def __init__(self): self.carla_server = None self.carla_client = None self.carla_controller = None self.bark_viewer = None self.cosimulation_viewer = None self.launch_args = ["external/carla/CarlaUE4.sh", "-quality-level=Low"] # Bark parameter server self.param_server = ParameterServer( filename=BARK_PATH + "examples/params/od8_const_vel_one_agent.json") # World Definition self.bark_world = World(self.param_server) # Model Definitions self.behavior_model = BehaviorIDMClassic(self.param_server) self.execution_model = ExecutionModelInterpolate(self.param_server) self.dynamic_model = SingleTrackModel(self.param_server) # Map Definition xodr_parser = XodrParser(BARK_PATH + "modules/runtime/tests/data/" + BARK_MAP + ".xodr") self.map_interface = MapInterface() self.map_interface.SetOpenDriveMap(xodr_parser.map) self.bark_world.SetMap(self.map_interface) # Bark agent definition self.agent_2d_shape = CarLimousine() # use for converting carla actor id to bark agent id self.carla_2_bark_id = dict() # store the camera id attached to an agent self.carla_agents_cam = dict()
def test_one_agent_at_goal_state_limits(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array( [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6]) agent_params = param_server.AddChild("agent1") goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionStateLimits( goal_polygon, (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) info = world.Evaluate() self.assertEqual(info["success"], True)
def test_dr_deu_merging(self): # threeway_intersection xodr_parser = XodrParser( "modules/runtime/tests/data/DR_DEU_Merging_MT_v01_shifted.xodr") # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) roads = [0, 1] driving_direction = XodrDrivingDirection.forward map_interface.GenerateRoadCorridor(roads, driving_direction) road_corridor = map_interface.GetRoadCorridor(roads, driving_direction) # Draw map viewer = MPViewer(params=params, use_world_bounds=True) viewer.drawWorld(world) viewer.drawPolygon2d(road_corridor.lane_corridors[0].polygon, color="blue", alpha=0.5) viewer.drawPolygon2d(road_corridor.lane_corridors[1].polygon, color="blue", alpha=0.5) viewer.show(block=False) self.assertTrue(road_corridor.lane_corridors[0].polygon.Valid()) self.assertTrue(road_corridor.lane_corridors[1].polygon.Valid()) self.assertTrue(road_corridor.polygon.Valid())
def test_road_corridor_forward(self): xodr_parser = XodrParser( "modules/runtime/tests/data/road_corridor_test.xodr") # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) open_drive_map = world.map.GetOpenDriveMap() viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawWorld(world) viewer.show(block=False) # Generate RoadCorridor roads = [0, 1, 2] driving_direction = XodrDrivingDirection.forward map_interface.GenerateRoadCorridor(roads, driving_direction) road_corridor = map_interface.GetRoadCorridor(roads, driving_direction) # Assert road corridor # Assert: 3 roads self.assertEqual(len(road_corridor.roads), 3) # Assert: road1: 2 lanes, road2: 1 lane, road3: 1 lane self.assertEqual(len(road_corridor.GetRoad(0).lanes), 3) self.assertEqual(len(road_corridor.GetRoad(1).lanes), 2) self.assertEqual(len(road_corridor.GetRoad(2).lanes), 3) # Assert: next road self.assertEqual(road_corridor.GetRoad(0).next_road.road_id, 1) self.assertEqual(road_corridor.GetRoad(1).next_road.road_id, 2) # Assert: lane links self.assertEqual( road_corridor.GetRoad(0).GetLane(3).next_lane.lane_id, 5) self.assertEqual( road_corridor.GetRoad(1).GetLane(5).next_lane.lane_id, 8) # Assert: LaneCorridor self.assertEqual(len(road_corridor.lane_corridors), 3) colors = ["blue", "red", "green"] count = 0 for lane_corridor in road_corridor.lane_corridors: viewer.drawPolygon2d(lane_corridor.polygon, color=colors[count], alpha=0.5) viewer.drawLine2d(lane_corridor.left_boundary, color="red") viewer.drawLine2d(lane_corridor.right_boundary, color="blue") viewer.drawLine2d(lane_corridor.center_line, color="black") viewer.show(block=False) plt.pause(2.) count += 1
def _build_world_state(self): param_server = ParameterServer(json=self._json_params) world = World(param_server) if self._map_interface is None: world = self.setup_map(world, self._map_file_name) else: world.SetMap(self._map_interface) for agent in self._agent_list: agent.GenerateRoadCorridor(self._map_interface) world.AddAgent(agent) return world
def test_between_lanes(self): xodr_parser = XodrParser( "modules/runtime/tests/data/city_highway_straight.xodr") np.set_printoptions(precision=8) params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) # Simple test point_close = Point2d(5114.68262, 5086.44971) lane_sw = map_interface.FindLane(point_close) self.assertIsNotNone( lane_sw, "This point is still in the left lane! XodrLane boundary is 5114.683" ) switched_lane = False lng_coord = 5086.44971 i = 5114.5 lane_sw = map_interface.FindLane(Point2d(i, lng_coord)) assert lane_sw != None prev = lane_sw.lane_id prev_i = i while (i < 5117.5): lane_sw = map_interface.FindLane(Point2d(i, lng_coord)) self.assertIsNotNone( lane_sw, "Should always be on at least one lane! Currently at ({}, {})". format(i, lng_coord)) if prev != lane_sw.lane_id: # print(prev) # print(prev_i) # print(lane_sw.lane_id) # print(i) self.assertFalse(switched_lane, "XodrLane switch should only happens once!") switched_lane = True prev_i = i prev = lane_sw.lane_id i = i + 0.01 self.assertTrue(switched_lane, "Eventually should have switched lanes!")
def test_two_roads_one_lane(self): xodr_map = MakeXodrMapOneRoadTwoLanes() # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) open_drive_map = world.map.GetOpenDriveMap() viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawWorld(world) viewer.show(block=False) # Generate RoadCorridor roads = [100] driving_direction = XodrDrivingDirection.forward map_interface.GenerateRoadCorridor(roads, driving_direction) road_corridor = map_interface.GetRoadCorridor(roads, driving_direction) # Assert road corridor # Assert: 1 road self.assertEqual(len(road_corridor.roads), 1) # Assert: road1: 2 lanes self.assertEqual(len(road_corridor.GetRoad(roads[0]).lanes), 3) colors = ["blue", "red", "green"] count = 0 for lane_corridor in road_corridor.lane_corridors: viewer.drawPolygon2d(lane_corridor.polygon, color=colors[count], alpha=0.5) viewer.drawLine2d(lane_corridor.left_boundary, color="red") viewer.drawLine2d(lane_corridor.right_boundary, color="blue") viewer.drawLine2d(lane_corridor.center_line, color="black") viewer.show(block=False) plt.pause(2.) count += 1 viewer.show(block=True)
def test_road_corridor_intersection(self): xodr_parser = XodrParser( "modules/runtime/tests/data/road_corridor_test.xodr") # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) open_drive_map = world.map.GetOpenDriveMap() viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawWorld(world) viewer.show(block=False) # Generate RoadCorridor roads = [0, 1, 2] driving_direction = XodrDrivingDirection.forward map_interface.GenerateRoadCorridor(roads, driving_direction) road_corridor = map_interface.GetRoadCorridor(roads, driving_direction) colors = ["blue", "red", "green", "yellow"] count = 0 for road_id, road in road_corridor.roads.items(): for lane_id, lane in road.lanes.items(): print(road_id, lane_id, lane.driving_direction) for lane_corridor in road_corridor.lane_corridors: viewer.drawPolygon2d(lane_corridor.polygon, color=colors[count], alpha=0.5) viewer.drawLine2d(lane_corridor.left_boundary, color="red") viewer.drawLine2d(lane_corridor.right_boundary, color="blue") viewer.drawLine2d(lane_corridor.center_line, color="black") viewer.show(block=False) plt.pause(0.5) count += 1 viewer.show(block=True)
def test_Crossing8Course(self): xodr_parser = XodrParser( "modules/runtime/tests/data/Crossing8Course.xodr") params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) start_point = Point2d(0, -11) lanes_near_start = map_interface.find_nearest_lanes(start_point, 1) assert (len(lanes_near_start) == 1) goal_point = Point2d(-191.789, -50.1725) lanes_near_goal = map_interface.find_nearest_lanes(goal_point, 1) assert (len(lanes_near_goal) == 1) time.sleep( 2 ) # if this is not here, the second unit test is not executed (maybe parsing takes too long?)
def test_world(self): # create agent params = ParameterServer() behavior = BehaviorConstantVelocity(params) execution = ExecutionModelInterpolate(params) dynamic = SingleTrackModel(params) shape = Polygon2d([1.25, 1, 0], [ Point2d(0, 0), Point2d(0, 2), Point2d(4, 2), Point2d(4, 0), Point2d(0, 0) ]) init_state = np.array([0, 0, 0, 0, 5]) agent = Agent(init_state, behavior, dynamic, execution, shape, params.AddChild("agent")) road_map = OpenDriveMap() newXodrRoad = XodrRoad() newXodrRoad.id = 1 newXodrRoad.name = "Autobahn A9" newPlanView = PlanView() newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10) newXodrRoad.plan_view = newPlanView line = newXodrRoad.plan_view.GetReferenceLine().ToArray() p = Point2d(line[-1][0], line[-1][1]) newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4) line = newXodrRoad.plan_view.GetReferenceLine() lane_section = XodrLaneSection(0) lane = XodrLane() lane.line = line lane_section.AddLane(lane) newXodrRoad.AddLaneSection(lane_section) road_map.AddRoad(newXodrRoad) r = Roadgraph() map_interface = MapInterface() map_interface.SetOpenDriveMap(road_map) map_interface.SetRoadgraph(r) world = World(params) world.AddAgent(agent)
def test_find_lane(self): xodr_parser = XodrParser("modules/runtime/tests/data/urban_road.xodr") params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) lane_sw = map_interface.FindLane(Point2d(46, 180)) assert lane_sw.lane_type == XodrLaneType.sidewalk lane_rl = map_interface.FindLane(Point2d(52, 130)) assert lane_rl.lane_type == XodrLaneType.driving lane_no_lane = map_interface.FindLane(Point2d(120, 140)) assert lane_no_lane == None xodr_parser = XodrParser( "modules/runtime/tests/data/city_highway_straight.xodr") np.set_printoptions(precision=8) params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) point = Point2d(5114, 5072) viewer = MPViewer(params=params, use_world_bounds=True) viewer.drawWorld(world) viewer.drawPoint2d(point, 'red', 1.0) viewer.show(block=True) time.sleep(0.1) lane_sw = map_interface.FindLane(point) self.assertIsNotNone(lane_sw, "This point is clearly on a lane!")
def test_lane_change(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorMobil(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorIDMLaneTracking(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent) init_state2 = np.array([0, 15, -1.75, 0, 2]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.05] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 100] # Draw map for _ in range(0, 10): viewer.clear() world.Step(sim_step_time) viewer.drawWorld(world) viewer.show(block=False) time.sleep(sim_step_time / sim_real_time_factor)
def test_two_roads_one_lane(self): params = ParameterServer() world = World(params) xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) start_point = Point2d(0, -11) lanes_near_start = map_interface.find_nearest_lanes(start_point, 1) assert(len(lanes_near_start) == 1) goal_point = Point2d(-191.789, -50.1725) lanes_near_goal = map_interface.find_nearest_lanes(goal_point, 1) assert(len(lanes_near_goal) == 1) viewer = MPViewer(params=params, use_world_bounds=True) viewer.drawWorld(world) time.sleep(2) # if this is not here, the second unit test is not executed (maybe parsing takes too long?)
def test_one_agent_at_goal_sequential(self): param_server = ParameterServer() # Model Definition dynamic_model = SingleTrackModel(param_server) behavior_model = BehaviorMPContinuousActions(param_server) idx = behavior_model.AddMotionPrimitive(np.array([1, 0])) behavior_model.ActionToBehavior(idx) execution_model = ExecutionModelInterpolate(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, 0, 0, 0, 0]) agent_params = param_server.AddChild("agent1") goal_frame = Polygon2d([0, 0, 0], [Point2d(-1,-1), Point2d(-1,1), Point2d(1,1), Point2d(1,-1)]) goal_polygon1 = goal_frame.Translate(Point2d(10, 0)) goal_polygon2 = goal_frame.Translate(Point2d(20, 0)) goal_polygon3 = goal_frame.Translate(Point2d(30, 0)) goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08]) goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08]) goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08]) goal_definition = GoalDefinitionSequential([goal_def1, goal_def2, goal_def3]) self.assertEqual(len(goal_definition.sequential_goals),3) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) # just drive with the single motion primitive should be successful for _ in range(0,1000): world.Step(0.2) info = world.Evaluate() if info["success"]: break self.assertEqual(info["success"], True) self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
def test_uct_single_agent(self): try: from bark.models.behavior import BehaviorUCTSingleAgentMacroActions except: print("Rerun with --define planner_uct=true") return # World Definition scenario_param_file = "macro_actions_test.json" # must be within examples params folder params = ParameterServer(filename=os.path.join( "modules/world/tests/params/", scenario_param_file)) world = World(params) # Model Definitions behavior_model = BehaviorUCTSingleAgentMacroActions(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorConstantVelocity(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) # agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -5.25, 0, 20]) agent_params = params.AddChild("agent1") # goal_polygon = Polygon2d( # [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) # goal_definition = GoalDefinitionPolygon(goal_polygon) # goal_polygon = goal_polygon.Translate(Point2d(90, -2)) center_line = Line2d() center_line.AddPoint(Point2d(0.0, -1.75)) center_line.AddPoint(Point2d(100.0, -1.75)) max_lateral_dist = (0.4, 0.5) max_orientation_diff = (0.08, 0.1) velocity_range = (5.0, 20.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent) init_state2 = np.array([0, 25, -5.25, 0, 0]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.2] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 1] # Draw map video_renderer = VideoRenderer(renderer=viewer, world_step_time=sim_step_time) for _ in range(0, 5): world.Step(sim_step_time) viewer.clear() video_renderer.drawWorld(world) video_renderer.drawGoalDefinition(goal_definition) time.sleep(sim_step_time / sim_real_time_factor) video_renderer.export_video(filename="./test_video_intermediate", remove_image_dir=True)
import numpy as np # Name and Output Directory # CHANGE THIS # map_name = "4way_intersection" output_dir = "/home/esterle/map_analysis" + map_name # Map Definition xodr_parser = XodrParser("modules/runtime/tests/data/" + map_name + ".xodr") if not os.path.exists(output_dir): os.makedirs(output_dir) # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.set_open_drive_map(xodr_parser.map) world.set_map(map_interface) open_drive_map = world.map.get_open_drive_map() viewer = MPViewer(params=params, use_world_bounds=True) viewer.drawWorld(world) viewer.saveFig(output_dir + "/" + "world_plain.png") color_triplet_gray = (0.7, 0.7, 0.7) # Open Drive Elements (Roads, Lane Sections, Lanes) for idx_r, road in open_drive_map.get_roads().items():
def test_one_agent_at_goal_state_limits_frenet(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() agent_params = param_server.AddChild("agent1") center_line = Line2d() center_line.AddPoint(Point2d(5.0, 5.0)) center_line.AddPoint(Point2d(10.0, 10.0)) center_line.AddPoint(Point2d(20.0, 10.0)) max_lateral_dist = (0.4, 1) max_orientation_diff = (0.08, 0.1) velocity_range = (20.0, 25.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) # not at goal x,y, others yes agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # at goal x,y and others agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y,v yes but not orientation agent3 = Agent( np.array( [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001, 20]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y, orientation but not v agent4 = Agent( np.array([ 0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0], velocity_range[0] - 0.01 ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # at goal x,y, at lateral limit agent5 = Agent( np.array([ 0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1] ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y slightly out of lateral limit agent6 = Agent( np.array([ 0, 15, 10 + max_lateral_dist[0] + 0.05, 3.14 / 4 + max_orientation_diff[0], velocity_range[0] ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y,v yes but not orientation agent7 = Agent( np.array( [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001, 20]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent1) world.AddAgent(agent2) world.AddAgent(agent3) world.AddAgent(agent4) world.AddAgent(agent5) world.AddAgent(agent6) world.AddAgent(agent7) evaluator1 = EvaluatorGoalReached(agent1.id) evaluator2 = EvaluatorGoalReached(agent2.id) evaluator3 = EvaluatorGoalReached(agent3.id) evaluator4 = EvaluatorGoalReached(agent4.id) evaluator5 = EvaluatorGoalReached(agent5.id) evaluator6 = EvaluatorGoalReached(agent6.id) evaluator7 = EvaluatorGoalReached(agent7.id) world.AddEvaluator("success1", evaluator1) world.AddEvaluator("success2", evaluator2) world.AddEvaluator("success3", evaluator3) world.AddEvaluator("success4", evaluator4) world.AddEvaluator("success5", evaluator5) world.AddEvaluator("success6", evaluator6) world.AddEvaluator("success7", evaluator7) info = world.Evaluate() self.assertEqual(info["success1"], False) self.assertEqual(info["success2"], True) self.assertEqual(info["success3"], False) self.assertEqual(info["success4"], False) self.assertEqual(info["success5"], True) self.assertEqual(info["success6"], False) self.assertEqual(info["success7"], False)
class Cosimulation: def __init__(self): self.carla_server = None self.carla_client = None self.carla_controller = None self.bark_viewer = None self.cosimulation_viewer = None self.launch_args = ["external/carla/CarlaUE4.sh", "-quality-level=Low"] # Bark parameter server self.param_server = ParameterServer( filename=BARK_PATH + "examples/params/od8_const_vel_one_agent.json") # World Definition self.bark_world = World(self.param_server) # Model Definitions self.behavior_model = BehaviorIDMClassic(self.param_server) self.execution_model = ExecutionModelInterpolate(self.param_server) self.dynamic_model = SingleTrackModel(self.param_server) # Map Definition xodr_parser = XodrParser(BARK_PATH + "modules/runtime/tests/data/" + BARK_MAP + ".xodr") self.map_interface = MapInterface() self.map_interface.SetOpenDriveMap(xodr_parser.map) self.bark_world.SetMap(self.map_interface) # Bark agent definition self.agent_2d_shape = CarLimousine() # use for converting carla actor id to bark agent id self.carla_2_bark_id = dict() # store the camera id attached to an agent self.carla_agents_cam = dict() def initialize_viewer(self): # Viewer of Bark simulation, the pygame surface will be extracted self.bark_viewer = PygameViewer(params=self.param_server, use_world_bounds=True, screen_dims=BARK_SCREEN_DIMS) # Viewer of cosimulation # Set the number of cameras to show both simulation side by side # windows from Bark simulation & camera image from Carla simulation self.cosimulation_viewer = CosimulationViewer(BARK_SCREEN_DIMS, num_cameras=NUM_CAMERAS) def close(self): pg.display.quit() pg.quit() # kill the child of the subprocess # sometimes the socket is not killed, blocking the launch of carla # server os.system("fuser {}/tcp -k".format(CARLA_PORT)) exit() def launch_carla_server(self): self.carla_server = subprocess.Popen( self.launch_args[0] if not CARLA_LOW_QUALITY else self.launch_args) # Wait for launching carla time.sleep(8) def connect_carla_server(self): """ create a carla client and try connect to carla server """ self.carla_client = CarlaClient() self.carla_client.connect(carla_map=CARLA_MAP, port=CARLA_PORT, timeout=10) self.carla_client.set_synchronous_mode(SYNCHRONOUS_MODE, DELTA_SECOND) self.carla_controller = Controller(self.carla_client) def spawn_npc_agents(self, num_agents): """spawn npc agents in both Carla and Bark Arguments: num_agents {int} -- number of agents to be spawned """ for i in range(num_agents): carla_agent_id = self.carla_client.spawn_random_vehicle( num_retries=5) if carla_agent_id is not None: self.carla_client.set_autopilot(carla_agent_id, True) # spawn agent object in BARK agent_params = self.param_server.addChild("agent{}".format(i)) bark_agent = Agent( np.empty(5), self.behavior_model, self.dynamic_model, self.execution_model, self.agent_2d_shape, agent_params, None, # goal_lane_id self.map_interface) self.bark_world.AddAgent(bark_agent) self.carla_2_bark_id[carla_agent_id] = bark_agent.id if len(self.carla_2_bark_id) != num_agents: logging.warning( "Some agents cannot be spawned due to collision in the spawning location, {} agents are spawned" .format(len(self.carla_2_bark_id))) else: logging.info("{} agents spawned sucessfully.".format(num_agents)) def initialize_camera_manager(self, surfaces): """create object for fetching image from carla Arguments: surfaces {list} -- list of pygame surfaces """ self.cam_manager = CameraManager(surfaces, synchronous_mode=SYNCHRONOUS_MODE) def simulation_loop(self, carla_ego_id): bark_ego_id = self.carla_2_bark_id[carla_ego_id] self.bark_viewer.clear() self.cosimulation_viewer.tick() agent_state_map = self.carla_client.get_vehicles_state( self.carla_2_bark_id) self.bark_world.fillWorldFromCarla(0, agent_state_map) plan = self.bark_world.plan_agents(DELTA_SECOND, [bark_ego_id])[bark_ego_id] self.carla_controller.control( self.carla_client.get_actor(carla_ego_id), plan[-2][1:3], plan[-1][1:3], plan[-1][4], plan[-1][3]) if SYNCHRONOUS_MODE: frame_id = self.carla_client.tick() self.cam_manager.fetch_image(frame_id) self.cosimulation_viewer.update_cameras(self.cam_manager.surfaces) # get agents' state in carla, and fill the state into bark carla_agent_states = self.carla_client.get_vehicles_state( self.carla_2_bark_id) self.bark_world.fillWorldFromCarla(DELTA_SECOND, carla_agent_states) self.bark_viewer.drawWorld(self.bark_world, show=False, eval_agent_ids=[bark_ego_id]) self.cosimulation_viewer.update_bark(self.bark_viewer.screen_surface) self.cosimulation_viewer.show()
import numpy as np # Name and Output Directory # CHANGE THIS # map_name = "city_highway_straight" output_dir = "/home/hart/Dokumente/2020/" + map_name # Map Definition xodr_parser = XodrParser("modules/runtime/tests/data/" + map_name + ".xodr") if not os.path.exists(output_dir): os.makedirs(output_dir) # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) open_drive_map = world.map.GetOpenDriveMap() viewer = MPViewer(params=params, use_world_bounds=True) viewer.drawWorld(world) viewer.saveFig(output_dir + "/" + "world_plain.png") color_triplet_gray = (0.7,0.7,0.7) # Open Drive Elements (XodrRoads, XodrLane Sections, XodrLanes)
def test_three_way_intersection(self): # threeway_intersection xodr_parser = XodrParser( "modules/runtime/tests/data/threeway_intersection.xodr") # World Definition params = ParameterServer() world = World(params) map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) open_drive_map = world.map.GetOpenDriveMap() viewer = MPViewer(params=params, use_world_bounds=True) comb_all = [] start_point = [Point2d(-30, -2)] end_point_list = [Point2d(30, -2), Point2d(-2, -30)] comb = list(itertools.product(start_point, end_point_list)) comb_all = comb_all + comb # starting on the right start_point = [Point2d(30, 2)] end_point_list = [Point2d(-30, 2)] comb = list(itertools.product(start_point, end_point_list)) comb_all = comb_all + comb # starting on the bottom start_point = [Point2d(2, -30)] end_point_list = [Point2d(30, -2), Point2d(-30, 2)] comb = list(itertools.product(start_point, end_point_list)) comb_all = comb_all + comb # check few corridors def GenerateRoadCorridor(map_interface, comb): (start_p, end_p) = comb polygon = Polygon2d([0, 0, 0], [ Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1) ]) start_polygon = polygon.Translate(start_p) goal_polygon = polygon.Translate(end_p) rc = map_interface.GenerateRoadCorridor(start_p, goal_polygon) return rc # assert road ids rc = GenerateRoadCorridor(map_interface, comb_all[0]) self.assertEqual(rc.road_ids, [0, 11, 1]) self.assertEqual(len(rc.lane_corridors), 3) rc = GenerateRoadCorridor(map_interface, comb_all[1]) self.assertEqual(rc.road_ids, [0, 5, 2]) self.assertEqual(len(rc.lane_corridors), 3) rc = GenerateRoadCorridor(map_interface, comb_all[2]) self.assertEqual(rc.road_ids, [1, 10, 0]) self.assertEqual(len(rc.lane_corridors), 3) rc = GenerateRoadCorridor(map_interface, comb_all[3]) self.assertEqual(rc.road_ids, [2, 6, 1]) self.assertEqual(len(rc.lane_corridors), 3) rc = GenerateRoadCorridor(map_interface, comb_all[4]) self.assertEqual(rc.road_ids, [2, 4, 0]) self.assertEqual(len(rc.lane_corridors), 3)
from bark.models.dynamic import SingleTrackModel from bark.world import World from bark.world.goal_definition import GoalDefinitionPolygon from bark.world.agent import Agent from bark.world.map import MapInterface from bark.geometry.standard_shapes import CarLimousine from bark.geometry import Point2d, Polygon2d # Parameters Definitions param_server = ParameterServer( filename="examples/params/od8_const_vel_one_agent.json") # set parameter that is accessible in Python as well as cpp # param_server.setReal("wheel_base", 0.8) # World Definition world = World(param_server) # Model Definitions behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Map Definition xodr_parser = XodrParser("modules/runtime/tests/data/Crossing8Course.xodr") map_interface = MapInterface() map_interface.SetOpenDriveMap(xodr_parser.map) world.SetMap(map_interface) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, -15, -13, 3.14 * 5.0 / 4.0, 10 / 3.6])
def test_evaluator_drivable_area(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorConstantVelocity(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #open_drive_map = world.map.GetOpenDriveMap() #agent_2d_shape = CarLimousine() agent_2d_shape = Polygon2d( [1.25, 1, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(3, 1), Point2d(3, -1)]) init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent) evaluator = EvaluatorDrivableArea() world.AddEvaluator("drivable_area", evaluator) info = world.Evaluate() self.assertFalse(info["drivable_area"]) viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawGoalDefinition(goal_polygon, color=(1, 0, 0), alpha=0.5, facecolor=(1, 0, 0)) viewer.drawWorld(world) viewer.drawRoadCorridor(agent.road_corridor) viewer.show(block=False)
def test_python_behavior_model(self): # World Definition scenario_param_file = "macro_actions_test.json" # must be within examples params folder params = ParameterServer(filename=os.path.join( "modules/world/tests/params/", scenario_param_file)) world = World(params) # Define two behavior models one python one standard c++ model behavior_model = PythonDistanceBehavior(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorConstantVelocity(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Define the map interface and load a testing map map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) # Define the agent shapes agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -5.25, 0, 20]) # Define the goal definition for agents center_line = Line2d() center_line.AddPoint(Point2d(0.0, -1.75)) center_line.AddPoint(Point2d(100.0, -1.75)) max_lateral_dist = (0.4, 0.5) max_orientation_diff = (0.08, 0.1) velocity_range = (5.0, 20.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) # define two agents with the different behavior models agent_params = params.AddChild("agent1") agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent) init_state2 = np.array([0, 25, -5.25, 0, 15]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.2] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 1] # Draw map video_renderer = VideoRenderer(renderer=viewer, world_step_time=sim_step_time) for _ in range(0, 20): world.Step(sim_step_time) viewer.clear() video_renderer.drawWorld(world) video_renderer.drawGoalDefinition(goal_definition, "red", 0.5, "red") time.sleep(sim_step_time / sim_real_time_factor) video_renderer.export_video(filename="./test_video_intermediate", remove_image_dir=True)