def test_one_agent_at_goal_state_limits(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array( [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6]) agent_params = param_server.AddChild("agent1") goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionStateLimits( goal_polygon, (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) info = world.Evaluate() self.assertEqual(info["success"], True)
def test_lane_change(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorMobil(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorIDMLaneTracking(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent) init_state2 = np.array([0, 15, -1.75, 0, 2]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.05] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 100] # Draw map for _ in range(0, 10): viewer.clear() world.Step(sim_step_time) viewer.drawWorld(world) viewer.show(block=False) time.sleep(sim_step_time / sim_real_time_factor)
def test_one_agent_at_goal_sequential(self): param_server = ParameterServer() # Model Definition dynamic_model = SingleTrackModel(param_server) behavior_model = BehaviorMPContinuousActions(param_server) idx = behavior_model.AddMotionPrimitive(np.array([1, 0])) behavior_model.ActionToBehavior(idx) execution_model = ExecutionModelInterpolate(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, 0, 0, 0, 0]) agent_params = param_server.AddChild("agent1") goal_frame = Polygon2d([0, 0, 0], [Point2d(-1,-1), Point2d(-1,1), Point2d(1,1), Point2d(1,-1)]) goal_polygon1 = goal_frame.Translate(Point2d(10, 0)) goal_polygon2 = goal_frame.Translate(Point2d(20, 0)) goal_polygon3 = goal_frame.Translate(Point2d(30, 0)) goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08]) goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08]) goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08]) goal_definition = GoalDefinitionSequential([goal_def1, goal_def2, goal_def3]) self.assertEqual(len(goal_definition.sequential_goals),3) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) # just drive with the single motion primitive should be successful for _ in range(0,1000): world.Step(0.2) info = world.Evaluate() if info["success"]: break self.assertEqual(info["success"], True) self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
def shape_from_track(track, wheelbase=2.7): offset = wheelbase / 2.0 length = track.length width = track.width pose = [0.0, 0.0, 0.0] points = [[length / 2.0 + offset, -width / 2.0], [length / 2.0 + offset, width / 2.0], [-length / 2.0 + offset, width / 2.0], [-length / 2.0 + offset, -width / 2.0], [length / 2.0 + offset, -width / 2.0]] poly = Polygon2d(pose, points) return poly
def goal_definition_from_track(track, end): states = list(dict_utils.get_item_iterator(track.motion_states)) motion_state = states[-1][1] bark_state = bark_state_from_motion_state(motion_state) goal_polygon = Polygon2d( np.array([0.0, 0.0, 0.0]), [Point2d(-1.5, 0), Point2d(-1.5, 8), Point2d(1.5, 8), Point2d(1.5, 0)]) goal_polygon = goal_polygon.Translate( Point2d(bark_state[0, int(StateDefinition.X_POSITION)], bark_state[0, int(StateDefinition.Y_POSITION)])) goal_definition = GoalDefinitionPolygon(goal_polygon) return goal_definition
def test_write_params_agent(self): params = ParameterServer() behavior = BehaviorConstantVelocity(params) execution = ExecutionModelInterpolate(params) dynamic = SingleTrackModel(params) shape = Polygon2d([1.25, 1, 0], [ Point2d(0, 0), Point2d(0, 2), Point2d(4, 2), Point2d(4, 0), Point2d(0, 0) ]) init_state = np.zeros(4) agent = Agent(init_state, behavior, dynamic, execution, shape, params.AddChild("agent")) params.Save("written_agents_param_test.json")
def test_draw_agents(self): params = ParameterServer() behavior = BehaviorConstantVelocity(params) execution = ExecutionModelInterpolate(params) dynamic = SingleTrackModel(params) shape = Polygon2d([1.25, 1, 0], [ Point2d(0, 0), Point2d(0, 2), Point2d(4, 2), Point2d(4, 0), Point2d(0, 0) ]) shape2 = CarLimousine() init_state = [0, 3, 2, 1] init_state2 = [0, 0, 5, 4] agent = Agent(init_state, behavior, dynamic, execution, shape, params.AddChild("agent")) agent2 = Agent(init_state2, behavior, dynamic, execution, shape2, params.AddChild("agent"))
def test_world(self): # create agent params = ParameterServer() behavior = BehaviorConstantVelocity(params) execution = ExecutionModelInterpolate(params) dynamic = SingleTrackModel(params) shape = Polygon2d([1.25, 1, 0], [ Point2d(0, 0), Point2d(0, 2), Point2d(4, 2), Point2d(4, 0), Point2d(0, 0) ]) init_state = np.array([0, 0, 0, 0, 5]) agent = Agent(init_state, behavior, dynamic, execution, shape, params.AddChild("agent")) road_map = OpenDriveMap() newXodrRoad = XodrRoad() newXodrRoad.id = 1 newXodrRoad.name = "Autobahn A9" newPlanView = PlanView() newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10) newXodrRoad.plan_view = newPlanView line = newXodrRoad.plan_view.GetReferenceLine().ToArray() p = Point2d(line[-1][0], line[-1][1]) newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4) line = newXodrRoad.plan_view.GetReferenceLine() lane_section = XodrLaneSection(0) lane = XodrLane() lane.line = line lane_section.AddLane(lane) newXodrRoad.AddLaneSection(lane_section) road_map.AddRoad(newXodrRoad) r = Roadgraph() map_interface = MapInterface() map_interface.SetOpenDriveMap(road_map) map_interface.SetRoadgraph(r) world = World(params) world.AddAgent(agent)
def test_evaluator_drivable_area(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorConstantVelocity(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #open_drive_map = world.map.GetOpenDriveMap() #agent_2d_shape = CarLimousine() agent_2d_shape = Polygon2d( [1.25, 1, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(3, 1), Point2d(3, -1)]) init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent) evaluator = EvaluatorDrivableArea() world.AddEvaluator("drivable_area", evaluator) info = world.Evaluate() self.assertFalse(info["drivable_area"]) viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawGoalDefinition(goal_polygon, color=(1, 0, 0), alpha=0.5, facecolor=(1, 0, 0)) viewer.drawWorld(world) viewer.drawRoadCorridor(agent.road_corridor) viewer.show(block=False)
execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Map Definition xodr_parser = XodrParser("modules/runtime/tests/data/Crossing8Course.xodr") map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, -15, -13, 3.14 * 5.0 / 4.0, 10 / 3.6]) agent_params = param_server.addChild("agent1") goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent)
self.cosimulation_viewer.show() sim = Cosimulation() try: sim.launch_carla_server() sim.connect_carla_server() sim.spawn_npc_agents(1) # [TIME_POSITION, X_POSITION, Y_POSITION, THETA_POSITION, VEL_POSITION, ...] ego_initial = np.array([0, 200, 0, 0, 0]) goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-2, -2), Point2d(-2, 2), Point2d(2, 2), Point2d(2, -2)]) goal_polygon = goal_polygon.Translate(Point2d(0, 0)) bp_lib = sim.carla_client.get_blueprint_library() bp = bp_lib.filter("vehicle.dodge_charger.police")[0] tf = sim.carla_client.generate_tranformation(x=ego_initial[1], y=ego_initial[2], z=0.3, pitch=0, yaw=math.degrees( ego_initial[3]), roll=0) carla_ego_id = sim.carla_client.spawn_actor(bp, tf)