def run_configuration(argv): params = ParameterServer( filename="examples/example_params/iqn_params.json") params["ML"]["BaseAgent"][ "SummaryPath"] = "/home/mansoor/Study/Werkstudent/fortiss/code/bark-ml/summaries" params["ML"]["BaseAgent"][ "CheckpointPath"] = "/home/mansoor/Study/Werkstudent/fortiss/code/bark-ml/checkpoints" env = gym.make(FLAGS.env, params=params) agent = IQNAgent(env=env, test_env=env, params=params) if FLAGS.load and params["ML"]["BaseAgent"]["CheckpointPath"]: agent.load_models( os.path.join(params["ML"]["BaseAgent"]["CheckpointPath"], "best")) if FLAGS.mode == "train": agent.run() elif FLAGS.mode == "visualize": agent.visualize() elif FLAGS.mode == "evaluate": # writes evaluaion data using summary writer in summary path agent.evaluate() else: raise Exception("Invalid argument for --mode")
behavior = BehaviorDiscreteMacroActionsML(params) observer = NearestAgentsObserver(params) evaluator = GoalReached(params) viewer = MPViewer( params=params, center= [960, 1000.8], enforce_x_length=True, x_length = 100.0, use_world_bounds=False) # load env env = HyDiscreteHighway(params=params, scenario_generation=scenario_generator, behavior=behavior, evaluator=evaluator, observer=observer, viewer=viewer, render=False) # agent saved directory agent_dir = os.path.join(exp_dir, 'agent') # load agent agent = IQNAgent(env=env, params=params, agent_save_dir=agent_dir, is_checkpoint_run=True, is_online_demo=False) agent.load_models(IQNAgent.check_point_directory(agent.agent_save_dir, "best")) agent.evaluate()