def test_lane_change(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorMobil(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorIDMLaneTracking(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent) init_state2 = np.array([0, 15, -1.75, 0, 2]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.05] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 100] # Draw map for _ in range(0, 10): viewer.clear() world.Step(sim_step_time) viewer.drawWorld(world) viewer.show(block=False) time.sleep(sim_step_time / sim_real_time_factor)
def test_two_roads_one_lane(self): xodr_map = MakeXodrMapOneRoadTwoLanes() # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) open_drive_map = world.map.GetOpenDriveMap() viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawWorld(world) viewer.show(block=False) # Generate RoadCorridor roads = [100] driving_direction = XodrDrivingDirection.forward map_interface.GenerateRoadCorridor(roads, driving_direction) road_corridor = map_interface.GetRoadCorridor(roads, driving_direction) # Assert road corridor # Assert: 1 road self.assertEqual(len(road_corridor.roads), 1) # Assert: road1: 2 lanes self.assertEqual(len(road_corridor.GetRoad(roads[0]).lanes), 3) colors = ["blue", "red", "green"] count = 0 for lane_corridor in road_corridor.lane_corridors: viewer.drawPolygon2d(lane_corridor.polygon, color=colors[count], alpha=0.5) viewer.drawLine2d(lane_corridor.left_boundary, color="red") viewer.drawLine2d(lane_corridor.right_boundary, color="blue") viewer.drawLine2d(lane_corridor.center_line, color="black") viewer.show(block=False) plt.pause(2.) count += 1 viewer.show(block=True)
def test_two_roads_one_lane(self): params = ParameterServer() world = World(params) xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) start_point = Point2d(0, -11) lanes_near_start = map_interface.find_nearest_lanes(start_point, 1) assert(len(lanes_near_start) == 1) goal_point = Point2d(-191.789, -50.1725) lanes_near_goal = map_interface.find_nearest_lanes(goal_point, 1) assert(len(lanes_near_goal) == 1) viewer = MPViewer(params=params, use_world_bounds=True) viewer.drawWorld(world) time.sleep(2) # if this is not here, the second unit test is not executed (maybe parsing takes too long?)
def test_evaluator_drivable_area(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorConstantVelocity(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #open_drive_map = world.map.GetOpenDriveMap() #agent_2d_shape = CarLimousine() agent_2d_shape = Polygon2d( [1.25, 1, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(3, 1), Point2d(3, -1)]) init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent) evaluator = EvaluatorDrivableArea() world.AddEvaluator("drivable_area", evaluator) info = world.Evaluate() self.assertFalse(info["drivable_area"]) viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawGoalDefinition(goal_polygon, color=(1, 0, 0), alpha=0.5, facecolor=(1, 0, 0)) viewer.drawWorld(world) viewer.drawRoadCorridor(agent.road_corridor) viewer.show(block=False)
def test_python_behavior_model(self): # World Definition scenario_param_file = "macro_actions_test.json" # must be within examples params folder params = ParameterServer(filename=os.path.join( "modules/world/tests/params/", scenario_param_file)) world = World(params) # Define two behavior models one python one standard c++ model behavior_model = PythonDistanceBehavior(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorConstantVelocity(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Define the map interface and load a testing map map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) # Define the agent shapes agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -5.25, 0, 20]) # Define the goal definition for agents center_line = Line2d() center_line.AddPoint(Point2d(0.0, -1.75)) center_line.AddPoint(Point2d(100.0, -1.75)) max_lateral_dist = (0.4, 0.5) max_orientation_diff = (0.08, 0.1) velocity_range = (5.0, 20.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) # define two agents with the different behavior models agent_params = params.AddChild("agent1") agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent) init_state2 = np.array([0, 25, -5.25, 0, 15]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.2] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 1] # Draw map video_renderer = VideoRenderer(renderer=viewer, world_step_time=sim_step_time) for _ in range(0, 20): world.Step(sim_step_time) viewer.clear() video_renderer.drawWorld(world) video_renderer.drawGoalDefinition(goal_definition, "red", 0.5, "red") time.sleep(sim_step_time / sim_real_time_factor) video_renderer.export_video(filename="./test_video_intermediate", remove_image_dir=True)
def test_uct_single_agent(self): try: from bark.models.behavior import BehaviorUCTSingleAgentMacroActions except: print("Rerun with --define planner_uct=true") return # World Definition scenario_param_file = "macro_actions_test.json" # must be within examples params folder params = ParameterServer(filename=os.path.join( "modules/world/tests/params/", scenario_param_file)) world = World(params) # Model Definitions behavior_model = BehaviorUCTSingleAgentMacroActions(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorConstantVelocity(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) # agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -5.25, 0, 20]) agent_params = params.AddChild("agent1") # goal_polygon = Polygon2d( # [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) # goal_definition = GoalDefinitionPolygon(goal_polygon) # goal_polygon = goal_polygon.Translate(Point2d(90, -2)) center_line = Line2d() center_line.AddPoint(Point2d(0.0, -1.75)) center_line.AddPoint(Point2d(100.0, -1.75)) max_lateral_dist = (0.4, 0.5) max_orientation_diff = (0.08, 0.1) velocity_range = (5.0, 20.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent) init_state2 = np.array([0, 25, -5.25, 0, 0]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.2] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 1] # Draw map video_renderer = VideoRenderer(renderer=viewer, world_step_time=sim_step_time) for _ in range(0, 5): world.Step(sim_step_time) viewer.clear() video_renderer.drawWorld(world) video_renderer.drawGoalDefinition(goal_definition) time.sleep(sim_step_time / sim_real_time_factor) video_renderer.export_video(filename="./test_video_intermediate", remove_image_dir=True)