def test_filter_clause(pipeline, clean_db): """ Verify that FILTER clauses work on aggregates and sliding window aggregates """ pipeline.create_stream("test_filter_stream", x="int") q = """ SELECT SUM(x::int) FILTER (WHERE mod(x, 2) = 0) AS sum2, SUM(x::int) FILTER (WHERE mod(x, 3) = 0) AS sum3 FROM test_filter_stream """ sw = """ WHERE arrival_timestamp > clock_timestamp() - interval '30 second' """ pipeline.create_cv("test_filter", q) pipeline.create_cv("test_filter_sw", "%s %s" % (q, sw)) desc = ("x",) rows = [] for n in range(1000): rows.append((n,)) pipeline.insert("test_filter_stream", desc, rows) sum2 = sum(filter(lambda x: x % 2 == 0, map(lambda x: x[0], rows))) sum3 = sum(filter(lambda x: x % 3 == 0, map(lambda x: x[0], rows))) result1 = pipeline.execute("SELECT * FROM test_filter").first() result2 = pipeline.execute("SELECT * FROM test_filter_sw").first() assert result1["sum2"] == result2["sum2"] == sum2 assert result1["sum3"] == result2["sum3"] == sum3
def test_single_continuous_view(pipeline, clean_db): """ Verify that specific continuous views can be dropped and restored """ pipeline.create_cv("test_single0", "SELECT COUNT(*) FROM stream") pipeline.create_cv("test_single1", "SELECT COUNT(*) FROM stream") pipeline.insert("stream", ("x",), [(x,) for x in range(10)]) result = pipeline.execute("SELECT count FROM test_single0").first() assert result["count"] == 10 result = pipeline.execute("SELECT count FROM test_single1").first() assert result["count"] == 10 _dump(pipeline, "test_single.sql", cv_name="test_single0") pipeline.drop_all_views() _restore(pipeline, "test_single.sql") result = pipeline.execute("SELECT count FROM test_single0").first() assert result["count"] == 10 # We didn't dump this one result = list(pipeline.execute("SELECT * FROM pg_class WHERE relname LIKE '%%test_single1%%'")) assert not result
def test_cmsketch_agg(pipeline, clean_db): """ Test cmsketch_agg, cmsketch_merge_agg, cmsketch_cdf, cmsketch_quantile """ pipeline.create_stream('test_cmsketch_stream', k='int', x='int') q = """ SELECT k::integer, cmsketch_agg(x::int) AS c FROM test_cmsketch_stream GROUP BY k """ desc = ('k', 'x') pipeline.create_cv('test_cmsketch_agg', q) rows = [] for n in range(1000): rows.append((0, n % 20)) rows.append((1, n % 50)) pipeline.insert('test_cmsketch_stream', desc, rows) result = list(pipeline.execute( 'SELECT cmsketch_frequency(c, 10) AS x, cmsketch_frequency(c, 40) AS y, ' 'cmsketch_frequency(c, 60) FROM test_cmsketch_agg ORDER BY k').fetchall()) assert len(result) == 2 assert tuple(result[0]) == (50, 0, 0) assert tuple(result[1]) == (20, 20, 0) result = list(pipeline.execute( 'SELECT cmsketch_frequency(combine(c), 10) AS x, ' 'cmsketch_frequency(combine(c), 40) AS y, cmsketch_frequency(combine(c), 60) ' 'FROM test_cmsketch_agg').fetchall()) assert len(result) == 1 assert tuple(result[0]) == (70, 20, 0)
def test_single_continuous_view(pipeline, clean_db): """ Verify that specific continuous views can be dropped and restored """ pipeline.create_stream('stream0', x='int') pipeline.create_cv('test_single0', 'SELECT COUNT(*) FROM stream0') pipeline.create_cv('test_single1', 'SELECT COUNT(*) FROM stream0') pipeline.insert('stream0', ('x',), [(x,) for x in range(10)]) result = pipeline.execute('SELECT count FROM test_single0').first() assert result['count'] == 10 result = pipeline.execute('SELECT count FROM test_single1').first() assert result['count'] == 10 _dump(pipeline, 'test_single.sql', tables=['test_single0', 'stream0', 'test_single0_mrel']) pipeline.drop_all() _restore(pipeline, 'test_single.sql') result = pipeline.execute('SELECT count FROM test_single0').first() assert result['count'] == 10 # We didn't dump this one result = list(pipeline.execute('SELECT * FROM pg_class WHERE relname LIKE \'%%test_single1%%\'')) assert not result
def test_user_low_and_high_card(pipeline, clean_db): """ Verify that HLL's with low and high cardinalities are correcly combined """ pipeline.create_stream('test_hll_stream', x='int', k='integer') q = """ SELECT k::integer, hll_agg(x::integer) FROM test_hll_stream GROUP BY k """ desc = ('k', 'x') pipeline.create_cv('test_hll_agg', q) # Low cardinalities rows = [] for n in range(1000): rows.append((0, random.choice((-1, -2)))) rows.append((1, random.choice((-3, -4)))) # High cardinalities for n in range(10000): rows.append((2, n)) rows.append((3, n)) pipeline.insert('test_hll_stream', desc, rows) result = pipeline.execute('SELECT hll_cardinality(combine(hll_agg)) ' 'FROM test_hll_agg WHERE k in (0, 1)').first() assert result[0] == 4 result = pipeline.execute('SELECT hll_cardinality(combine(hll_agg)) ' 'FROM test_hll_agg WHERE k in (2, 3)').first() assert result[0] == 9976 result = pipeline.execute('SELECT hll_cardinality(combine(hll_agg)) ' 'FROM test_hll_agg').first() assert result[0] == 9983
def test_stats_aggs(pipeline, clean_db): """ Verify that combines work on stats aggs """ q = """ SELECT x::integer %% 10 AS k, regr_sxx(x, y::float8), stddev(x) FROM stream GROUP BY k; """ desc = ('x', 'y') pipeline.create_cv('test_stats_aggs', q) pipeline.create_table('test_stats_aggs_t', x='integer', y='float8') rows = [] for n in range(10000): row = (random.randint(0, 1000), random.random()) rows.append(row) pipeline.insert('stream', desc, rows) pipeline.insert('test_stats_aggs_t', desc, rows) tq = """ SELECT regr_sxx(x, y::float8), stddev(x) FROM test_stats_aggs_t """ table_result = list(pipeline.execute(tq)) cq = """ SELECT combine(regr_sxx), combine(stddev) FROM test_stats_aggs """ cv_result = list(pipeline.execute(cq)) assert len(table_result) == len(cv_result) for tr, cr in zip(table_result, cv_result): assert abs(tr[0] - cr[0]) < 0.00001 assert abs(tr[1] - cr[1]) < 0.00001
def test_simple_crash(pipeline, clean_db): """ Test simple worker and combiner crashes. """ q = 'SELECT COUNT(*) FROM stream' pipeline.create_cv('test_simple_crash', q) pipeline.insert('stream', ['x'], [(1, ), (1, )]) result = pipeline.execute('SELECT * FROM test_simple_crash').first() assert result['count'] == 2 # We can potentially lose one batch for a worker or combiner crash. # In our case each batch adds a count 2 and since we're adding 3 batches # we should either see an increment from the previous count of 4 or 6. pipeline.insert('stream', ['x'], [(1, ), (1, )]) assert kill_worker() pipeline.insert('stream', ['x'], [(1, ), (1, )]) result = pipeline.execute('SELECT * FROM test_simple_crash').first() assert result['count'] == 6 pipeline.insert('stream', ['x'], [(1, ), (1, )]) assert kill_combiner() pipeline.insert('stream', ['x'], [(1, ), (1, )]) result = pipeline.execute('SELECT * FROM test_simple_crash').first() assert result['count'] == 10
def test_null_groups(pipeline, clean_db): """ Verify that null group columns are considered equal """ pipeline.create_stream('stream', x='int', y='int', z='int') q = """ SELECT x::integer, y::integer, z::integer, COUNT(*) FROM stream GROUP BY x, y, z; """ desc = ('x', 'y', 'z') pipeline.create_cv('test_null_groups', q) pipeline.create_table('test_null_groups_t', x='integer', y='integer', z='integer') rows = [] for n in range(10000): vals = list(random.randint(0, 10) for n in range(3)) vals = map(lambda n: random.random() > 0.1 and n or None, vals) rows.append(tuple(vals)) pipeline.insert('stream', desc, rows) pipeline.insert('test_null_groups_t', desc, rows) table_q = """ SELECT x, y, z, COUNT(*) FROM test_null_groups_t GROUP BY x, y, z ORDER BY x, y, z; """ expected = list(pipeline.execute(table_q)) result = list(pipeline.execute('SELECT x, y, z, count FROM test_null_groups ORDER BY x, y, z')) for r, e in zip(result, expected): assert r == e
def test_simple_aggs(pipeline, clean_db): """ Verify that combines work properly on simple aggs """ q = """ SELECT x::integer %% 10 AS k, avg(x), sum(y::float8), count(*) FROM stream0 GROUP BY k; """ desc = ('x', 'y') pipeline.create_stream('stream0', x='int', y='float8') pipeline.create_cv('test_simple_aggs', q) pipeline.create_table('test_simple_aggs_t', x='integer', y='float8') rows = [] for n in range(10000): row = (random.randint(0, 1000), random.random()) rows.append(row) pipeline.insert('stream0', desc, rows) pipeline.insert('test_simple_aggs_t', desc, rows) table_result = list(pipeline.execute('SELECT avg(x), sum(y::float8), count(*) FROM test_simple_aggs_t')) cv_result = list(pipeline.execute('SELECT combine(avg), combine(sum), combine(count) FROM test_simple_aggs')) assert len(table_result) == len(cv_result) for tr, cr in zip(table_result, cv_result): assert abs(tr[0] - cr[0]) < 0.00001 assert abs(tr[1] - cr[1]) < 0.00001 assert abs(tr[2] - cr[2]) < 0.00001
def test_single_continuous_view(pipeline, clean_db): """ Verify that specific continuous views can be dropped and restored """ pipeline.create_cv('test_single0', 'SELECT COUNT(*) FROM stream') pipeline.create_cv('test_single1', 'SELECT COUNT(*) FROM stream') pipeline.insert('stream', ('x', ), [(x, ) for x in range(10)]) result = pipeline.execute('SELECT count FROM test_single0').first() assert result['count'] == 10 result = pipeline.execute('SELECT count FROM test_single1').first() assert result['count'] == 10 _dump(pipeline, 'test_single.sql', cv_name='test_single0') pipeline.drop_all_queries() _restore(pipeline, 'test_single.sql') result = pipeline.execute('SELECT count FROM test_single0').first() assert result['count'] == 10 # We didn't dump this one result = list( pipeline.execute( 'SELECT * FROM pg_class WHERE relname LIKE \'%%test_single1%%\'')) assert not result
def messages_partitioned(): for n in range(4): rows = pipeline.execute('SELECT sum(count) FROM cv%d' % n) assert rows and rows[0][0] == 100 rows = pipeline.execute('SELECT count(*) FROM cv%d' % n) assert rows and rows[0][0] == 100
def test_simple_crash(pipeline, clean_db): """ Test simple worker and combiner crashes. """ pipeline.create_stream('stream0', x='int') q = 'SELECT COUNT(*) FROM stream0' pipeline.create_cv('test_simple_crash', q) pipeline.insert('stream0', ['x'], [(1,), (1,)]) result = pipeline.execute('SELECT * FROM test_simple_crash').first() assert result['count'] == 2 # This batch can potentially get lost. pipeline.insert('stream0', ['x'], [(1,), (1,)]) assert kill_worker() pipeline.insert('stream0', ['x'], [(1,), (1,)]) result = pipeline.execute('SELECT * FROM test_simple_crash').first() assert result['count'] in [4, 6] # This batch can potentially get lost. pipeline.insert('stream0', ['x'], [(1,), (1,)]) assert kill_combiner() pipeline.insert('stream0', ['x'], [(1,), (1,)]) result = pipeline.execute('SELECT * FROM test_simple_crash').first() assert result['count'] in [6, 8, 10] # To ensure that all remaining events in ZMQ queues have been consumed time.sleep(2)
def test_restart_recovery(pipeline, clean_db): pipeline.create_stream('stream0', x='int') q = 'SELECT COUNT(*) FROM stream0' pipeline.create_cv('test_restart_recovery', q) pipeline.insert('stream0', ['x'], [(1,), (1,)]) result = pipeline.execute('SELECT * FROM test_restart_recovery').first() assert result['count'] == 2 # Need to sleep here, otherwise on restart the materialization table is # empty. Not sure why. time.sleep(0.1) # Restart. pipeline.stop() pipeline.run() result = pipeline.execute('SELECT * FROM test_restart_recovery').first() assert result['count'] == 2 pipeline.insert('stream0', ['x'], [(1,), (1,)]) result = pipeline.execute('SELECT * FROM test_restart_recovery').first() assert result['count'] == 4
def test_postmaster_worker_recovery(pipeline, clean_db): """ Verify that the Postmaster only restarts crashed worker processes, and does not attempt to start them when the continuous query scheduler should. """ result = pipeline.execute('SELECT COUNT(*) FROM pipeline_proc_stats WHERE type = \'worker\'').first() expected_workers = result['count'] result = pipeline.execute('SELECT COUNT(*) FROM pipeline_proc_stats WHERE type = \'combiner\'').first() expected_combiners = result['count'] q = 'SELECT COUNT(*) FROM stream' pipeline.create_cv('test_pm_recovery', q) pipeline.insert('stream', ['x'], [(1, ), (1, )]) def backend(): try: # Just keep a long-running backend connection open client = pipeline.engine.connect() client.execute('SELECT pg_sleep(10000)') except: pass t = threading.Thread(target=backend) t.start() attempts = 0 result = None backend_pid = 0 while not result and attempts < 10: result = pipeline.execute("""SELECT pid, query FROM pg_stat_activity WHERE lower(query) LIKE '%%pg_sleep%%'""").first() time.sleep(1) attempts += 1 assert result backend_pid = result['pid'] os.kill(backend_pid, signal.SIGKILL) attempts = 0 pipeline.conn = None while attempts < 15: try: pipeline.conn = pipeline.engine.connect() break except: time.sleep(1) pass attempts += 1 assert pipeline.conn # Now verify that we have the correct number of CQ worker procs result = pipeline.execute('SELECT COUNT(*) FROM pipeline_proc_stats WHERE type = \'worker\'').first() assert result['count'] == expected_workers result = pipeline.execute('SELECT COUNT(*) FROM pipeline_proc_stats WHERE type = \'combiner\'').first() assert result['count'] == expected_combiners
def test_hll_distinct(pipeline, clean_db): """ Verify that combines work on HLL COUNT DISTINCT queries """ q = """ SELECT x::integer %% 10 AS k, COUNT(DISTINCT x) AS count FROM stream GROUP BY k """ desc = ('x', 'y') pipeline.create_cv('test_hll_distinct', q) pipeline.create_table('test_hll_distinct_t', x='integer', y='float8') rows = [] for n in range(10000): row = (random.randint(0, 1000), random.random()) rows.append(row) pipeline.insert('stream', desc, rows) pipeline.insert('test_hll_distinct_t', desc, rows) # Note that the CQ will use the HLL variant of COUNT DISTINCT, # so use hll_count_distinct on the table too tq = """ SELECT hll_count_distinct(x) FROM test_hll_distinct_t """ table_result = list(pipeline.execute(tq)) cq = """ SELECT combine(count) FROM test_hll_distinct """ cv_result = list(pipeline.execute(cq)) assert len(table_result) == len(cv_result) for tr, cr in zip(table_result, cv_result): assert tr == cr
def test_schema_inference(pipeline, clean_db): """ Verify that types are properly inferred """ pipeline.create_cv("test_infer0", "SELECT x::int8, y::bigint, COUNT(*) FROM infer_stream GROUP BY x, y") pipeline.create_cv("test_infer1", "SELECT x::int4, y::real, COUNT(*) FROM infer_stream GROUP BY x, y") pipeline.create_cv("test_infer2", "SELECT x::int2, y::integer, COUNT(*) FROM infer_stream GROUP BY x, y") pipeline.create_cv("test_infer3", "SELECT x::numeric, y::float8, COUNT(*) FROM infer_stream GROUP BY x, y") pipeline.create_cv("test_infer4", "SELECT x::int8, y::bigint, COUNT(*) FROM infer_stream GROUP BY x, y") desc = ("x", "y") rows = [] for n in range(10000): rows.append((random.random() + 1, random.random() * random.randint(0, 128))) pipeline.insert("infer_stream", desc, rows) result = pipeline.execute("SELECT * FROM test_infer0 ORDER BY x") for row in result: assert row["count"] result = pipeline.execute("SELECT * FROM test_infer1 ORDER BY x") for row in result: assert row["count"] result = pipeline.execute("SELECT * FROM test_infer2 ORDER BY x") for row in result: assert row["count"] result = pipeline.execute("SELECT * FROM test_infer3 ORDER BY x") for row in result: assert row["count"]
def test_combine_in_view(pipeline, clean_db): """ Verify that combines in views on top of continuous views work """ q = """ SELECT x::integer, avg(y::integer) FROM stream GROUP BY x """ desc = ('x', 'y') pipeline.create_cv('test_combine_view', q) pipeline.execute( 'CREATE VIEW v AS SELECT combine(avg) FROM test_combine_view') rows = [] for n in range(10000): rows.append((random.randint(1, 256), random.randint(1, 1024))) pipeline.insert('stream', desc, rows) view = list(pipeline.execute('SELECT * FROM v')) assert len(view) == 1 expected = sum(r[1] for r in rows) / float(len(rows)) assert abs(float(view[0][0]) - expected) < 0.00001 pipeline.execute('DROP VIEW v')
def test_null_groups(pipeline, clean_db): """ Verify that null group columns are considered equal """ pipeline.create_stream("s", x="int", y="int", z="int") q = """ SELECT x::integer, y::integer, z::integer, COUNT(*) FROM s GROUP BY x, y, z; """ desc = ("x", "y", "z") pipeline.create_cv("test_null_groups", q) pipeline.create_table("test_null_groups_t", x="integer", y="integer", z="integer") rows = [] for n in range(10000): vals = list(random.randint(0, 10) for n in range(3)) vals = map(lambda n: random.random() > 0.1 and n or None, vals) rows.append(tuple(vals)) pipeline.insert("s", desc, rows) pipeline.insert("test_null_groups_t", desc, rows) table_q = """ SELECT x, y, z, COUNT(*) FROM test_null_groups_t GROUP BY x, y, z ORDER BY x, y, z; """ expected = list(pipeline.execute(table_q)) result = list(pipeline.execute("SELECT x, y, z, count FROM test_null_groups ORDER BY x, y, z")) for r, e in zip(result, expected): assert r == e
def test_simple_aggs(pipeline, clean_db): """ Verify that combines work properly on simple aggs """ q = """ SELECT x::integer %% 10 AS k, avg(x), sum(y::float8), count(*) FROM stream GROUP BY k; """ desc = ('x', 'y') pipeline.create_cv('test_simple_aggs', q) pipeline.create_table('test_simple_aggs_t', x='integer', y='float8') rows = [] for n in range(10000): row = (random.randint(0, 1000), random.random()) rows.append(row) pipeline.insert('stream', desc, rows) pipeline.insert('test_simple_aggs_t', desc, rows) table_result = list( pipeline.execute( 'SELECT avg(x), sum(y::float8), count(*) FROM test_simple_aggs_t')) cv_result = list( pipeline.execute( 'SELECT combine(avg), combine(sum), combine(count) FROM test_simple_aggs' )) assert len(table_result) == len(cv_result) for tr, cr in zip(table_result, cv_result): assert abs(tr[0] - cr[0]) < 0.00001 assert abs(tr[1] - cr[1]) < 0.00001 assert abs(tr[2] - cr[2]) < 0.00001
def test_join_with_where(pipeline, clean_db): """ Verify that stream-table joins using a WHERE clause work properly """ num_cols = 4 q = """ SELECT s.col0::integer FROM stream s, wt WHERE s.col0 = 1 AND wt.col0 = 1 """ wt_cols = dict([('col%d' % n, 'integer') for n in range(num_cols)]) pipeline.create_table('wt', **wt_cols) pipeline.create_table('wt_s', **wt_cols) wt = _generate_rows(num_cols, 64) s = _generate_rows(num_cols, 64) _insert(pipeline, 'wt', wt, 0.1) _insert(pipeline, 'wt_s', s, 0.1) pipeline.create_stream('stream', **wt_cols) pipeline.create_cv('test_join_where', q) _insert(pipeline, 'stream', s) expected = pipeline.execute('SELECT COUNT(*) FROM wt_s s, wt WHERE s.col0 = 1 AND wt.col0 = 1').first() result = pipeline.execute('SELECT COUNT(*) FROM test_join_where').first() assert result['count'] == expected['count']
def test_cmsketch_agg(pipeline, clean_db): """ Test cmsketch_agg, cmsketch_merge_agg, cmsketch_cdf, cmsketch_quantile """ q = """ SELECT k::integer, cmsketch_agg(x::int) AS c FROM test_cmsketch_stream GROUP BY k """ desc = ('k', 'x') pipeline.create_cv('test_cmsketch_agg', q) rows = [] for n in range(1000): rows.append((0, n % 20)) rows.append((1, n % 50)) pipeline.insert('test_cmsketch_stream', desc, rows) result = list(pipeline.execute( 'SELECT cmsketch_count(c, 10) AS x, cmsketch_count(c, 40) AS y, ' 'cmsketch_count(c, 60) FROM test_cmsketch_agg ORDER BY k').fetchall()) assert len(result) == 2 assert tuple(result[0]) == (50, 0, 0) assert tuple(result[1]) == (20, 20, 0) result = list(pipeline.execute( 'SELECT cmsketch_count(combine(c), 10) AS x, ' 'cmsketch_count(combine(c), 40) AS y, cmsketch_count(combine(c), 60) ' 'FROM test_cmsketch_agg').fetchall()) assert len(result) == 1 assert tuple(result[0]) == (70, 20, 0)
def test_indexed(pipeline, clean_db): """ Verify that stream-table joins involving indexed tables work """ pipeline.create_stream('stream', x='int', y='int') q = """ SELECT stream.x::integer, count(*) FROM stream JOIN test_indexed_t t ON stream.x = t.x GROUP BY stream.x """ pipeline.create_table('test_indexed_t', x='integer', y='integer') pipeline.execute('CREATE INDEX idx ON test_indexed_t(x)') t = _generate_rows(2, 1000) s = _generate_rows(2, 1000) pipeline.insert('test_indexed_t', ('x', 'y'), t) time.sleep(0.1) pipeline.create_cv('test_indexed', q) pipeline.insert('stream', ('x', 'y'), s) expected = _join(s, t, [0]) result = pipeline.execute('SELECT sum(count) FROM test_indexed').first() assert result['sum'] == len(expected)
def test_combine_in_view(pipeline, clean_db): """ Verify that combines in views on top of continuous views work """ q = """ SELECT x::integer, avg(y::integer) FROM stream0 GROUP BY x """ desc = ('x', 'y') pipeline.create_stream('stream0', x='int', y='float8') pipeline.create_cv('test_combine_view', q) pipeline.execute('CREATE VIEW v AS SELECT combine(avg) FROM test_combine_view') rows = [] for n in range(10000): rows.append((random.randint(1, 256), random.randint(1, 1024))) pipeline.insert('stream0', desc, rows) view = list(pipeline.execute('SELECT * FROM v')) assert len(view) == 1 expected = sum(r[1] for r in rows) / float(len(rows)) assert abs(float(view[0][0]) - expected) < 0.00001 pipeline.execute('DROP VIEW v')
def test_prepared_inserts(pipeline, clean_db): """ Verify that we can PREPARE and EXECUTE an INSERT statement """ conn = psycopg2.connect('dbname=pipeline user=%s host=localhost port=%s' % (getpass.getuser(), pipeline.port)) db = conn.cursor() db.execute('CREATE CONTINUOUS VIEW test_prepared0 AS SELECT x::integer, COUNT(*), sum(y::integer) FROM stream GROUP BY x') db.execute('CREATE CONTINUOUS VIEW test_prepared1 AS SELECT x::integer, COUNT(*), sum(y::float8) FROM stream GROUP BY x') conn.commit() db.execute('PREPARE ins AS INSERT INTO stream (x, y) VALUES ($1, $2)') for n in range(10000): row = (n % 100, random.random()) db.execute('EXECUTE ins (%s, %s)' % row) time.sleep(0.1) conn.commit() result = list(pipeline.execute('SELECT * FROM test_prepared0 ORDER BY x')) assert len(result) == 100 for n in range(100): assert result[n]['count'] == 100 result = list(pipeline.execute('SELECT * FROM test_prepared1 ORDER BY x')) assert len(result) == 100 for n in range(100): assert result[n]['count'] == 100 conn.close()
def get_stat(): rows = pipeline.execute( 'SELECT COUNT(*) FROM test_vacuum').first()['count'] matrel_rows = pipeline.execute( 'SELECT COUNT(*) FROM test_vacuum_mrel').first()['count'] disk_pages = pipeline.execute(""" SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = 'test_vacuum_mrel'; """).first()['relpages'] for r in pipeline.execute(""" SELECT relname, relpages FROM pg_class, (SELECT reltoastrelid FROM pg_class WHERE relname = 'test_vacuum_mrel') AS ss WHERE oid = ss.reltoastrelid OR oid = (SELECT indexrelid FROM pg_index WHERE indrelid = ss.reltoastrelid) ORDER BY relname; """): disk_pages += r['relpages'] for r in pipeline.execute(""" SELECT c2.relname, c2.relpages FROM pg_class c, pg_class c2, pg_index i WHERE c.relname = 'test_vacuum_mrel' AND c.oid = i.indrelid AND c2.oid = i.indexrelid ORDER BY c2.relname; """): disk_pages += r['relpages'] return Stat(rows, matrel_rows, disk_pages)
def _test_agg(pipeline, agg, check_fn=None): name = agg[:agg.find('(')] q = 'SELECT g::integer, %s OVER (PARTITION BY g ORDER BY ts::timestamp) FROM %s' cv_name = 'test_%s' % name table_name = 'test_%s_t' % name desc = ('ts', 'g', 'x', 'y', 'z') pipeline.create_cv(cv_name, q % (agg, 'stream')) pipeline.create_table(table_name, ts='timestamp', x='integer', y='integer', z='integer', g='integer') rows = [] for i, n in enumerate(range(1000)): ts = str(datetime.utcnow() + timedelta(seconds=i)) row = ts, n % 10, random.randint(1, 256), random.randint(1, 256), random.randint(1, 256) rows.append(row) pipeline.insert('stream', desc, rows) pipeline.insert(table_name, desc, rows) if check_fn: return check_fn(pipeline) expected = list(pipeline.execute(q % (agg, table_name) + ' ORDER BY g')) result = list(pipeline.execute('SELECT * FROM %s ORDER BY g' % cv_name)) assert len(expected) == len(result) for e, r in zip(expected, result): assert e == r pipeline.drop_cv(cv_name) pipeline.drop_table(table_name)
def test_user_low_and_high_card(pipeline, clean_db): """ Verify that Bloom filters's with low and high cardinalities are correcly unioned """ q = """ SELECT k::integer, bloom_agg(x::integer) FROM test_bloom_stream GROUP BY k """ desc = ('k', 'x') pipeline.create_cv('test_bloom_agg', q) # Low cardinalities rows = [] for n in range(1000): rows.append((0, random.choice((-1, -2)))) rows.append((1, random.choice((-3, -4)))) # High cardinalities for n in range(10000): rows.append((2, n)) rows.append((3, n)) pipeline.insert('test_bloom_stream', desc, rows) result = pipeline.execute('SELECT bloom_cardinality(combine(bloom_agg)) ' 'FROM test_bloom_agg WHERE k in (0, 1)').first() assert result[0] == 4 result = pipeline.execute('SELECT bloom_cardinality(combine(bloom_agg)) ' 'FROM test_bloom_agg WHERE k in (2, 3)').first() assert result[0] == 8879 result = pipeline.execute('SELECT bloom_cardinality(combine(bloom_agg)) ' 'FROM test_bloom_agg').first() assert result[0] == 8881
def test_regression(pipeline, clean_db): path = os.path.abspath(os.path.join(pipeline.data_dir, 'test_copy.csv')) _generate_csv(path, [['2015-06-01 00:00:00', 'De', 'Adam_Babareka', '1', '37433']], desc=('day', 'project', 'title', 'count', 'size')) pipeline.create_stream('copy_regression_stream', count='int', day='timestamp', project='text', title='text', size='int') pipeline.create_cv('test_copy_regression', 'SELECT sum(count) FROM copy_regression_stream') pipeline.execute("COPY copy_regression_stream (day, project, title, count, size) FROM '%s' CSV HEADER" % path)
def test_online_drop_column(pipeline, clean_db): pipeline.create_stream("stream1", c0="integer") try: pipeline.execute("ALTER STREAM stream1 DROP c0") assert False except: pass
def test_online_drop_column(pipeline, clean_db): pipeline.create_stream('stream1', c0='integer') try: pipeline.execute('ALTER STREAM stream1 DROP c0') assert False except: pass
def test_regression(pipeline, clean_db): path = os.path.abspath(os.path.join(pipeline.tmp_dir, 'test_copy.csv')) _generate_csv(path, [['2015-06-01 00:00:00','De','Adam_Babareka','1','37433']], desc=('day', 'project', 'title', 'count', 'size')) pipeline.create_stream('copy_regression_stream', count='int', day='timestamp', project='text', title='text', size='int') pipeline.create_cv('test_copy_regression', 'SELECT sum(count) FROM copy_regression_stream') pipeline.execute("COPY copy_regression_stream (day, project, title, count, size) FROM '%s' CSV HEADER" % path)
def _verify(): result = pipeline.execute("SELECT count(*) FROM test_dump").first() assert result["count"] == 100 result = pipeline.execute("SELECT sum(avg) FROM test_dump").first() assert result["sum"] == 50050 result = pipeline.execute("SELECT sum(distincts) FROM test_dump").first() assert result["sum"] == 1000
def _verify(): result = pipeline.execute('SELECT count(*) FROM test_dump').first() assert result['count'] == 100 result = pipeline.execute('SELECT sum(avg) FROM test_dump').first() assert result['sum'] == 50050 result = pipeline.execute('SELECT sum(distincts) FROM test_dump').first() assert result['sum'] == 1000
def test_join_ordering(pipeline, clean_db): """ Verify that the correct plan is generated regardless of the ordering of streams and tables. """ num_cols = 8 join_cols = [0] ordering0_cols = dict([('col%d' % n, 'integer') for n in range(num_cols)]) ordering1_cols = dict([('col%d' % n, 'integer') for n in range(num_cols)]) pipeline.create_table('ordering0', **ordering0_cols) pipeline.create_table('ordering1', **ordering1_cols) ordering0 = _generate_rows(num_cols, 64) ordering1 = _generate_rows(num_cols, 64) _insert(pipeline, 'ordering0', ordering0, 0.1) _insert(pipeline, 'ordering1', ordering1, 0.1) pipeline.create_stream('stream0', **ordering0_cols) # stream, table, table q0 = """ SELECT s.col0::integer, ordering0.col3, ordering1.col4 FROM stream0 s JOIN ordering0 ON s.col0 = ordering0.col0 JOIN ordering1 ON ordering0.col0 = ordering1.col0 """ pipeline.create_cv('test_ordering0', q0) # table, stream, table q1 = """ SELECT s.col0::integer, ordering0.col3, ordering1.col4 FROM ordering0 JOIN stream0 s ON s.col0 = ordering0.col0 JOIN ordering1 ON ordering0.col0 = ordering1.col0 """ pipeline.create_cv('test_ordering1', q1) # table, table, stream q2 = """ SELECT s.col0::integer, ordering0.col3, ordering1.col4 FROM ordering0 JOIN ordering1 ON ordering0.col0 = ordering1.col0 JOIN stream0 s ON s.col0 = ordering0.col0 """ pipeline.create_cv('test_ordering2', q2) s = _generate_rows(num_cols, 64) _insert(pipeline, 'stream0', s) expected = _join(ordering0, _join(ordering1, s, join_cols), join_cols) result0 = pipeline.execute('SELECT COUNT(*) FROM test_ordering0')[0] result1 = pipeline.execute('SELECT COUNT(*) FROM test_ordering1')[0] result2 = pipeline.execute('SELECT COUNT(*) FROM test_ordering2')[0] assert result0['count'] == len(expected) assert result1['count'] == len(expected) assert result2['count'] == len(expected)
def test_join_ordering(pipeline, clean_db): """ Verify that the correct plan is generated regardless of the ordering of streams and tables. """ num_cols = 8 join_cols = [0] ordering0_cols = dict([('col%d' % n, 'integer') for n in range(num_cols)]) ordering1_cols = dict([('col%d' % n, 'integer') for n in range(num_cols)]) pipeline.create_table('ordering0', **ordering0_cols) pipeline.create_table('ordering1', **ordering1_cols) ordering0 = _generate_rows(num_cols, 64) ordering1 = _generate_rows(num_cols, 64) _insert(pipeline, 'ordering0', ordering0, 0.1) _insert(pipeline, 'ordering1', ordering1, 0.1) pipeline.create_stream('stream', **ordering0_cols) # stream, table, table q0 = """ SELECT s.col0::integer, ordering0.col3, ordering1.col4 FROM stream s JOIN ordering0 ON s.col0 = ordering0.col0 JOIN ordering1 ON ordering0.col0 = ordering1.col0 """ pipeline.create_cv('test_ordering0', q0) # table, stream, table q1 = """ SELECT s.col0::integer, ordering0.col3, ordering1.col4 FROM ordering0 JOIN stream s ON s.col0 = ordering0.col0 JOIN ordering1 ON ordering0.col0 = ordering1.col0 """ pipeline.create_cv('test_ordering1', q1) # table, table, stream q2 = """ SELECT s.col0::integer, ordering0.col3, ordering1.col4 FROM ordering0 JOIN ordering1 ON ordering0.col0 = ordering1.col0 JOIN stream s ON s.col0 = ordering0.col0 """ pipeline.create_cv('test_ordering2', q2) s = _generate_rows(num_cols, 64) _insert(pipeline, 'stream', s) expected = _join(ordering0, _join(ordering1, s, join_cols), join_cols) result0 = pipeline.execute('SELECT COUNT(*) FROM test_ordering0').first() result1 = pipeline.execute('SELECT COUNT(*) FROM test_ordering1').first() result2 = pipeline.execute('SELECT COUNT(*) FROM test_ordering2').first() assert result0['count'] == len(expected) assert result1['count'] == len(expected) assert result2['count'] == len(expected)
def delimited_messages(): rows = pipeline.execute('SELECT * from comma_cv ORDER BY x') assert len(rows) == 100 for i, row in enumerate(rows): assert tuple([row[0], row[1], row[2]]) == (i, i, i) rows = pipeline.execute('SELECT * from tab_cv ORDER BY x') assert len(rows) == 100 for i, row in enumerate(rows): assert tuple([row[0], row[1], row[2]]) == (i, i, i)
def test_regression(pipeline, clean_db): path = os.path.abspath(os.path.join(pipeline.tmp_dir, 'test_copy.csv')) _generate_csv(path, [['2015-06-01 00:00:00','De','Adam_Babareka','1','37433']], desc=('day', 'project', 'title', 'count', 'size')) pipeline.create_cv('test_copy_regression', 'SELECT sum(count::integer) FROM copy_regression_stream') try: pipeline.execute("COPY copy_regression_stream (day, project, title, count, size) FROM '%s'" % path) except Exception, e: assert '(DataError) missing data for column "project"' in e.message
def test_bloom_type(pipeline, clean_db): pipeline.create_table("test_bloom_type", x="int", y="bloom") pipeline.execute("INSERT INTO test_bloom_type (x, y) VALUES " "(1, bloom_empty()), (2, bloom_empty())") for i in xrange(1000): pipeline.execute("UPDATE test_bloom_type SET y = bloom_add(y, %d / x)" % i) result = list(pipeline.execute("SELECT bloom_cardinality(y) " "FROM test_bloom_type ORDER BY x")) assert result[0][0] == 986 assert result[1][0] == 495
def test_multiple_databases(pipeline, clean_db): conn = psycopg2.connect('dbname=postgres user=%s host=localhost port=%s' % (getpass.getuser(), pipeline.port)) conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) cur = conn.cursor() cur.execute('CREATE DATABASE tmp_pipeline') cur.close() q = 'SELECT x::int FROM dbstream' pipeline.create_stream('dbstream', x='int') pipeline.create_cv('test_multiple_databases', q) # Insert data in first database. pipeline.insert('dbstream', ['x'], map(lambda x: (x, ), range(0, 10, 2))) result = pipeline.execute('SELECT * FROM test_multiple_databases') assert sorted(row['x'] for row in result) == range(0, 10, 2) # Create same CV in the other database, make sure its created and write different data to it. tmp_conn = psycopg2.connect( 'dbname=tmp_pipeline user=%s host=localhost port=%s' % (getpass.getuser(), pipeline.port)) cur = tmp_conn.cursor() cur.execute('CREATE EXTENSION pipelinedb') cur.execute('CREATE FOREIGN TABLE dbstream (x int) SERVER pipelinedb') cur.execute('CREATE VIEW test_multiple_databases AS %s' % q) tmp_conn.commit() cur.execute('INSERT INTO dbstream (x) VALUES %s' % ', '.join(map(lambda x: '(%d)' % x, range(1, 11, 2)))) cur.execute('SELECT * FROM test_multiple_databases') tmp_conn.commit() assert sorted(row[0] for row in cur) == range(1, 11, 2) # Ensure that the data written to the other database isn't seen by the first database. result = pipeline.execute('SELECT * FROM test_multiple_databases') assert sorted(row['x'] for row in result) == range(0, 10, 2) # Insert new data to both databases. pipeline.insert('dbstream', ['x'], map(lambda x: (x, ), range(10, 20, 2))) cur.execute('INSERT INTO dbstream (x) VALUES %s' % ', '.join(map(lambda x: '(%d)' % x, range(11, 21, 2)))) # Ensure both databases still saw the data written out to them. result = pipeline.execute('SELECT * FROM test_multiple_databases') assert sorted(row['x'] for row in result) == range(0, 20, 2) cur.execute('SELECT * FROM test_multiple_databases') tmp_conn.commit() assert sorted(row[0] for row in cur) == range(1, 21, 2) cur.close() tmp_conn.close() cur = conn.cursor() cur.execute('DROP DATABASE tmp_pipeline') cur.close() conn.close()
def test_multiple_insert(pipeline, clean_db): pipeline.create_cv('cv0', 'SELECT count(*) FROM stream1') pipeline.create_cv('cv1', 'SELECT count(*) FROM stream2') pipeline.create_ct('ct1', 'SELECT x::int FROM stream WHERE mod(x, 2) = 0', "pipeline_stream_insert('stream1', 'stream2')") pipeline.insert('stream', ('x', ), [(n, ) for n in range(1000)]) count = pipeline.execute('SELECT count FROM cv0').first()['count'] assert count == 500 count = pipeline.execute('SELECT count FROM cv1').first()['count'] assert count == 500
def test_postmaster_worker_recovery(pipeline, clean_db): """ Verify that the postmaster only restarts crashed worker processes, and does not attempt to start them when the continuous query scheduler should. """ expected_workers = len(get_worker_pids()) assert expected_workers > 0 expected_combiners = len(get_combiner_pids()) assert expected_combiners > 0 def backend(): try: # Just keep a long-running backend connection open client = pipeline.engine.connect() client.execute('SELECT pg_sleep(10000)') except: pass t = threading.Thread(target=backend) t.start() attempts = 0 result = None backend_pid = 0 while not result and attempts < 10: result = pipeline.execute("""SELECT pid, query FROM pg_stat_activity WHERE lower(query) LIKE '%%pg_sleep%%'""")[0] time.sleep(1) attempts += 1 assert result backend_pid = result['pid'] os.kill(backend_pid, signal.SIGKILL) attempts = 0 pipeline.conn = None while attempts < 20: try: pipeline.execute('SELECT 1') break except: time.sleep(1) pass attempts += 1 assert pipeline.conn # Now verify that we have the correct number of CQ worker procs assert expected_workers == len(get_worker_pids()) assert expected_combiners == len(get_combiner_pids())
def test_hll_type(pipeline, clean_db): pipeline.create_table('test_hll_type', x='int', y='hyperloglog') pipeline.execute('INSERT INTO test_hll_type (x, y) VALUES ' '(1, hll_empty()), (2, hll_empty())') for i in xrange(1000): pipeline.execute('UPDATE test_hll_type SET y = hll_add(y, %d / x)' % i) result = pipeline.execute( 'SELECT hll_cardinality(y) FROM test_hll_type ORDER BY x') assert result[0][0] == 995 assert result[1][0] == 497
def unpack_cv(): # The JSON array gets unpacked for this CV so there are 3 rows for every message rows = pipeline.execute('SELECT count(*) FROM unpack_cv') assert rows[0][0] == 600 rows = pipeline.execute('SELECT count(distinct k) FROM unpack_cv') assert rows[0][0] == 100 rows = pipeline.execute('SELECT * FROM unpack_cv ORDER BY k') for row in rows: k, arr_el = row[0], row[1] assert k.replace('v', '') == arr_el
def counts(): rows = pipeline.execute('SELECT sum(count) FROM group0') assert rows[0][0] == 100 rows = pipeline.execute('SELECT sum(count) FROM group1') assert rows[0][0] == 100 rows = pipeline.execute('SELECT count(*) FROM group0') assert rows[0][0] == 100 rows = pipeline.execute('SELECT count(*) FROM group1') assert rows[0][0] == 100
def test_bloom_type(pipeline, clean_db): pipeline.create_table('test_bloom_type', x='int', y='bloom') pipeline.execute('INSERT INTO test_bloom_type (x, y) VALUES ' '(1, bloom_empty()), (2, bloom_empty())') for i in xrange(1000): pipeline.execute( 'UPDATE test_bloom_type SET y = bloom_add(y, %d / x)' % i) result = pipeline.execute( 'SELECT bloom_cardinality(y) FROM test_bloom_type ORDER BY x') assert result[0][0] == 986 assert result[1][0] == 495
def test_combine_table_no_groups(pipeline, clean_db): pipeline.create_stream('s', x='int') pipeline.create_cv('no_groups', 'SELECT COUNT(*) FROM s') values = [(i,) for i in xrange(1000)] pipeline.insert('s', ('x',), values) pipeline.execute('SELECT * INTO tmprel FROM no_groups_mrel') pipeline.execute("SELECT pipeline_combine_table('no_groups', 'tmprel')") rows = list(pipeline.execute('SELECT count FROM no_groups')) assert len(rows) == 1 assert len(rows[0]) == 1 assert rows[0][0] == 2000
def test_uniqueness(pipeline, clean_db): pipeline.create_cv('uniqueness', 'SELECT x::int, count(*) FROM stream GROUP BY x') for i in range(10): rows = [((10000 * i) + j, ) for j in xrange(10000)] pipeline.insert('stream', ('x', ), rows) count = pipeline.execute('SELECT count(*) FROM uniqueness').first()['count'] distinct_count = pipeline.execute( 'SELECT count(DISTINCT x) FROM uniqueness').first()['count'] assert count == distinct_count
def test_tdigest_type(pipeline, clean_db): pipeline.create_table('test_tdigest_type', x='int', y='tdigest') pipeline.execute('INSERT INTO test_tdigest_type (x, y) VALUES ' '(1, tdigest_empty()), (2, tdigest_empty())') for i in xrange(1000): pipeline.execute('UPDATE test_tdigest_type ' 'SET y = tdigest_add(y, {} %% (x * 500))'.format(i)) result = list(pipeline.execute('SELECT tdigest_cdf(y, 400), ' 'tdigest_quantile(y, 0.9)' 'FROM test_tdigest_type ORDER BY x')) assert map(lambda x: round(x, 1), result[0]) == [0.8, 449.5] assert map(lambda x: round(x, 1), result[1]) == [0.4, 899.5]
def test_cmsketch_type(pipeline, clean_db): pipeline.create_table('test_cmsketch_type', x='int', y='cmsketch') pipeline.execute('INSERT INTO test_cmsketch_type (x, y) VALUES ' '(1, cmsketch_empty()), (2, cmsketch_empty())') for i in xrange(1000): pipeline.execute('UPDATE test_cmsketch_type ' 'SET y = cmsketch_add(y, {} %% x)'.format(i)) result = list(pipeline.execute('SELECT cmsketch_count(y, 0), ' 'cmsketch_count(y, 1) ' 'FROM test_cmsketch_type ORDER BY x')) assert result[0] == (1000, 0) assert result[1] == (500, 500)
def test_drop_mrel_column(pipeline, clean_db): """ Verify that we can't drop matrel columns """ pipeline.create_stream('mrel_drop_s', x='integer') q = """ SELECT x, sum(x), avg(x), count(*) FROM mrel_drop_s GROUP BY x """ pipeline.create_cv('mrel_drop_cv', q) for col in ('x', 'sum', 'avg', 'count'): with pytest.raises(psycopg2.InternalError): pipeline.execute('ALTER TABLE mrel_drop_cv_mrel DROP COLUMN %s' % col)
def assert_result_changes(func, args): """ Verifies that the result of the given function changes with time """ pipeline.create_stream('stream0', x='int', y='text', z='int') name = 'assert_%s_decreases' % func pipeline.create_cv( name, "SELECT %s(%s) FROM stream0 WHERE arrival_timestamp > clock_timestamp() - interval '2 seconds'" % (func, args)) # We also create a wide sliding window just to verify that user combines work on SW CVs and have the same output # as if they were being run on a non-SW CV sw_name = name + '_sw_agg' pipeline.create_cv( sw_name, "SELECT x %% 10 AS g, %s(%s) FROM stream0 WHERE arrival_timestamp > clock_timestamp() - interval '2 days' GROUP BY g" % (func, args)) verify_name = name + '_sw_agg_verify' pipeline.create_cv( verify_name, "SELECT x %% 10 AS g, %s(%s) FROM stream0 GROUP BY g" % (func, args)) rows = [(n, str(n), n + 1) for n in range(1000)] pipeline.insert('stream0', ('x', 'y', 'z'), rows) current = 1 results = [] while current: row = pipeline.execute('SELECT * FROM %s' % name)[0] current = row[func] if current is None: break results.append(current) # Verify that we actually read something assert results # Verify user combines on SW CVs work and produce the expected output sw_row = pipeline.execute('SELECT combine(%s) FROM %s' % (func, sw_name))[0] expected_row = pipeline.execute('SELECT combine(%s) FROM %s' % (func, verify_name))[0] if isinstance(sw_row['combine'], list): sw_row['combine'] = sorted(sw_row['combine']) expected_row['combine'] = sorted(expected_row['combine']) assert sw_row['combine'] == expected_row['combine'] pipeline.drop_cv(name)
def test_concurrent_sw_ticking(pipeline, clean_db): """ Verify that several concurrent sliding-window queries each having different windows tick correctly at different intervals. """ pipeline.create_stream('stream0', x='int') output_names = [] for n in range(10): name = 'sw%d' % n pipeline.create_cv( name, 'SELECT x::integer, count(*) FROM stream0 GROUP BY x', sw='%d seconds' % (n + 10)) output_name = name + '_output' q = """ SELECT arrival_timestamp, CASE WHEN (old).x IS NULL THEN (new).x ELSE (old).x END AS x, old, new FROM %s_osrel """ % name pipeline.create_cv(output_name, q) output_names.append(output_name) names = [ r[0] for r in pipeline.execute( 'SELECT name FROM pipeline_views() ORDER BY name DESC') ] assert len(names) == 2 * 10 pipeline.insert('stream0', ('x', ), [(x % 100, ) for x in range(10000)]) time.sleep(25) for name in output_names: rows = list(pipeline.execute('SELECT COUNT(DISTINCT x) FROM %s' % name)) assert rows[0][0] == 100 for x in range(100): # In window assert pipeline.execute( 'SELECT * FROM %s WHERE old IS NULL AND new IS NOT NULL AND x = %d' % (name, x)) # Out of window assert pipeline.execute( 'SELECT * FROM %s WHERE old IS NOT NULL AND new IS NULL AND x = %d' % (name, x)) # Drop these in reverse dependency order to prevent deadlocks for name in names: pipeline.drop_cv(name)
def test_cmsketch_type(pipeline, clean_db): pipeline.create_table('test_cmsketch_type', x='int', y='cmsketch') pipeline.execute('INSERT INTO test_cmsketch_type (x, y) VALUES ' '(1, cmsketch_empty()), (2, cmsketch_empty())') for i in xrange(1000): pipeline.execute( 'UPDATE test_cmsketch_type SET y = freq_add(y, %d %% x)' % i) result = list( pipeline.execute('SELECT freq(y, 0), ' 'freq(y, 1) ' 'FROM test_cmsketch_type ORDER BY x')) assert (result[0][0], result[0][1]) == (1000, 0) assert (result[1][0], result[1][1]) == (500, 500)
def test_tdigest_agg(pipeline, clean_db): """ Test tdigest_agg, tdigest_merge_agg, tdigest_cdf, tdigest_quantile """ q = """ SELECT k::integer, tdigest_agg(x::int) AS t FROM test_tdigest_stream GROUP BY k """ desc = ('k', 'x') pipeline.create_cv('test_tdigest_agg', q) rows = [] for _ in range(10): for n in range(1000): rows.append((0, n)) rows.append((1, n + 500)) pipeline.insert('test_tdigest_stream', desc, rows) result = list( pipeline.execute( 'SELECT tdigest_quantile(t, 0.1) FROM test_tdigest_agg ORDER BY k' ).fetchall()) assert len(result) == 2 assert abs(int(result[0]['tdigest_quantile']) - 99) <= 1 assert abs(int(result[1]['tdigest_quantile']) - 599) <= 1 result = list( pipeline.execute( 'SELECT tdigest_quantile(combine(t), 0.1) FROM test_tdigest_agg'). fetchall()) assert len(result) == 1 assert abs(int(result[0]['tdigest_quantile']) - 200) <= 4 result = list( pipeline.execute( 'SELECT tdigest_cdf(t, 600) FROM test_tdigest_agg ORDER BY k'). fetchall()) assert len(result) == 2 assert round(result[0]['tdigest_cdf'], 2) == 0.6 assert round(result[1]['tdigest_cdf'], 2) == 0.1 result = list( pipeline.execute( 'SELECT tdigest_cdf(combine(t), 600) FROM test_tdigest_agg'). fetchall()) assert len(result) == 1 assert round(result[0]['tdigest_cdf'], 2) == 0.35
def test_drop_columns(pipeline, clean_db): """ Verify that columns on the table-side of a stream-table join can't be dropped """ pipeline.create_table('drop_t', x='integer', y='integer') pipeline.create_stream('drop_s', x='integer') q = """ SELECT s.x, count(*) FROM drop_s s JOIN drop_t t ON s.x = t.x GROUP BY s.x """ pipeline.create_cv('stj_drop_cv', q) with pytest.raises(psycopg2.InternalError): pipeline.execute('ALTER TABLE drop_t DROP COLUMN x') # Columns not being joined on can be dropped though pipeline.execute('ALTER TABLE drop_t DROP COLUMN y')