def calc_avg_val_cols(self,row_tree,col_tree): if row_tree is None: pass else: avg_level_cols = barcode.level_avgs(self.data,col_tree) avg_tree_cols = tree_util.tree_averages(avg_level_cols,row_tree).T self.avg_tree_cols = avg_tree_cols Publisher.sendMessage("embed.col.avg") return avg_tree_cols
def calc_avg_val_rows(self,row_tree,col_tree): if col_tree is None: print "empty column tree" pass else: avg_level_rows = barcode.level_avgs(self.data.T,row_tree).T avg_tree_rows = tree_util.tree_averages(avg_level_rows.T,col_tree).T self.avg_tree_rows = avg_tree_rows Publisher.sendMessage("embed.row.avg") return avg_tree_rows
def calculate(self,datadict): self.data = datadict["data"] self.q_descs = datadict["q_descs"] self.p_score_descs = datadict["p_score_descs"] self.p_scores = datadict["p_scores"] self.col_tree = datadict["col_tree"] self.row_tree = datadict["row_tree"] avgs = barcode.level_avgs(self.data,self.col_tree) node_avgs = tree_util.tree_averages(avgs,self.row_tree) orig_shape = np.shape(node_avgs) r_avgs = np.reshape(node_avgs,(-1,orig_shape[-1])) #br_avgs = barcode.organize_cols(self.col_tree,r_avgs) #self.q_image = np.reshape(br_avgs,orig_shape) self.q_image = np.reshape(r_avgs,orig_shape) self.q_image_mg = np.zeros(np.shape(self.q_image)) self.q_image_mg[:,1:,:] = np.diff(self.q_image,axis=1) self.q_image_top = np.zeros(np.shape(self.q_image)) self.q_image_top = self.q_image - self.q_image[:,0,:][:,np.newaxis,:]