import numpy as np


sys.path.append("..")
from barry.datasets.dataset_power_spectrum import PowerSpectrum_DESIMockChallenge_Handshake
from barry.cosmology.camb_generator import getCambGenerator
from barry.config import setup
from barry.models import PowerSpectrumFit, PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019
from barry.samplers import DynestySampler
from barry.fitter import Fitter

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    d = PowerSpectrum_DESIMockChallenge_Handshake(min_k=0.005, max_k=0.3, isotropic=False, realisation="data", fit_poles=[0, 2])

    fitter.add_model_and_dataset(PowerBeutler2017(isotropic=False), d, name=f"Beutler 2017 Prerecon", color=cs[0])
    fitter.add_model_and_dataset(PowerSeo2016(isotropic=False), d, name=f"Seo 2016 Prerecon", color=cs[1])
    fitter.add_model_and_dataset(PowerDing2018(isotropic=False), d, name=f"Ding 2018 Prerecon", color=cs[2])
    fitter.add_model_and_dataset(PowerNoda2019(isotropic=False), d, name=f"Noda 2019 Prerecon", color=cs[3])

    fitter.set_sampler(sampler)
    fitter.set_num_walkers(10)
    fitter.fit(file)

    if fitter.should_plot():
示例#2
0
from barry.config import setup
from barry.fitter import Fitter
from barry.models.test import TestModel
from barry.datasets.test import TestDataset
from barry.samplers import DynestySampler

if __name__ == "__main__":

    pfn, dir_name, file = setup(__file__)

    model = TestModel()
    data = TestDataset()

    sampler = DynestySampler(temp_dir=dir_name, max_iter=None)

    fitter = Fitter(dir_name)
    fitter.add_model_and_dataset(model, data)
    fitter.set_sampler(sampler)
    fitter.set_num_walkers(1)
    fitter.fit(file)

    if fitter.should_plot():

        res, = fitter.load()

        posterior, weight, chain, evidence, model, data, extra = res
        import matplotlib.pyplot as plt

        fig, ax = plt.subplots(nrows=2)
        ax[0].plot(weight)
        ax[1].plot(evidence)
示例#3
0
from barry.models.model import Correction

# Compare model fits with different analytic marginalisation options and where we fix the marginalised
# parameters. The three types of marginalisation should give the same posteriors ("partial" is not strictly
# the same, but looks identical for most purposes). The fit with fixed values will give a bad posterior.

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=500)
    # sampler = EnsembleSampler(temp_dir=dir_name, num_steps=5000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#294D5F", "#197D7A", "#48AC7C"]

    for r in [False]:
        t = "Recon" if r else "Prerecon"
        ls = "-"  # if r else "--"
        d = PowerSpectrum_Beutler2019(recon=r,
                                      isotropic=True,
                                      reduce_cov_factor=np.sqrt(2000.0))

        # Fix sigma_nl for one of the Beutler models
        model = PowerBeutler2017(recon=r,
                                 isotropic=d.isotropic,
                                 fix_params=["om"],
                                 correction=Correction.HARTLAP)
示例#4
0
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018
from barry.samplers import DynestySampler
from barry.fitter import Fitter
from barry.models.model import Correction

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    for r in [False]:
        t = "Recon" if r else "Prerecon"

        # Changing fitting range and sigma values to match Hee-Jong
        d = PowerSpectrum_DESIMockChallenge0_Z01(recon=r,
                                                 isotropic=False,
                                                 realisation="data",
                                                 min_k=0.001,
                                                 max_k=0.30)
        model = PowerBeutler2017(recon=r,
                                 isotropic=False,
                                 correction=Correction.NONE)
示例#5
0
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.models import PowerBeutler2017
from barry.samplers import DynestySampler
from barry.fitter import Fitter
from barry.models.model import Correction

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    for r in [False]:
        t = "Recon" if r else "Prerecon"

        # Fix sigma_nl for one of the Beutler models
        model = PowerBeutler2017(recon=r, isotropic=False, correction=Correction.NONE)
        model.set_default("sigma_nl_par", 10.9)
        model.set_default("sigma_nl_perp", 5.98)
        model.set_fix_params(["om", "sigma_nl_par", "sigma_nl_perp"])

        for mink, maxk in [(0.02, 0.3), (0.02, 0.4), (0.02, 0.5), (0.03, 0.3), (0.03, 0.5), (0.03, 0.4), (0.04, 0.3), (0.04, 0.4), (0.04, 0.5)]:
            d = PowerSpectrum_DESIMockChallenge0_Z01(recon=r, isotropic=False, realisation="data", min_k=mink, max_k=maxk)
            fitter.add_model_and_dataset(model, d, name=f"B17 Fixed {t}, k = ({mink:0.2f}, {maxk:0.2f})")
示例#6
0
sys.path.append("..")
from barry.datasets.dataset_power_spectrum import PowerSpectrum_DESIMockChallenge_Handshake
from barry.cosmology.camb_generator import getCambGenerator
from barry.config import setup
from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019
from barry.samplers import DynestySampler
from barry.fitter import Fitter

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]

    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    d = PowerSpectrum_DESIMockChallenge_Handshake(min_k=0.005,
                                                  max_k=0.3,
                                                  isotropic=False,
                                                  realisation="data",
                                                  fit_poles=[0, 2])
    d2 = PowerSpectrum_DESIMockChallenge_Handshake(min_k=0.005,
                                                   max_k=0.3,
                                                   isotropic=False,
                                                   realisation="data",
                                                   fit_poles=[0, 2, 4])

    fitter.add_model_and_dataset(PowerBeutler2017(isotropic=False),
示例#7
0
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.postprocessing import BAOExtractor
from barry.cosmology.camb_generator import getCambGenerator
from barry.samplers import DynestySampler
from barry.fitter import Fitter

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()[0]

    postprocess = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name)
    fitter = Fitter(dir_name)

    for r in [True, False]:
        rt = "Recon" if r else "Prerecon"
        data = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r,
                                                postprocess=postprocess)
        n = PowerNoda2019(postprocess=postprocess,
                          recon=r,
                          nonlinear_type="spt")
        n2 = PowerNoda2019(postprocess=postprocess,
                           recon=r,
                           nonlinear_type="halofit")

        fitter.add_model_and_dataset(n,
                                     data,
                                     name=f"N19 {rt} SPT",
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.models import PowerBeutler2017, CorrBeutler2017
from barry.datasets.dataset_power_spectrum import PowerSpectrum_DESIMockChallenge
from barry.datasets.dataset_correlation_function import CorrelationFunction_DESIMockChallenge
from barry.fitter import Fitter
import numpy as np
import pandas as pd
from barry.models.model import Correction
from barry.utils import weighted_avg_and_cov, break_vector_and_get_blocks
from barry.cosmology.power_spectrum_smoothing import smooth
from barry.generate import get_cosmologies

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name, remove_output=True)

    sampler = DynestySampler(temp_dir=dir_name, nlive=500)

    cs = ["#CAF270", "#84D57B", "#4AB482", "#219180", "#1A6E73", "#234B5B", "#232C3B"]

    data = PowerSpectrum_DESIMockChallenge(recon=True, isotropic=False, fit_poles=[0, 2], min_k=0.02, max_k=0.45)
    # c = data.get_data()[0]["cosmology"]
    # generator = CambGenerator(om_resolution=1, h0_resolution=1, h0=c["h0"], ob=c["ob"], ns=c["ns"], redshift=c["z"],
    #                          mnu=c["mnu"])
    # generator.load_data(can_generate=True)

    model = PowerBeutler2017(recon=True, isotropic=False, fix_params=["om"], poly_poles=[0, 2], correction=Correction.NONE, marg="full")

    pklin = np.array(pd.read_csv("../barry/data/desi_mock_challenge_post_recon/Pk_Planck15_Table4.txt", delim_whitespace=True, header=None))
    model.set_fix_params(["om"])
示例#9
0
    # redorder cov matrix, pk goes first, then the extracted part
    mask_extracted = postprocess.get_is_extracted(datas[0].ks)
    index_sort = np.arange(mask_extracted.size).astype(
        np.int) + (1000 * mask_extracted)
    a = np.argsort(index_sort)
    cov_noda = cov_noda[:, a]
    cov_noda = cov_noda[a, :]
    cov_noda_diag = cov_noda_diag[:, a]
    cov_noda_diag = cov_noda_diag[a, :]

    datas[1].set_cov(cov_noda)
    datas[2].set_cov(cov_noda_diag)

    sampler = DynestySampler(temp_dir=dir_name)
    fitter = Fitter(dir_name)
    fitter.add_model_and_dataset(model, datas[0], name="Mock-computed")
    fitter.add_model_and_dataset(model, datas[1], name="Nishimichi 2018, full")
    fitter.add_model_and_dataset(model,
                                 datas[2],
                                 name="Nishimichi 2018, diagonal")
    fitter.set_sampler(sampler)
    fitter.set_num_walkers(10)
    fitter.fit(file)

    if fitter.should_plot():
        from chainconsumer import ChainConsumer

        c = ChainConsumer()
        for posterior, weight, chain, evidence, model, data, extra in fitter.load(
        ):
示例#10
0
from barry.models.model import Correction

# Check to see if including the hexadecapole or higher order multipoles gives tighter constraints on BAO parameters
# when fitting the mock average

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    # dir_name = dir_name + "nlive_1500/"

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=500)
    # sampler = EnsembleSampler(temp_dir=dir_name, num_steps=5000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    for r in [True]:
        t = "Recon" if r else "Prerecon"
        ls = "-"  # if r else "--"
        d_quad = PowerSpectrum_Beutler2019(recon=r,
                                           isotropic=False,
                                           fit_poles=[0, 2],
                                           reduce_cov_factor=np.sqrt(2000.0))
        d_odd = PowerSpectrum_Beutler2019(recon=r,
                                          isotropic=False,
                                          fit_poles=[0, 1, 2],
                                          reduce_cov_factor=np.sqrt(2000.0))
        d_hexa = PowerSpectrum_Beutler2019(recon=r,
示例#11
0
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018
from barry.samplers import DynestySampler
from barry.fitter import Fitter
from barry.models.model import Correction

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    for r in [False]:
        t = "Recon" if r else "Prerecon"
        d = PowerSpectrum_DESIMockChallenge0_Z01(recon=r, isotropic=False, realisation="data")

        # Fix sigma_nl for one of the Beutler models
        model = PowerBeutler2017(recon=r, isotropic=False, correction=Correction.NONE)
        model.set_default("sigma_nl_par", 10.9)
        model.set_default("sigma_nl_perp", 5.98)
        model.set_fix_params(["om", "sigma_nl_par", "sigma_nl_perp"])

        fitter.add_model_and_dataset(PowerBeutler2017(recon=r, isotropic=False, correction=Correction.NONE, fix_params=["om"]), d, name=f"Beutler 2017 {t}")
        fitter.add_model_and_dataset(model, d, name=f"Beutler 2017 Fixed $\\Sigma_{{nl}}$ {t}")
示例#12
0
from barry.postprocessing import BAOExtractor
from barry.cosmology.camb_generator import getCambGenerator
from barry.samplers import DynestySampler
from barry.fitter import Fitter

# Check the impact of fixing parameters in the Noda model
if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]

    postprocess = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name)
    fitter = Fitter(dir_name)

    for r in [True, False]:
        rt = "Recon" if r else "Prerecon"
        data = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r,
                                                postprocess=postprocess)
        n = PowerNoda2019(postprocess=postprocess,
                          recon=r,
                          fix_params=["om", "f", "gamma", "b"])
        n.param_dict["b"].default = 1.992 if r else 1.996
        fitter.add_model_and_dataset(
            n,
            data,
            name=f"N19 {rt} fixed $f$, $\\gamma_{{rec}}$, $b$",
            linestyle="-" if r else "--",
            color="o",
示例#13
0
import sys

sys.path.append("..")
from barry.cosmology.camb_generator import getCambGenerator
from barry.config import setup
from barry.models import PowerDing2018, CorrDing2018
from barry.datasets import CorrelationFunction_SDSS_DR12_Z061_NGC, PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.samplers import DynestySampler
from barry.fitter import Fitter
import numpy as np
import pandas as pd

# Check correlation between pk and xi results using recon Ding
if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name, save_dims=2, remove_output=False)
    sampler = DynestySampler(temp_dir=dir_name, nlive=400)

    for r in [True]:
        t = "Recon" if r else "Prerecon"

        d_pk = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, realisation=0)
        d_xi = CorrelationFunction_SDSS_DR12_Z061_NGC(recon=r, realisation=0)

        ding_pk = PowerDing2018(recon=r)
        ding_pk_smooth = PowerDing2018(recon=r, smooth=True)

        ding_xi = CorrDing2018(recon=r)
        ding_xi_smooth = CorrDing2018(recon=r, smooth=True)

        for i in range(999):
示例#14
0
import numpy as np

sys.path.append("..")
from barry.datasets.dataset_power_spectrum import PowerSpectrum_DESIMockChallenge_Handshake
from barry.cosmology.camb_generator import getCambGenerator
from barry.config import setup
from barry.models import PowerSpectrumFit, PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019
from barry.samplers import DynestySampler
from barry.fitter import Fitter
from barry.cosmology.power_spectrum_smoothing import smooth

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    d = PowerSpectrum_DESIMockChallenge_Handshake(min_k=0.005,
                                                  max_k=0.3,
                                                  isotropic=False,
                                                  realisation="data",
                                                  fit_poles=[0, 2])

    fitter.add_model_and_dataset(PowerBeutler2017(isotropic=False),
                                 d,
                                 name=f"Cullan's Pk",
                                 color=cs[0])

    # Re-do the desi fits, but now using the linear pk provided for the UNIT sim
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.utils import weighted_avg_and_cov
from barry.models import PowerBeutler2017
from barry.datasets.dataset_power_spectrum import PowerSpectrum_SDSS_DR12, PowerSpectrum_eBOSS_LRGpCMASS
from barry.fitter import Fitter
import numpy as np
import pandas as pd
from barry.models.model import Correction

# Run an optimisation on each of the post-recon SDSS DR12 mocks. Then compare to the pre-recon mocks
# to compute the cross-correlation between BAO parameters and pre-recon measurements

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name, remove_output=False)

    c = getCambGenerator()

    # sampler = DynestySampler(temp_dir=dir_name, nlive=500)
    sampler = Optimiser(temp_dir=dir_name, tol=1.0e-4)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    datasets = [
        PowerSpectrum_SDSS_DR12(redshift_bin=1,
                                galactic_cap="ngc",
                                recon="iso",
                                isotropic=False,
                                fit_poles=[0, 2],
                                min_k=0.02,
示例#16
0
from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.samplers import DynestySampler
from barry.fitter import Fitter

# Checks to see if the better fits from the power spectrum are due to differences in the effective fitting range.
# Spoiler: No.
if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name)
    fitter = Fitter(dir_name)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]

    for r in [True, False]:
        t = "Recon" if r else "Prerecon"
        ls = "-" if r else "--"
        d = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, min_k=0.03, max_k=0.21)
        de = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r,
                                              postprocess=p,
                                              min_k=0.03,
                                              max_k=0.21)

        # Fix sigma_nl for one of the Beutler models
        model = PowerBeutler2017(recon=r)
        sigma_nl = 6.0 if r else 9.3
示例#17
0
from barry.models import PowerNoda2019, PowerSeo2016, PowerBeutler2017, PowerDing2018
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.postprocessing import BAOExtractor
from barry.cosmology.camb_generator import getCambGenerator
from barry.samplers import DynestySampler
from barry.fitter import Fitter

# We want to verify the behaviour of other models when the BAO extractor technique is applied to them
# We also want to see what the behaviour is if we keep the polynomial terms enabled or disable them.
if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]

    fitter = Fitter(dir_name)
    p = BAOExtractor(r_s)
    cs = ["#262232", "#116A71", "#48AB75", "#b7c742"]

    for r in [True]:
        t = "Recon" if r else "Prerecon"
        datae = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, min_k=0.03, max_k=0.30, postprocess=p)
        for ls, n in zip(["-", ":"], ["", " (No Poly)"]):
            if n:
                fix = ["om", "f", "a1", "a2", "a3", "a4", "a5"]
            else:
                fix = ["om", "f"]
            fitter.add_model_and_dataset(PowerBeutler2017(postprocess=p, recon=r, fix_params=fix), datae, name=f"Beutler 2017{n}", linestyle=ls, color=cs[0])
            fitter.add_model_and_dataset(PowerSeo2016(postprocess=p, recon=r, fix_params=fix), datae, name=f"Seo 2016{n}", linestyle=ls, color=cs[1])
            fitter.add_model_and_dataset(PowerDing2018(postprocess=p, recon=r, fix_params=fix), datae, name=f"Ding 2018{n}", linestyle=ls, color=cs[2])
        fitter.add_model_and_dataset(PowerNoda2019(postprocess=p, recon=r), datae, name=f"Noda 2019", color=cs[3])
示例#18
0
from barry.utils import weighted_avg_and_cov
from barry.models import PowerBeutler2017
from barry.datasets.dataset_power_spectrum import PowerSpectrum_SDSS_DR12, PowerSpectrum_eBOSS_LRGpCMASS
from barry.fitter import Fitter
import numpy as np
import pandas as pd
from barry.models.model import Correction
import matplotlib as plt
from matplotlib import cm

# Run an optimisation on each of the post-recon SDSS DR12 mocks. Then compare to the pre-recon mocks
# to compute the cross-correlation between BAO parameters and pre-recon measurements

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name)

    c = getCambGenerator()

    sampler = DynestySampler(temp_dir=dir_name, nlive=500)

    cmap = plt.cm.get_cmap("viridis")

    datasets = [
        PowerSpectrum_SDSS_DR12(
            redshift_bin=1,
            realisation="data",
            galactic_cap="ngc",
            recon="iso",
            isotropic=False,
            fit_poles=[0, 2],
import sys

sys.path.append("..")
from barry.samplers import DynestySampler
from barry.cosmology.camb_generator import getCambGenerator
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.fitter import Fitter
import numpy as np
import pandas as pd

if __name__ == "__main__":
    pfn, dir_name, file = setup("../config/pk_individual.py")
    fitter = Fitter(dir_name, save_dims=2, remove_output=False)

    c = getCambGenerator()
    r_s = c.get_data()[0]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=200)

    for r in [True, False]:
        t = "Recon" if r else "Prerecon"
        ls = "-" if r else "--"

        d = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, realisation=0)
        de = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r,
                                              postprocess=p,
                                              realisation=0)
示例#20
0
sys.path.append("..")
from barry.config import setup
from barry.models import PowerNoda2019
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.postprocessing import BAOExtractor
from barry.cosmology.camb_generator import CambGenerator
from barry.samplers import DynestySampler
from barry.fitter import Fitter

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    c = CambGenerator()
    r_s = c.get_data()[0]

    fitter = Fitter(dir_name)

    ps = [
        BAOExtractor(r_s, extra_ks=(0.095, 0.13)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.14)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.15)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.16)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.17)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.18)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.19)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.20)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.21)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.22)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.23)),
        BAOExtractor(r_s, extra_ks=(0.095, 0.24)),
    ]
示例#21
0
        ax[0].set_xlabel(l)

    axes[0, 0].set_ylabel(r"$N_{\mathrm{mocks}}$")

    fig.savefig(figname, bbox_inches="tight", transparent=True, dpi=300)

    return nstats, means, covs, corr


if __name__ == "__main__":

    # Get the relative file paths and names
    pfn, dir_name, file = setup(__file__)

    # Set up the Fitting class and Dynesty sampler with 250 live points.
    fitter = Fitter(dir_name, remove_output=False)
    sampler = DynestySampler(temp_dir=dir_name, nlive=250)

    mocktypes = ["abacus_cutsky"]
    nzbins = [3]

    # Loop over the mocktypes
    allnames = []
    for i, (mocktype, redshift_bins) in enumerate(zip(mocktypes, nzbins)):

        # Loop over the available redshift bins for each mock type
        for z in range(redshift_bins):

            # Create the data. We'll fit mono-, quad- and hexadecapole between k=0.02 and 0.3.
            # First load up mock mean and add it to the fitting list.
            dataset = PowerSpectrum_DESI_KP4(
示例#22
0
from barry.config import setup
from barry.fitter import Fitter
from barry.models.test import TestModel
from barry.datasets.test import TestDataset
from barry.samplers import MetropolisHastings

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    model = TestModel()
    data = TestDataset()
    sampler = MetropolisHastings(num_steps=1000,
                                 num_burn=300,
                                 temp_dir=dir_name)

    fitter = Fitter(dir_name)
    fitter.add_model_and_dataset(model, data)
    fitter.set_num_walkers(2)
    fitter.set_sampler(sampler)
    fitter.fit(file)

    if fitter.should_plot():  # As I'm not sure if the cluster has matplotlib
        from chainconsumer import ChainConsumer

        res, = fitter.load()

        posterior, weight, chain, model, data, extra = res
        labels = model.get_labels()
        c = ChainConsumer()
        c.add_chain(chain, weights=weight, parameters=labels)
        c.plotter.plot(filename=pfn + "_contour.png")
示例#23
0
from barry.utils import plot_bestfit
from barry.samplers import DynestySampler

# Run a quick test using dynesty to fit a mock mean.

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    data = PowerSpectrum_SDSS_DR12(isotropic=True, recon="iso")
    model = PowerBeutler2017(isotropic=data.isotropic,
                             recon=data.recon,
                             marg="full")

    sampler = DynestySampler(temp_dir=dir_name)

    fitter = Fitter(dir_name)
    fitter.add_model_and_dataset(model, data)
    fitter.set_sampler(sampler)
    fitter.set_num_walkers(1)
    fitter.fit(file)

    if fitter.should_plot():
        from chainconsumer import ChainConsumer

        posterior, weight, chain, evidence, model, data, extra = fitter.load(
        )[0]
        print(extra["name"])
        chi2, dof, bband, mods, smooths = plot_bestfit(posterior,
                                                       chain,
                                                       model,
                                                       title=extra["name"],
示例#24
0

sys.path.append("..")
from barry.samplers import DynestySampler
from barry.cosmology.camb_generator import getCambGenerator
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.fitter import Fitter
import numpy as np
import pandas as pd

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name, save_dims=2, remove_output=False)

    c = getCambGenerator()
    r_s = c.get_data()[0]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=200)

    for r in [True, False]:
        t = "Recon" if r else "Prerecon"
        ls = "-" if r else "--"

        d = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, realisation=0)
        de = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, postprocess=p, realisation=0)

        beutler_not_fixed = PowerBeutler2017(recon=r)
示例#25
0
import os
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d

sys.path.append("..")
from barry.config import setup
from barry.models import CorrBeutler2017, CorrDing2018, CorrSeo2016
from barry.datasets import CorrelationFunction_SDSS_DR12_Z061_NGC
from barry.samplers import DynestySampler
from barry.fitter import Fitter

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    sampler = DynestySampler(temp_dir=dir_name, nlive=1000)
    fitter = Fitter(dir_name, remove_output=False)

    cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"]
    for r in [True, False]:
        t = "Recon" if r else "Prerecon"
        ls = "-" if r else "--"
        d = CorrelationFunction_SDSS_DR12_Z061_NGC(recon=r)

        # Fix sigma_nl for one of the Beutler models
        model = CorrBeutler2017()
        sigma_nl = 6.0 if r else 9.3
        model.set_default("sigma_nl", sigma_nl)
        model.set_fix_params(["om", "sigma_nl"])

        fitter.add_model_and_dataset(CorrBeutler2017(), d, name=f"Beutler 2017 {t}", linestyle=ls, color=cs[0])
        fitter.add_model_and_dataset(model, d, name=f"Beutler 2017 Fixed $\\Sigma_{{nl}}$ {t}", linestyle=ls, color=cs[0])
示例#26
0
from barry.cosmology.camb_generator import getCambGenerator
from barry.postprocessing import BAOExtractor
from barry.config import setup
from barry.utils import weighted_avg_and_std, get_model_comparison_dataframe
from barry.models import PowerDing2018, PowerBeutler2017
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.samplers import DynestySampler
from barry.fitter import Fitter
import numpy as np
import pandas as pd

# Check if B17 and D18 results change if we apply the BAO extractor technique.
# Spoiler: They do not.
if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name, remove_output=False)

    c = getCambGenerator()
    r_s = c.get_data()["r_s"]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=200)

    for r in [True]:  # , False]:
        t = "Recon" if r else "Prerecon"
        ls = "-" if r else "--"

        d = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, realisation=0)
        de = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r,
                                              postprocess=p,
                                              realisation=0)
示例#27
0
if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)

    r = True
    models = [
        PowerBeutler2017(recon=r, smooth_type="hinton2017", name="Hinton2017"),
        PowerBeutler2017(recon=r, smooth_type="eh1998", name="EH1998")
    ]
    data = PowerSpectrum_SDSS_DR12_Z061_NGC(name="Recon mean",
                                            recon=r,
                                            min_k=0.02,
                                            max_k=0.30)
    sampler = DynestySampler(temp_dir=dir_name)

    fitter = Fitter(dir_name)
    fitter.add_model_and_dataset(models[0], data, name="Hinton2017")
    fitter.add_model_and_dataset(models[1], data, name="EH1998")
    fitter.set_sampler(sampler)
    fitter.set_num_walkers(10)
    fitter.fit(file)

    if fitter.should_plot():
        from chainconsumer import ChainConsumer

        c = ChainConsumer()
        pks = {}
        for posterior, weight, chain, model, data, extra in fitter.load():
            c.add_chain(chain,
                        weights=weight,
                        parameters=model.get_labels(),
示例#28
0
import sys

sys.path.append("..")
from barry.cosmology.camb_generator import getCambGenerator
from barry.postprocessing import BAOExtractor
from barry.config import setup, weighted_avg_and_std
from barry.models import PowerDing2018, PowerBeutler2017
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC
from barry.samplers import DynestySampler
from barry.fitter import Fitter
import numpy as np
import pandas as pd

if __name__ == "__main__":
    pfn, dir_name, file = setup(__file__)
    fitter = Fitter(dir_name, remove_output=False)

    c = getCambGenerator()
    r_s = c.get_data()[0]
    p = BAOExtractor(r_s)

    sampler = DynestySampler(temp_dir=dir_name, nlive=200)

    for r in [True]:  # , False]:
        t = "Recon" if r else "Prerecon"
        ls = "-" if r else "--"

        d = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, realisation=0)
        de = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r,
                                              postprocess=p,
                                              realisation=0)