示例#1
0
    def test_one_agent_at_goal_state_limits(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        init_state = np.array(
            [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6])
        agent_params = param_server.AddChild("agent1")
        goal_polygon = Polygon2d(
            [0, 0, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(1, 1),
             Point2d(1, -1)])
        goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

        agent = Agent(
            init_state, behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params,
            GoalDefinitionStateLimits(
                goal_polygon,
                (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None)

        world = World(param_server)
        world.AddAgent(agent)
        evaluator = EvaluatorGoalReached(agent.id)
        world.AddEvaluator("success", evaluator)

        info = world.Evaluate()
        self.assertEqual(info["success"], True)
示例#2
0
    def test_lane_change(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorMobil(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorIDMLaneTracking(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 15, -1.75, 0, 2])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.05]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 100]

        # Draw map
        for _ in range(0, 10):
            viewer.clear()
            world.Step(sim_step_time)
            viewer.drawWorld(world)
            viewer.show(block=False)
            time.sleep(sim_step_time / sim_real_time_factor)
示例#3
0
  def test_one_agent_at_goal_sequential(self):
    param_server = ParameterServer()
    # Model Definition
    dynamic_model = SingleTrackModel(param_server)
    behavior_model = BehaviorMPContinuousActions(param_server)
    idx = behavior_model.AddMotionPrimitive(np.array([1, 0]))
    behavior_model.ActionToBehavior(idx)
    execution_model = ExecutionModelInterpolate(param_server)


    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, 0, 0, 0, 0])
    agent_params = param_server.AddChild("agent1")
    goal_frame = Polygon2d([0, 0, 0],
                             [Point2d(-1,-1),
                              Point2d(-1,1),
                              Point2d(1,1),
                              Point2d(1,-1)])

    goal_polygon1 = goal_frame.Translate(Point2d(10, 0))
    goal_polygon2 = goal_frame.Translate(Point2d(20, 0))
    goal_polygon3 = goal_frame.Translate(Point2d(30, 0))

    goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08])
    goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08])
    goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08])

    goal_definition = GoalDefinitionSequential([goal_def1,
                                                goal_def2,
                                                goal_def3])

    self.assertEqual(len(goal_definition.sequential_goals),3)
    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                goal_definition,
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorGoalReached(agent.id)
    world.AddEvaluator("success", evaluator)

    # just drive with the single motion primitive should be successful 
    for _ in range(0,1000):
        world.Step(0.2)
        info = world.Evaluate()
        if info["success"]:
            break
    
    self.assertEqual(info["success"], True)
    self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
示例#4
0
def shape_from_track(track, wheelbase=2.7):
    offset = wheelbase / 2.0
    length = track.length
    width = track.width
    pose = [0.0, 0.0, 0.0]
    points = [[length / 2.0 + offset, -width / 2.0],
              [length / 2.0 + offset, width / 2.0],
              [-length / 2.0 + offset, width / 2.0],
              [-length / 2.0 + offset, -width / 2.0],
              [length / 2.0 + offset, -width / 2.0]]
    poly = Polygon2d(pose, points)
    return poly
示例#5
0
def goal_definition_from_track(track, end):
    states = list(dict_utils.get_item_iterator(track.motion_states))
    motion_state = states[-1][1]
    bark_state = bark_state_from_motion_state(motion_state)
    goal_polygon = Polygon2d(
        np.array([0.0, 0.0, 0.0]),
        [Point2d(-1.5, 0),
         Point2d(-1.5, 8),
         Point2d(1.5, 8),
         Point2d(1.5, 0)])
    goal_polygon = goal_polygon.Translate(
        Point2d(bark_state[0, int(StateDefinition.X_POSITION)],
                bark_state[0, int(StateDefinition.Y_POSITION)]))
    goal_definition = GoalDefinitionPolygon(goal_polygon)
    return goal_definition
示例#6
0
 def test_write_params_agent(self):
   params = ParameterServer()
   behavior = BehaviorConstantVelocity(params)
   execution = ExecutionModelInterpolate(params)
   dynamic = SingleTrackModel(params)
   shape = Polygon2d([1.25, 1, 0], [
       Point2d(0, 0),
       Point2d(0, 2),
       Point2d(4, 2),
       Point2d(4, 0),
       Point2d(0, 0)
   ])
   init_state = np.zeros(4)
   agent = Agent(init_state, behavior, dynamic, execution, shape,
                 params.AddChild("agent"))
   params.Save("written_agents_param_test.json")
示例#7
0
  def test_draw_agents(self):
    params = ParameterServer()
    behavior = BehaviorConstantVelocity(params)
    execution = ExecutionModelInterpolate(params)
    dynamic = SingleTrackModel(params)
    shape = Polygon2d([1.25, 1, 0], [
        Point2d(0, 0),
        Point2d(0, 2),
        Point2d(4, 2),
        Point2d(4, 0),
        Point2d(0, 0)
    ])
    shape2 = CarLimousine()

    init_state = [0, 3, 2, 1]
    init_state2 = [0, 0, 5, 4]

    agent = Agent(init_state, behavior, dynamic, execution, shape,
                  params.AddChild("agent"))
    agent2 = Agent(init_state2, behavior, dynamic, execution, shape2,
                    params.AddChild("agent"))
示例#8
0
    def test_world(self):
        # create agent
        params = ParameterServer()
        behavior = BehaviorConstantVelocity(params)
        execution = ExecutionModelInterpolate(params)
        dynamic = SingleTrackModel(params)
        shape = Polygon2d([1.25, 1, 0], [
            Point2d(0, 0),
            Point2d(0, 2),
            Point2d(4, 2),
            Point2d(4, 0),
            Point2d(0, 0)
        ])
        init_state = np.array([0, 0, 0, 0, 5])
        agent = Agent(init_state, behavior, dynamic, execution, shape,
                      params.AddChild("agent"))
        road_map = OpenDriveMap()
        newXodrRoad = XodrRoad()
        newXodrRoad.id = 1
        newXodrRoad.name = "Autobahn A9"
        newPlanView = PlanView()
        newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10)
        newXodrRoad.plan_view = newPlanView
        line = newXodrRoad.plan_view.GetReferenceLine().ToArray()
        p = Point2d(line[-1][0], line[-1][1])
        newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = newXodrRoad.plan_view.GetReferenceLine()
        lane_section = XodrLaneSection(0)
        lane = XodrLane()
        lane.line = line
        lane_section.AddLane(lane)
        newXodrRoad.AddLaneSection(lane_section)
        road_map.AddRoad(newXodrRoad)

        r = Roadgraph()
        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(road_map)
        map_interface.SetRoadgraph(r)
        world = World(params)
        world.AddAgent(agent)
示例#9
0
    def test_evaluator_drivable_area(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorConstantVelocity(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)
        #open_drive_map = world.map.GetOpenDriveMap()

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = Polygon2d(
            [1.25, 1, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(3, 1),
             Point2d(3, -1)])
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(
            init_state,
            behavior_model,
            dynamic_model,
            execution_model,
            agent_2d_shape,
            agent_params,
            GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
            map_interface)
        world.AddAgent(agent)

        evaluator = EvaluatorDrivableArea()
        world.AddEvaluator("drivable_area", evaluator)

        info = world.Evaluate()
        self.assertFalse(info["drivable_area"])

        viewer = MPViewer(params=params, use_world_bounds=True)

        # Draw map
        viewer.drawGoalDefinition(goal_polygon,
                                  color=(1, 0, 0),
                                  alpha=0.5,
                                  facecolor=(1, 0, 0))
        viewer.drawWorld(world)
        viewer.drawRoadCorridor(agent.road_corridor)
        viewer.show(block=False)
示例#10
0
execution_model = ExecutionModelInterpolate(param_server)
dynamic_model = SingleTrackModel(param_server)

# Map Definition
xodr_parser = XodrParser("modules/runtime/tests/data/Crossing8Course.xodr")
map_interface = MapInterface()
map_interface.SetOpenDriveMap(xodr_parser.map)
world.SetMap(map_interface)

# Agent Definition
agent_2d_shape = CarLimousine()
init_state = np.array([0, -15, -13, 3.14 * 5.0 / 4.0, 10 / 3.6])
agent_params = param_server.addChild("agent1")
goal_polygon = Polygon2d(
    [0, 0, 0],
    [Point2d(-1, -1),
     Point2d(-1, 1),
     Point2d(1, 1),
     Point2d(1, -1)])
goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

agent = Agent(
    init_state,
    behavior_model,
    dynamic_model,
    execution_model,
    agent_2d_shape,
    agent_params,
    GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
    map_interface)
world.AddAgent(agent)
示例#11
0
        self.cosimulation_viewer.show()


sim = Cosimulation()

try:
    sim.launch_carla_server()
    sim.connect_carla_server()

    sim.spawn_npc_agents(1)

    # [TIME_POSITION, X_POSITION, Y_POSITION, THETA_POSITION, VEL_POSITION, ...]
    ego_initial = np.array([0, 200, 0, 0, 0])
    goal_polygon = Polygon2d(
        [0, 0, 0],
        [Point2d(-2, -2),
         Point2d(-2, 2),
         Point2d(2, 2),
         Point2d(2, -2)])
    goal_polygon = goal_polygon.Translate(Point2d(0, 0))

    bp_lib = sim.carla_client.get_blueprint_library()
    bp = bp_lib.filter("vehicle.dodge_charger.police")[0]
    tf = sim.carla_client.generate_tranformation(x=ego_initial[1],
                                                 y=ego_initial[2],
                                                 z=0.3,
                                                 pitch=0,
                                                 yaw=math.degrees(
                                                     ego_initial[3]),
                                                 roll=0)

    carla_ego_id = sim.carla_client.spawn_actor(bp, tf)