print ' clim => ' + str(ni0) + ', ' + str( nj0) + ', (' + vdic['F_T_OBS_3D_12'] + ')' print ' NEMO => ' + str(ni) + ', ' + str(nj) sys.exit(0) if cvar in ['sss', 'sst', 'mld']: # Creating 1D long. and lat.: ji_lat0 = nmp.argmax(xlat[nj - 1, :]) vlon = nmp.zeros(ni) vlon[:] = xlon[20, :] vlat = nmp.zeros(nj) vlat[:] = xlat[:, ji_lat0] if cvar == 'ice': # Extraoplating sea values over continents: bt.drown(Vnemo[:, :, :], imask, k_ew=2, nb_max_inc=10, nb_smooth=10) lpix = False if vdic['ORCA'][:5] == 'ORCA0': lpix = True for jt in range(nt): cm = "%02d" % (jt + 1) cdate = cy + cm cdatet = cy + '/' + cm if cvar == 'sst': bp.plot("2d")(vlon, vlat, Vnemo[jt, :, :] - Vclim[jt, :, :], imask[:, :],
# Getting NEMO mean monthly climatology of sea-ice coverage: cf_nemo_mnmc = vdic['DIAG_D']+'/clim/mclim_'+CONFRUN+'_'+cy1+'-'+cy2+'_'+vdic['FILE_ICE_SUFFIX']+'.nc4' bt.chck4f(cf_nemo_mnmc) id_ice = Dataset(cf_nemo_mnmc) xnemo_frac_03 = id_ice.variables[vdic['NN_ICEF']][2,:,:] xnemo_frac_09 = id_ice.variables[vdic['NN_ICEF']][8,:,:] xnemo_thic_03 = id_ice.variables[vdic['NN_ICET']][2,:,:] xnemo_thic_09 = id_ice.variables[vdic['NN_ICET']][8,:,:] id_ice.close() [ nj, ni ] = xnemo_frac_03.shape ; print ' Shape of sea-ice :', nj, ni, '\n' # Extraoplating sea values on continents: bt.drown(xnemo_frac_03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo_frac_09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo_thic_03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo_thic_09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xclim03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xclim09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) # Time for figures: # ----------------- # # Extending to 90S: (from 78 to 90): # js_ext = 12; nje = nj + js_ext
# Getting NEMO mean monthly climatology of sea-ice coverage: cf_nemo_mnmc = vdic['DIAG_D']+'/clim/mclim_'+CONFEXP+'_'+cy1+'-'+cy2+'_'+vdic['FILE_ICE_SUFFIX']+'.nc4' bt.chck4f(cf_nemo_mnmc) id_ice = Dataset(cf_nemo_mnmc) xnemo_frac_03 = id_ice.variables[vdic['NN_ICEF']][2,:,:] xnemo_frac_09 = id_ice.variables[vdic['NN_ICEF']][8,:,:] xnemo_thic_03 = id_ice.variables[vdic['NN_ICET']][2,:,:] xnemo_thic_09 = id_ice.variables[vdic['NN_ICET']][8,:,:] id_ice.close() [ nj, ni ] = xnemo_frac_03.shape ; print ' Shape of sea-ice :', nj, ni, '\n' # Extraoplating sea values on continents: bt.drown(xnemo_frac_03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo_frac_09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo_thic_03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo_thic_09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xclim03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xclim09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) # Time for figures: # ----------------- # # Extending to 90S: (from 78 to 90): # js_ext = 12; nje = nj + js_ext
if cvar == 'sss' or cvar == 'sst': if nj != nj0 or ni != ni0: print 'ERROR (prepare_movies.py): NEMO file and clim do no agree in shape!' print ' clim => '+str(ni0)+', '+str(nj0)+', '+str(nk0),' ('+vdic['F_T_CLIM_3D_12']+')' print ' NEMO => '+str(ni)+', '+str(nj)+', '+str(nk) sys.exit(0) # Creating 1D long. and lat.: ji_lat0 = nmp.argmax(xlat[nj-1]) ; #lolo vlon = nmp.zeros(ni) ; vlon[:] = xlon[20,:] vlat = nmp.zeros(nj) ; vlat[:] = xlat[:,ji_lat0] if cvar == 'ice': # Extraoplating sea values on continents: bt.drown(Vnemo[:,:,:], imask, k_ew=2, nb_max_inc=10, nb_smooth=10) for jt in range(nt): cm = "%02d" % (jt+1) cdate = cy+cm if cvar == 'sst': bp.plot("2d")(vlon, vlat, Vnemo[jt,:,:] - Vclim[jt,:,:], imask[:,:], tmin, tmax, dtemp, corca=vdic['ORCA'], lkcont=False, cpal='RdBu_r', cfignm=path_fig+'/'+cv+'_'+cdate, cbunit='K', cfig_type=fig_type, lat_min=-65., lat_max=75., ctitle='SST (NEMO - obs) '+CONFRUN+' ('+cdate+')',
# Getting NEMO mean monthly climatology of sea-ice coverage: cf_nemo_mnmc = DIAG_D+'/clim/mclim_'+CONFRUN+'_'+cy1+'-'+cy2+'_'+FILE_ICE_SUFFIX+'.nc4' bt.chck4f(cf_nemo_mnmc) id_ice = Dataset(cf_nemo_mnmc) xnemo03 = id_ice.variables[NN_ICEF][2,:,:] xnemo09 = id_ice.variables[NN_ICEF][8,:,:] id_ice.close() [ nj, ni ] = xnemo03.shape ; print ' Shape of sea-ice :', nj, ni, '\n' # Extraoplating sea values on continents: bt.drown(xnemo03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xnemo09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xclim03, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) bt.drown(xclim09, xmask, k_ew=2, nb_max_inc=10, nb_smooth=10) # Time for figures: # ----------------- # # Extending to 90S: (from 78 to 90): # js_ext = 12; nje = nj + js_ext xlat0 = nmp.zeros(nje*ni); xlat0.shape = [ nje, ni ] xlon0 = nmp.zeros(nje*ni); xlon0.shape = [ nje, ni ]