def _make_examples(self, sentences): word_vocab = embeddings.get_word_vocab(self.config) char_vocab = embeddings.get_char_vocab() return [ example.Example(sentence, word_vocab, char_vocab) for sentence in sentences ]
def _get_examples(self, split): word_vocab = embeddings.get_word_vocab(self._config) char_vocab = embeddings.get_char_vocab() examples = [ SentenceClassificationExample(self._config, words, tag, word_vocab, char_vocab, self.label_mapping, self._task_name) for words, tag in self.get_labeled_sentences(split) ] return examples
def _get_examples(self, split): word_vocab = embeddings.get_word_vocab(self._config) word_vocab_vi = embeddings.get_word_vocab_vi(self._config) char_vocab = embeddings.get_char_vocab() examples = [ TranslationExample( self._config, words_src, words_tgt, size_src, size_tgt, word_vocab, char_vocab, self._task_name, word_vocab_vi, split) for words_src, words_tgt, size_src, size_tgt in self.get_sentence_tuples(split) ] return examples
def _get_examples(self, split): word_vocab = embeddings.get_word_vocab(self._config) char_vocab = embeddings.get_char_vocab() examples = [ TaggingExample( self._config, self._is_token_level, words, tags, word_vocab, char_vocab, self.label_mapping, self._task_name) for words, tags in self.get_labeled_sentences(split)] if self._config.train_set_percent < 100: utils.log('using reduced train set ({:}%)'.format( self._config.train_set_percent)) random.shuffle(examples) examples = examples[:int(len(examples) * self._config.train_set_percent / 100.0)] return examples
def get_examples_translate(config, src, split): words_src = src.strip().split() size_src = len(words_src) words_tgt = [] size_tgt = 1 word_vocab = embeddings.get_word_vocab(config) word_vocab_vi = embeddings.get_word_vocab_vi(config) char_vocab = embeddings.get_char_vocab() examples = [ TranslationExample( config, words_src, words_tgt, size_src, size_tgt, word_vocab, char_vocab, 'translate', word_vocab_vi, split) ] return examples
def main(): utils.heading('SETUP') config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name) config.write() if config.mode == 'encode': word_vocab = embeddings.get_word_vocab(config) sentence = "Squirrels , for example , would show up , look for the peanut , go away .".split() sentence = ([word_vocab[embeddings.normalize_word(w)] for w in sentence]) print(sentence) return if config.mode == 'decode': word_vocab_reversed = embeddings.get_word_vocab_reversed(config) sentence = "25709 33 42 879 33 86 304 92 33 676 42 32 13406 33 273 445 34".split() sentence = ([word_vocab_reversed[int(w)] for w in sentence]) print(sentence) return if config.mode == 'encode-vi': word_vocab_vi = embeddings.get_word_vocab_vi(config) print(len(word_vocab_vi)) sentence = "Mỗi_một khoa_học_gia đều thuộc một nhóm nghiên_cứu , và mỗi nhóm đều nghiên_cứu rất nhiều đề_tài đa_dạng .".split() sentence = ([word_vocab_vi[embeddings.normalize_word(w)] for w in sentence]) print(sentence) return if config.mode == 'decode-vi': word_vocab_reversed_vi = embeddings.get_word_vocab_reversed_vi(config) sentence = "8976 32085 129 178 17 261 381 5 7 195 261 129 381 60 37 2474 1903 6".split() sentence = ([word_vocab_reversed_vi[int(w)] for w in sentence]) print(sentence) return if config.mode == 'embed': word_embeddings = embeddings.get_word_embeddings(config) word = 50 embed = word_embeddings[word] print(' '.join(str(x) for x in embed)) return if config.mode == 'embed-vi': word_embeddings_vi = embeddings.get_word_embeddings_vi(config) word = 50 embed = word_embeddings_vi[word] print(' '.join(str(x) for x in embed)) return with tf.Graph().as_default() as graph: model_trainer = trainer.Trainer(config) summary_writer = tf.summary.FileWriter(config.summaries_dir) checkpoints_saver = tf.train.Saver(max_to_keep=1) best_model_saver = tf.train.Saver(max_to_keep=1) init_op = tf.global_variables_initializer() graph.finalize() with tf.Session() as sess: sess.run(init_op) progress = training_progress.TrainingProgress( config, sess, checkpoints_saver, best_model_saver, config.mode == 'train') utils.log() if config.mode == 'train': #summary_writer.add_graph(sess.graph) utils.heading('START TRAINING ({:})'.format(config.model_name)) model_trainer.train(sess, progress, summary_writer) elif config.mode == 'eval-train': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=True) elif config.mode == 'eval-dev': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=False) elif config.mode == 'infer': utils.heading('START INFER ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.infer(sess) elif config.mode == 'translate': utils.heading('START TRANSLATE ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.translate(sess) elif config.mode == 'eval-translate-train': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=True, is_translate=True) elif config.mode == 'eval-translate-dev': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=False, is_translate=True) else: raise ValueError('Mode must be "train" or "eval"')