_time=60,
                            mem_gb=12)

        pipeline.add('bet',
                     fsl.BET(frac=0.15, reduce_bias=True),
                     connections={'in_file': (bias, 'output_image')},
                     outputs={
                         'out_file': ('betted_T1', nifti_gz_format),
                         'mask_file': ('betted_T1_mask', nifti_gz_format)
                     },
                     requirements=[fsl_req.v('5.0.8')],
                     mem_gb=8,
                     wall_time=45)

        return pipeline
示例#9
0
    def group_melodic_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(name='group_melodic',
                                     desc=("Group ICA"),
                                     citations=[fsl_cite],
                                     name_maps=name_maps)

        pipeline.add(MELODIC(
            no_bet=True,
            bg_threshold=self.parameter('brain_thresh_percent'),
            dim=self.parameter('group_ica_components'),
            report=True,
            out_stats=True,
            mm_thresh=0.5,
            sep_vn=True,
            out_dir='group_melodic.ica',
            output_type='NIFTI_GZ'),
                     inputs={
                         'bg_image': ('template_brain', nifti_gz_format),
                         'mask': ('template_mask', nifti_gz_format),
                         'in_files': ('smoothed_ts', nifti_gz_format),
                         'tr_sec': ('tr', float)
                     },
                     outputs={'group_melodic': ('out_dir', directory_format)},
                     joinsource=self.SUBJECT_ID,
                     joinfield=['in_files'],
                     name='gica',
                     requirements=[fsl_req.v('5.0.10')],
                     wall_time=7200)

        return pipeline
示例#10
0
 def _bet_brain_extraction_pipeline(self, **name_maps):
     """
     Generates a whole brain mask using FSL's BET command.
     """
     pipeline = self.new_pipeline(
         name='brain_extraction',
         name_maps=name_maps,
         desc="Generate brain mask from mr_scan",
         citations=[fsl_cite, bet_cite, bet2_cite])
     # Create mask node
     bet = pipeline.add(
         "bet",
         fsl.BET(
             mask=True,
             output_type='NIFTI_GZ',
             frac=self.parameter('bet_f_threshold'),
             vertical_gradient=self.parameter('bet_g_threshold')),
         inputs={
             'in_file': ('mag_preproc', nifti_gz_format)},
         outputs={
             'brain': ('out_file', nifti_gz_format),
             'brain_mask': ('mask_file', nifti_gz_format)},
         requirements=[fsl_req.v('5.0.9')])
     # Set either robust or reduce bias
     if self.branch('bet_robust'):
         bet.inputs.robust = True
     else:
         bet.inputs.reduce_bias = self.parameter('bet_reduce_bias')
     return pipeline
示例#11
0
    def intrascan_alignment_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='MCFLIRT_pipeline',
            desc=("Intra-epi volumes alignment."),
            citations=[fsl_cite],
            name_maps=name_maps)

        mcflirt = pipeline.add(
            'mcflirt',
            fsl.MCFLIRT(
                ref_vol=0,
                save_mats=True,
                save_plots=True,
                output_type='NIFTI_GZ',
                out_file='moco.nii.gz'),
            inputs={
                'in_file': ('mag_preproc', nifti_gz_format)},
            outputs={
                'moco': ('out_file', nifti_gz_format),
                'moco_par': ('par_file', par_format)},
            requirements=[fsl_req.v('5.0.9')])

        pipeline.add(
            'merge',
            MergeListMotionMat(),
            inputs={
                'file_list': (mcflirt, 'mat_file')},
            outputs={
                'align_mats': ('out_dir', motion_mats_format)})

        return pipeline
示例#12
0
    def series_coreg_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            'series_coreg',
            desc="Applies coregistration transform to DW series",
            citations=[],
            name_maps=name_maps)

        if self.provided('coreg_ref'):
            coreg_ref = 'coreg_ref'
        elif self.provided('coreg_ref_brain'):
            coreg_ref = 'coreg_ref_brain'
        else:
            raise BananaUsageError(
                "Cannot coregister DW series as reference ('coreg_ref' or "
                "'coreg_ref_brain') has not been provided to {}".format(self))

        # Apply co-registration transformation to DW series
        pipeline.add(
            'mask_transform',
            fsl.ApplyXFM(
                output_type='NIFTI_GZ',
                apply_xfm=True),
            inputs={
                'in_matrix_file': ('coreg_fsl_mat', text_matrix_format),
                'in_file': ('series_preproc', nifti_gz_format),
                'reference': (coreg_ref, nifti_gz_format)},
            outputs={
                'series_coreg': ('out_file', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.10')],
            wall_time=10)

        return pipeline
示例#13
0
    def brain_coreg_pipeline(self, **name_maps):
        if self.branch('coreg_method', 'epireg'):
            pipeline = self.coreg_pipeline(
                name='brain_coreg',
                name_maps=dict(
                    input_map={
                        'mag_preproc': 'brain',
                        'coreg_ref': 'coreg_ref_brain'},
                    output_map={
                        'mag_coreg': 'brain_coreg'},
                    name_maps=name_maps))

            pipeline.add(
                'mask_transform',
                fsl.ApplyXFM(
                    output_type='NIFTI_GZ',
                    apply_xfm=True),
                inputs={
                    'in_matrix_file': (pipeline.node('epireg'), 'epi2str_mat'),
                    'in_file': ('brain_mask', nifti_gz_format),
                    'reference': ('coreg_ref_brain', nifti_gz_format)},
                outputs={
                    'brain_mask_coreg': ('out_file', nifti_gz_format)},
                requirements=[fsl_req.v('5.0.10')],
                wall_time=10)
        else:
            pipeline = super().brain_coreg_pipeline(**name_maps)

        return pipeline
示例#14
0
    def _epireg_linear_coreg_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='linear_coreg',
            desc=("Intra-subjects epi registration improved using white "
                  "matter boundaries."),
            citations=[fsl_cite],
            name_maps=name_maps)

        epireg = pipeline.add(
            'epireg',
            fsl.epi.EpiReg(
                out_base='epireg2ref',
                output_type='NIFTI_GZ',
                no_clean=True),
            inputs={
                'epi': ('brain', nifti_gz_format),
                't1_brain': ('coreg_ref_brain', nifti_gz_format),
                't1_head': ('coreg_ref', nifti_gz_format)},
            outputs={
                'brain_coreg': ('out_file', nifti_gz_format),
                'coreg_fsl_mat': ('epi2str_mat', text_matrix_format)},
            requirements=[fsl_req.v('5.0.9')])

        if self.provided('coreg_ref_wmseg'):
            pipeline.connect_input('coreg_ref_wmseg', epireg, 'wmseg',
                                   nifti_gz_format)

        return pipeline
示例#15
0
    def bet_T1(self, **name_maps):

        pipeline = self.new_pipeline(
            name='BET_T1',
            name_maps=name_maps,
            desc=("Brain extraction pipeline using FSL's BET"),
            citations=[fsl_cite])

        bias = pipeline.add('n4_bias_correction',
                            ants.N4BiasFieldCorrection(),
                            inputs={'input_image': ('t1', nifti_gz_format)},
                            requirements=[ants_req.v('1.9')],
                            wall_time=60,
                            mem_gb=12)

        pipeline.add('bet',
                     fsl.BET(frac=0.15,
                             reduce_bias=True,
                             output_type='NIFTI_GZ'),
                     inputs={'in_file': (bias, 'output_image')},
                     outputs={
                         'betted_T1': ('out_file', nifti_gz_format),
                         'betted_T1_mask': ('mask_file', nifti_gz_format)
                     },
                     requirements=[fsl_req.v('5.0.8')],
                     mem_gb=8,
                     wall_time=45)

        return pipeline
示例#16
0
    def single_subject_melodic_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='MelodicL1',
            desc=("Single subject ICA analysis using FSL MELODIC."),
            citations=[fsl_cite],
            name_maps=name_maps)

        pipeline.add('melodic_L1',
                     MELODIC(
                         no_bet=True,
                         bg_threshold=self.parameter('brain_thresh_percent'),
                         report=True,
                         out_stats=True,
                         mm_thresh=0.5,
                         out_dir='melodic_ica',
                         output_type='NIFTI_GZ'),
                     inputs={
                         'mask': (self.brain_mask_spec_name, nifti_gz_format),
                         'tr_sec': ('tr', float),
                         'in_files': ('filtered_data', nifti_gz_format)
                     },
                     outputs={'melodic_ica': ('out_dir', directory_format)},
                     wall_time=15,
                     requirements=[fsl_req.v('5.0.10')])

        return pipeline
示例#17
0
    def prepare_pipeline(self, **name_maps):
        """
        Performs basic preprocessing, such as swapping dimensions into
        standard orientation and resampling (if required)

        Parameters
        -------
        new_dims : tuple(str)[3]
            A 3-tuple with the new orientation of the image (see FSL
            swap dim)
        resolution : list(float)[3] | None
            New resolution of the image. If None no resampling is
            performed
        """
        pipeline = self.new_pipeline(
            name='prepare_pipeline',
            name_maps=name_maps,
            desc=("Dimensions swapping to ensure that all the images "
                  "have the same orientations."),
            citations=[fsl_cite])

        if (self.branch('reorient_to_std') or
                self.parameter('resampled_resolution') is not None):
            if self.branch('reorient_to_std'):
                swap = pipeline.add(
                    'fslreorient2std',
                    fsl.utils.Reorient2Std(
                        output_type='NIFTI_GZ'),
                    inputs={
                        'in_file': ('magnitude', nifti_gz_format)},
                    requirements=[fsl_req.v('5.0.9')])
    #         swap.inputs.new_dims = self.parameter('reoriented_dims')

            if self.parameter('resampled_resolution') is not None:
                resample = pipeline.add(
                    "resample",
                    MRResize(
                        voxel=self.parameter('resampled_resolution')),
                    inputs={
                        'in_file': (swap, 'out_file')},
                    requirements=[mrtrix_req.v('3.0rc3')])
                pipeline.connect_output('mag_preproc', resample, 'out_file',
                                        nifti_gz_format)
            else:
                pipeline.connect_output('mag_preproc', swap, 'out_file',
                                        nifti_gz_format)
        else:
            # Don't actually do any processing just copy magnitude image to
            # preproc
            pipeline.add(
                'identity',
                IdentityInterface(
                    ['file']),
                inputs={
                    'file': ('magnitude', nifti_gz_format)},
                outputs={
                    'mag_preproc': ('file', nifti_gz_format)})

        return pipeline
示例#18
0
    def _fugue_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='preprocess_pipeline',
            desc=("Fugue distortion correction pipeline"),
            citations=[fsl_cite],
            name_maps=name_maps)

        reorient_epi_in = pipeline.add(
            'reorient_epi_in',
            fsl.utils.Reorient2Std(output_type='NIFTI_GZ'),
            inputs={'in_file': ('series', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        fm_mag_reorient = pipeline.add(
            'reorient_fm_mag',
            fsl.utils.Reorient2Std(output_type='NIFTI_GZ'),
            inputs={'in_file': ('field_map_mag', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        fm_phase_reorient = pipeline.add(
            'reorient_fm_phase',
            fsl.utils.Reorient2Std(output_type='NIFTI_GZ'),
            inputs={'in_file': ('field_map_phase', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        bet = pipeline.add("bet",
                           BET(robust=True, output_type='NIFTI_GZ'),
                           inputs={'in_file': (fm_mag_reorient, 'out_file')},
                           wall_time=5,
                           requirements=[fsl_req.v('5.0.9')])

        create_fmap = pipeline.add(
            "prepfmap",
            PrepareFieldmap(
                # delta_TE=2.46
            ),
            inputs={
                'delta_TE': ('field_map_delta_te', float),
                "in_magnitude": (bet, "out_file"),
                'in_phase': (fm_phase_reorient, 'out_file')
            },
            wall_time=5,
            requirements=[fsl_req.v('5.0.9')])

        pipeline.add(
            'fugue',
            FUGUE(unwarp_direction='x',
                  dwell_time=self.parameter('fugue_echo_spacing'),
                  unwarped_file='example_func.nii.gz',
                  output_type='NIFTI_GZ'),
            inputs={
                'fmap_in_file': (create_fmap, 'out_fieldmap'),
                'in_file': (reorient_epi_in, 'out_file')
            },
            outputs={'series_preproc': ('unwarped_file', nifti_gz_format)},
            wall_time=5,
            requirements=[fsl_req.v('5.0.9')])

        return pipeline
示例#19
0
    def cet_T1(self, **name_maps):
        pipeline = self.new_pipeline(
            name='CET_T1',
            name_maps=name_maps,
            desc=("Construct cerebellum mask using SUIT template"),
            citations=[fsl_cite])

        # FIXME: Should convert to inputs
        nl = self._lookup_nl_tfm_inv_name('MNI')
        linear = self._lookup_l_tfm_to_name('MNI')

        # Initially use MNI space to warp SUIT into T1 and threshold to mask
        merge_trans = pipeline.add('merge_transforms',
                                   Merge(2),
                                   inputs={
                                       'in2': (nl, nifti_gz_format),
                                       'in1': (linear, nifti_gz_format)
                                   })

        apply_trans = pipeline.add('ApplyTransform',
                                   ants.resampling.ApplyTransforms(
                                       interpolation='NearestNeighbor',
                                       input_image_type=3,
                                       invert_transform_flags=[True, False]),
                                   inputs={
                                       'reference_image':
                                       ('betted_T1', nifti_gz_format),
                                       'input_image':
                                       ('suit_mask', nifti_gz_format),
                                       'transforms': (merge_trans, 'out')
                                   },
                                   requirements=[ants_req.v('1.9')],
                                   mem_gb=16,
                                   wall_time=120)

        pipeline.add('maths2',
                     fsl.utils.ImageMaths(suffix='_optiBET_cerebellum',
                                          op_string='-mas'),
                     inputs={
                         'in_file': ('betted_T1', nifti_gz_format),
                         'in_file2': (apply_trans, 'output_image')
                     },
                     outputs={
                         'cetted_T1': ('out_file', nifti_gz_format),
                         'cetted_T1_mask': ('output_image', nifti_gz_format)
                     },
                     requirements=[fsl_req.v('5.0.8')],
                     mem_gb=16,
                     wall_time=5)

        return pipeline
示例#20
0
    def bet_T2s(self, **options):

        pipeline = self.new_pipeline(name='BET_T2s',
                                     desc=("python implementation of BET"),
                                     default_options={},
                                     citations=[fsl_cite],
                                     options=options)

        bet = pipeline.add('bet',
                           fsl.BET(frac=0.1, mask=True,
                                   output_type='NIFTI_GZ'),
                           inputs={'in_file': ('t2s', nifti_gz_format)},
                           outputs={
                               'betted_T2s': ('out_file', nifti_gz_format),
                               'betted_T2s_mask':
                               ('mask_file', nifti_gz_format)
                           },
                           requirements=[fsl_req.v('5.0.8')],
                           mem_gb=8,
                           wall_time=45)

        pipeline.add(
            'mask',
            fsl.utils.ImageMaths(suffix='_BET_brain',
                                 op_string='-mas',
                                 output_type='NIFTI_GZ'),
            inputs={
                'in_file': ('t2s_last_echo', nifti_gz_format),
                'in_file2': (bet, 'mask_file')
            },
            outputs={'betted_T2s_last_echo': ('out_file', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.8')],
            mem_gb=16,
            wall_time=5)

        return pipeline
示例#21
0
文件: epi.py 项目: amrka/banana
    def _fugue_pipeline(self, **kwargs):

        #            inputs=[FilesetSpec('magnitude', nifti_gz_format),
        #                    FilesetSpec('field_map_mag', nifti_gz_format),
        #                    FilesetSpec('field_map_phase', nifti_gz_format)],
        #            outputs=[FilesetSpec('preproc', nifti_gz_format)],

        pipeline = self.new_pipeline(
            name='preprocess_pipeline',
            desc=("Fugue distortion correction pipeline"),
            references=[fsl_cite],
            **kwargs)

        reorient_epi_in = pipeline.create_node(
            fsl.utils.Reorient2Std(),
            name='reorient_epi_in',
            requirements=[fsl_req.v('5.0.9')])
        pipeline.connect_input('magnitude', reorient_epi_in, 'in_file')
        fm_mag_reorient = pipeline.create_node(
            fsl.utils.Reorient2Std(),
            name='reorient_fm_mag',
            requirements=[fsl_req.v('5.0.9')])
        pipeline.connect_input('field_map_mag', fm_mag_reorient, 'in_file')
        fm_phase_reorient = pipeline.create_node(
            fsl.utils.Reorient2Std(),
            name='reorient_fm_phase',
            requirements=[fsl_req.v('5.0.9')])
        pipeline.connect_input('field_map_phase', fm_phase_reorient, 'in_file')
        bet = pipeline.create_node(BET(),
                                   name="bet",
                                   wall_time=5,
                                   requirements=[fsl_req.v('5.0.9')])
        bet.inputs.robust = True
        pipeline.connect(fm_mag_reorient, 'out_file', bet, 'in_file')
        create_fmap = pipeline.create_node(PrepareFieldmap(),
                                           name="prepfmap",
                                           wall_time=5,
                                           requirements=[fsl_req.v('5.0.9')])
        #         create_fmap.inputs.delta_TE = 2.46
        pipeline.connect_input('field_map_delta_te', create_fmap, 'delta_TE')
        pipeline.connect(bet, "out_file", create_fmap, "in_magnitude")
        pipeline.connect(fm_phase_reorient, 'out_file', create_fmap,
                         'in_phase')

        fugue = pipeline.create_node(FUGUE(),
                                     name='fugue',
                                     wall_time=5,
                                     requirements=[fsl_req.v('5.0.9')])
        fugue.inputs.unwarp_direction = 'x'
        fugue.inputs.dwell_time = self.parameter('fugue_echo_spacing')
        fugue.inputs.unwarped_file = 'example_func.nii.gz'
        pipeline.connect(create_fmap, 'out_fieldmap', fugue, 'fmap_in_file')
        pipeline.connect(reorient_epi_in, 'out_file', fugue, 'in_file')
        pipeline.connect_output('preproc', fugue, 'unwarped_file')
        return pipeline
示例#22
0
    def brain_extraction_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            'brain_extraction',
            desc="Extracts brain from full-head image",
            name_maps=name_maps,
            citations=[fsl_cite])

        pipeline.add('bet',
                     fsl.BET(mask=True),
                     inputs={'in_file': ('magnitude', nifti_gz_format)},
                     outputs={
                         'brain': ('out_file', nifti_gz_format),
                         'brain_mask': ('mask_file', nifti_gz_format)
                     },
                     requirements=[fsl_req.v('5.0.10')])

        return pipeline
示例#23
0
 def path(self):
     # If resolution is a string then it is assumed to be a parameter name
     # of the analysis
     if isinstance(self._resolution, str):
         resolution = getattr(self.analysis, self._resolution)
     else:
         resolution = self._resolution
     full_atlas_name = '{}_{}mm'.format(self._atlas_name, resolution)
     if self._dataset is not None:
         full_atlas_name += '_' + self._dataset
     fsl_ver = self.analysis.environment.satisfy(fsl_req.v('5.0.8'))[0]
     if hasattr(self.analysis.environment, 'load'):
         self.analysis.environment.load(fsl_ver)
         fsl_dir = os.environ['FSLDIR']
         self.analysis.environment.unload(fsl_ver)
     else:
         fsl_dir = os.environ['FSLDIR']  # Static environments
     return op.join(fsl_dir, 'data', *self._sub_path,
                    full_atlas_name + '.nii.gz')
示例#24
0
 def path(self):
     # If resolution is a string then it is assumed to be a parameter name
     # of the study
     if isinstance(self._resolution, str):
         resolution = self.study.parameter(self._resolution)
     else:
         resolution = self._resolution
     full_atlas_name = '{}_{}mm'.format(self._atlas_name, resolution)
     if self._dataset is not None:
         full_atlas_name += '_' + self._dataset
     try:
         fsl_ver = self.study.environment.load(fsl_req.v('5.0.8'))
     except AttributeError:
         pass
     atlas_dir = op.join(os.environ['FSLDIR'], 'data', *self._sub_path)
     try:
         self.study.environment.unload(fsl_ver)
     except AttributeError:
         pass
     return op.join(atlas_dir, full_atlas_name + '.nii.gz')
示例#25
0
文件: dmri.py 项目: amrka/banana
    def bias_correct_pipeline(self, **name_maps):  # @UnusedVariable @IgnorePep8
        """
        Corrects B1 field inhomogeneities
        """

#             inputs=[FilesetSpec('preproc', nifti_gz_format),
#                     FilesetSpec('brain_mask', nifti_gz_format),
#                     FilesetSpec('grad_dirs', fsl_bvecs_format),
#                     FilesetSpec('bvalues', fsl_bvals_format)],
#             outputs=[FilesetSpec('bias_correct', nifti_gz_format)],

        bias_method = self.parameter('bias_correct_method')
        pipeline = self.new_pipeline(
            name='bias_correct',
            desc="Corrects for B1 field inhomogeneity",
            references=[fast_cite,
                        (n4_cite if bias_method == 'ants' else fsl_cite)],
            name_maps=name_maps)
        # Create bias correct node
        bias_correct = pipeline.add(
            "bias_correct", DWIBiasCorrect(),
            requirements=(
                [mrtrix_req.v('3.0rc3')] +
                [ants_req.v('2.0')
                 if bias_method == 'ants' else fsl_req.v('5.0.9')]))
        bias_correct.inputs.method = bias_method
        # Gradient merge node
        fsl_grads = pipeline.add(
            "fsl_grads",
            MergeTuple(2))
        # Connect nodes
        pipeline.connect(fsl_grads, 'out', bias_correct, 'grad_fsl')
        # Connect to inputs
        pipeline.connect_input('grad_dirs', fsl_grads, 'in1')
        pipeline.connect_input('bvalues', fsl_grads, 'in2')
        pipeline.connect_input('preproc', bias_correct, 'in_file')
        pipeline.connect_input('brain_mask', bias_correct, 'mask')
        # Connect to outputs
        pipeline.connect_output('bias_correct', bias_correct, 'out_file')
        # Check inputs/output are connected
        return pipeline
示例#26
0
文件: base.py 项目: amrka/banana
    def qform_transform_pipeline(self, **name_maps):
        pipeline = self.new_pipeline(
            name='qform_transform',
            name_maps=name_maps,
            desc="Registers a MR scan against a reference image",
            references=[fsl_cite])

        pipeline.add('flirt',
                     FLIRT(uses_qform=True, apply_xfm=True),
                     inputs={
                         'in_file': ('brain', nifti_gz_format),
                         'reference': ('coreg_ref_brain', nifti_gz_format)
                     },
                     outputs={
                         'out_file': ('qformed', nifti_gz_format),
                         'out_matrix_file': ('qform_mat', text_matrix_format)
                     },
                     requirements=[fsl_req.v('5.0.8')],
                     wall_time=5)

        return pipeline
示例#27
0
文件: base.py 项目: amrka/banana
    def _ants_to_atlas_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='coregister_to_atlas',
            name_maps=name_maps,
            desc=("Nonlinearly registers a MR scan to a standard space,"
                  "e.g. MNI-space"),
            references=[fsl_cite])

        ants_reg = pipeline.add('Struct2MNI_reg',
                                AntsRegSyn(num_dimensions=3,
                                           transformation='s',
                                           out_prefix='Struct2MNI',
                                           num_threads=4),
                                inputs={
                                    'input_file':
                                    (self.brain_spec_name, nifti_gz_format),
                                    'ref_file':
                                    ('atlas_brain', nifti_gz_format)
                                },
                                outputs={
                                    'reg_file':
                                    ('coreg_to_atlas', nifti_gz_format),
                                    'regmat':
                                    ('coreg_to_atlas_mat', text_matrix_format),
                                    'warp_file':
                                    ('coreg_to_atlas_warp', nifti_gz_format)
                                },
                                wall_time=25,
                                requirements=[ants_req.v('2.0')])

        pipeline.add('slices',
                     FSLSlices(outname='coreg_to_atlas_report'),
                     inputs={'im1': ('atlas', nifti_gz_format)},
                     connect={'im2': (ants_reg, 'reg_file')},
                     outputs={'report': ('coreg_to_atlas_report', gif_format)},
                     wall_time=1,
                     requirements=[fsl_req.v('5.0.8')])

        return pipeline
示例#28
0
文件: base.py 项目: apoz00003/banana
    def pet_data_preparation_pipeline(self, **kwargs):

        pipeline = self.new_pipeline(
            name='pet_data_preparation',
            desc=("Given a folder with reconstructed PET data, this "
                  "pipeline will prepare the data for the motion "
                  "correction"),
            citations=[],
            **kwargs)

        pipeline.add('prepare_pet',
                     PreparePetDir(image_orientation_check=self.parameter(
                         'image_orientation_check')),
                     inputs={'pet_dir': ('pet_recon_dir', directory_format)},
                     ouputs={
                         'pet_recon_dir_prepared':
                         ('pet_dir_prepared', directory_format)
                     },
                     requirements=[mrtrix_req.v('3.0rc3'),
                                   fsl_req.v('5.0.9')])

        return pipeline
示例#29
0
文件: epi.py 项目: amrka/banana
    def _epireg_linear_brain_coreg_pipeline(self, **kwargs):

        pipeline = self.new_pipeline(
            name='linear_coreg',
            desc=("Intra-subjects epi registration improved using white "
                  "matter boundaries."),
            references=[fsl_cite],
            **kwargs)
        pipeline.add('epireg',
                     fsl.epi.EpiReg(out_base='epireg2ref'),
                     inputs={
                         'epi': ('brain', nifti_gz_format),
                         't1_brain': ('coreg_ref_brain', nifti_gz_format),
                         't1_head': ('coreg_ref_preproc', nifti_gz_format),
                         'wmseg': ('wmseg', nifti_gz_format)
                     },
                     outputs={
                         'out_file': ('coreg_brain', nifti_gz_format),
                         'epi2str_mat': ('coreg_matrix', text_matrix_format)
                     },
                     requirements=[fsl_req.v('5.0.9')])

        return pipeline
示例#30
0
    def umap_realignment_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='umap_realignment',
            desc=("Pipeline to align the original umap (if provided)"
                  "to match the head position in each frame and improve the "
                  "static PET image quality."),
            citations=[fsl_cite],
            name_maps=name_maps)

        pipeline.add(
            'umap2ref_alignment',
            UmapAlign2Reference(pct=self.parameter('align_pct')),
            inputs={
                'ute_regmat': ('umap_ref_coreg_matrix', text_matrix_format),
                'ute_qform_mat': ('umap_ref_qform_mat', text_matrix_format),
                'average_mats': ('average_mats', directory_format),
                'umap': ('umap', nifti_gz_format)
            },
            outputs={'umaps_align2ref': ('umaps_align2ref', directory_format)},
            requirements=[fsl_req.v('5.0.9')])

        return pipeline