示例#1
0
class DQNAgent:

    def __init__(self, identifier, actions, observation_shape, num_steps, x=0.0, y=0.0):
        self.id = identifier
        self.actions = actions
        self.x = x
        self.y = y
        self.yellow_steps = 0
        self.postponed_action = None
        self.obs = None
        self.current_action = None
        self.weights = np.ones(32)
        self.td_errors = np.ones(32)

        self.pre_train = 2500
        self.prioritized = False
        self.prioritized_eps = 1e-4
        self.batch_size = 32
        self.buffer_size = 30000
        self.learning_freq = 500
        self.target_update = 5000

        # Create all the functions necessary to train the model
        self.act, self.train, self.update_target, self.debug = deepq.build_train(
            make_obs_ph=lambda name: TrafficTfInput(observation_shape, name=name),
            q_func=dueling_model,
            num_actions=len(actions),
            optimizer=tf.train.AdamOptimizer(learning_rate=1e-4, epsilon=1e-4),
            gamma=0.99,
            double_q=True,
            scope="deepq" + identifier
        )

        # Create the replay buffer
        if self.prioritized:
            self.replay_buffer = PrioritizedReplayBuffer(size=self.buffer_size, alpha=0.6)
            self.beta_schedule = LinearSchedule(num_steps // 4, initial_p=0.4, final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size)

        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        self.exploration = LinearSchedule(schedule_timesteps=int(num_steps * 0.1), initial_p=1.0, final_p=0.01)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()

    def take_action(self, t):
        if self.postponed_action is None:
            # Take action and update exploration to the newest value
            action = self.act(np.array(self.obs)[None], update_eps=self.exploration.value(t))[0]
        else:
            # Take action postponed by yellow light transition
            action = self.postponed_action
            self.postponed_action = None

        return action

    def store(self, rew, new_obs, done):
        # Store transition in the replay buffer.
        self.replay_buffer.add(self.obs, self.current_action, rew, new_obs, float(done))

    def learn(self, t):
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if t > self.pre_train:
            if self.prioritized:
                experience = self.replay_buffer.sample(self.batch_size, beta=self.beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, self.weights, batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = self.replay_buffer.sample(self.batch_size)
                self.weights = np.ones_like(rewards)

            # Minimize the error in Bellman's equation and compute TD-error
            self.td_errors = self.train(obses_t, actions, rewards, obses_tp1, dones, self.weights)

            # Update the priorities in the replay buffer
            if self.prioritized:
                new_priorities = np.abs(self.td_errors) + self.prioritized_eps
                self.replay_buffer.update_priorities(batch_idxes, new_priorities)

        self.update_target_network(t)

    def update_target_network(self, t):
        # Update target network periodically.
        if t % self.target_update == 0:
            self.update_target()

    def add_fingerprint_to_obs(self, obs, weights, identifier, td_errors):
        idx = 0

        for w in weights:
            obs[2, identifier, idx] = w
            idx += 1

        for td in td_errors:
            obs[2, identifier, idx] = td
            idx += 1

        return obs

    def add_fingerprint(self, weights, identifier, td_errors):
        self.obs = self.add_fingerprint_to_obs(self.obs, weights, identifier, td_errors)
示例#2
0
def learn(env,
          network,
          seed=None,
          use_crm=False,
          use_rs=False,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    use_crm: bool
        use counterfactual experience to train the policy
    use_rs: bool
        use reward shaping
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    # Adjusting hyper-parameters by considering the number of RM states for crm
    if use_crm:
        rm_states = env.get_num_rm_states()
        buffer_size = rm_states * buffer_size
        batch_size = rm_states * batch_size

    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, info = env.step(env_action)

            # Store transition in the replay buffer.
            if use_crm:
                # Adding counterfactual experience (this will alrady include shaped rewards if use_rs=True)
                experiences = info["crm-experience"]
            elif use_rs:
                # Include only the current experince but shape the reward
                experiences = [(obs, action, info["rs-reward"], new_obs,
                                float(done))]
            else:
                # Include only the current experience (standard deepq)
                experiences = [(obs, action, rew, new_obs, float(done))]
            # Adding the experiences to the replay buffer
            for _obs, _action, _r, _new_obs, _done in experiences:
                replay_buffer.add(_obs, _action, _r, _new_obs, _done)

            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
    def __init__(self,
                 learning_rate=5e-4,  # could use linearschedule here as well?
                 gamma=.99,
                 epsilon_max=1.0,
                 epsilon_min=0.001,
                 epsilon_decay_steps=300000,
                 learning_starts=1000,
                 train_freq=100,
                 target_update_freq=5000,
                 max_buffer_size=100000,
                 batch_size=16,
                 prioritized_replay_beta_iters = 300000,  # in reality this would be max_steps -- for now just much larger than decay steps
                 training=True,
                 indicate_nonrandom_action=False,
                 prioritized=True,
                 prioritized_alpha = .6,  # b=.7, a=.5 for rank-based prioritization
                 prioritized_beta = .4,  # "rank-based likely not as good for sparse-reward structures" ... clipping limits outliers
                 save_file='C:/Users/lbianculli/venv1/sc_bot/minigames/collect_minerals/logs/network_saves',
                 save_dir='C:/Users/lbianculli/venv1/sc_bot/minigames/collect_minerals/logs/ckpts/',
                 ckpt_name='collect_minerals_6-23',
                 summary_path='C:/Users/lbianculli/venv1/sc_bot/minigames/collect_minerals/logs/summaries/',
                 buffer_path='C:/Users/lbianculli/venv1/sc_bot/minigames/collect_minerals/logs/buffers/buffer_6-23',
                 logdir='C:/Users/lbianculli/venv1/sc_bot/minigames/collect_minerals/logs/variable_logs.txt',
                 log=True):
        super(DQNMoveOnlyAgent, self).__init__()

        # NN hparams
        self.learning_rate = learning_rate
        self.gamma = gamma

        # agent hparams
        self.epsilon_max = epsilon_max
        self.epsilon_min = epsilon_min
        self.epsilon_decay_steps = epsilon_decay_steps
        self.learning_starts = learning_starts
        self.train_freq = train_freq
        self.target_update_freq = target_update_freq
        self.indicate_nonrandom_action = indicate_nonrandom_action  # not sure exactly
        self.prioritized = prioritized
        self.prioritized_alpha = prioritized_alpha
        self.prioritized_beta = prioritized_beta
        self.save_file = save_file
        self.batch_size = batch_size
        self.log = log

        # other
        self.training = training  
        self.max_reward = 0
        self.total_reward = 0
        self.last_state = None
        self.last_action = None

        if self.prioritized:
            self.buffer_file = buffer_path + '_prioritized.p'
            self.beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=self.prioritized_beta, final_p=1.0)
        else:
            self.buffer_file = buffer_path + '.p'

        # load and set epsilon
        if os.path.isfile(self.save_file + '.npy'):
            self.epsilon, self.initial_step = np.load(self.save_file + '.npy')  # can i just use loaded step for epsilon as well?
            print(f'epsilon loaded: {self.epsilon}')
        else:
            self.epsilon = 1.0
            self.initial_step = 0
        self.epsilons = [self.epsilon]

        # for saving and loading files
        if save_dir:
            self.online_save_dir = save_dir + 'online/'  # for use in checkpoints
            self.target_save_dir = save_dir + 'target/'

        if ckpt_name:
            self.ckpt_name = ckpt_name

        if summary_path:
            self.online_summary_path = summary_path + 'online/' # for use in TB summaries
            self.target_summary_path = summary_path + 'target/'

        if self.log:
            self.init_logger(logdir)

        # build network
        if save_dir and ckpt_name:
            self.online_save_path = self.online_save_dir + ckpt_name + '.ckpt'
            self.target_save_path = self.target_save_dir + ckpt_name + '.ckpt'
        print("Building models...")
        tf.reset_default_graph()
        self.online_network = PlayerRelativeCNN(spatial_dims=FEATURE_SCREEN_SIZE,
                                                 learning_rate=self.learning_rate,
                                                 save_path=self.online_save_path,
                                                 summary_path=self.online_summary_path,
                                                 name='DQN')
        if self.training:
            # set up target_net and initialize replay buffer
            self.target_network = PlayerRelativeCNN(spatial_dims=FEATURE_SCREEN_SIZE,
                                                            learning_rate=self.learning_rate,
                                                            save_path = self.target_save_path,
                                                            summary_path = self.target_summary_path,
                                                            name='target_network')
        # initialize tf session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        print('Initialization complete.')

        # check for and load networks/buffer if possible
        if os.path.isfile(self.online_save_path + '.index') and os.path.isfile(self.target_save_path + '.index'):
            self.online_network.load(self.sess)
            self.target_network.load(self.sess)

        # check for buffer to load
        if os.path.isfile(self.buffer_file):
            with open(self.buffer_file, 'rb') as f:
                self.replay_buffer = pickle.load(f)
        else:
            if self.prioritized:  # alpha = 0 is same as uniform
                self.replay_buffer = PrioritizedReplayBuffer(max_buffer_size, self.prioritized_alpha)
            else:
                self.replay_buffer = ReplayBuffer(max_buffer_size)

        self.online_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'DQN')
        self.target_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'target_network')
        self.online_network._init_train_fn(self.online_vars, grad_norm_clipping=10)  # what are good values for clip?
        self.target_network._init_train_fn(self.target_vars, grad_norm_clipping=10)

        print('online and target models loaded.')
        self._tf_init()

        if self.training:
            self._update_target_network()  # do i still need this?
        else:
            self._tf_init()
示例#4
0
def learn(env,
          network,
          seed=None,
          lr=1e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          multiplayer=False,
          callback=None,
          load_path=None,
          load_path_1=None,
          load_path_2=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    # This was all handled in not the most elegant way
    # Variables have a _1 or _2 appended to them to separate them
    # and a bunch of if statementss to have the _2 variables not do anything in single-player

    # when in multiplayer Space Invaders, need to not reward players for other player dying
    isSpaceInvaders = False
    if "SpaceInvaders" in str(env):
        isSpaceInvaders = True

    # put a limit on the amount of memory used, otherwise TensorFlow will consume nearly everything
    # this leaves 1 GB free on my computer, others may need to change it

    # Create all the functions necessary to train the model
    # Create two separate TensorFlow sessions
    graph_1 = tf.Graph()
    sess_1 = tf.Session(graph=graph_1)
    if multiplayer:
        graph_2 = tf.Graph()
        sess_2 = tf.Session(graph=graph_2)
    else:
        # set session 2 to None if it's not being used
        sess_2 = None
    set_global_seeds(seed)
    # specify the q functions as separate objects
    q_func_1 = build_q_func(network, **network_kwargs)
    if multiplayer:
        q_func_2 = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    # build everything for the first model
    # pass in the session and the "_1" suffix
    act_1, train_1, update_target_1, debug_1 = deepq.build_train(
        sess=sess_1,
        make_obs_ph=make_obs_ph,
        q_func=q_func_1,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        scope="deepq")
    # a lot of if multiplayer statements duplicating these actions for a second network
    # pass in session 2 and "_2" instead
    if multiplayer:
        act_2, train_2, update_target_2, debug_2 = deepq.build_train(
            sess=sess_2,
            make_obs_ph=make_obs_ph,
            q_func=q_func_2,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=param_noise,
            scope="deepq")

    # separate act_params for each wrapper
    act_params_1 = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func_1,
        'num_actions': env.action_space.n,
    }
    if multiplayer:
        act_params_2 = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func_2,
            'num_actions': env.action_space.n,
        }
    # make the act wrappers
    act_1 = ActWrapper(act_1, act_params_1)
    if multiplayer:
        act_2 = ActWrapper(act_2, act_params_2)
    # I need to return something if it's single-player
    else:
        act_2 = None

    # Create the replay buffer
    # separate replay buffers are required for each network
    # this is required for competitive because the replay buffers hold rewards
    # and player 2 has different rewards than player 1
    if prioritized_replay:
        replay_buffer_1 = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        if multiplayer:
            replay_buffer_2 = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer_1 = ReplayBuffer(buffer_size)
        if multiplayer:
            replay_buffer_2 = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    # initialize both sessions
    U.initialize(sess_1)
    if multiplayer:
        U.initialize(sess_2)
    # the session was passed into these functions when they were created
    # the separate update functions work within the different sessions
    update_target_1()
    if multiplayer:
        update_target_2()

    # keep track of rewards for both models separately
    episode_rewards_1 = [0.0]
    saved_mean_reward_1 = None
    if multiplayer:
        episode_rewards_2 = [0.0]
        saved_mean_reward_2 = None
    obs = env.reset()
    reset = True

    # storing stuff in a temporary directory while it's working
    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td
        model_file_1 = os.path.join(td, "model_1")
        temp_file_1 = os.path.join(td, "temp_1")
        model_saved_1 = False
        if multiplayer:
            model_file_2 = os.path.join(td, "model_2")
            temp_file_2 = os.path.join(td, "temp_2")
            model_saved_2 = False

        if tf.train.latest_checkpoint(td) is not None:
            if multiplayer:
                # load both models if multiplayer is on
                load_variables(model_file_1, sess_1)
                logger.log('Loaded model 1 from {}'.format(model_file_1))
                model_saved_1 = True
                load_variables(model_file_2, sess_2)
                logger.log('Loaded model 2 from {}'.format(model_file_2))
                model_saved_2 = True
            # otherwise just load the first one
            else:
                load_variables(model_file_1, sess_1)
                logger.log('Loaded model from {}'.format(model_file_1))
                model_saved_1 = True
        # I have separate load variables for single-player and multiplayer
        # this should be None if multiplayer is on
        elif load_path is not None:
            load_variables(load_path, sess_1)
            logger.log('Loaded model from {}'.format(load_path))
        # load the separate models in for multiplayer
        # should load the variables into the appropriate sessions

        # my format may restrict things to working properly only when a Player 1 model is loaded into session 1, and same for Player 2
        # however, in practice, the models won't work properly otherwise
        elif multiplayer:
            if load_path_1 is not None:
                load_variables(load_path_1, sess_1)
                logger.log('Loaded model 1 from {}'.format(load_path_1))
            if load_path_2 is not None:
                load_variables(load_path_2, sess_2)
                logger.log('Loaded model 2 from {}'.format(load_path_2))

        # actual training starts here
        for t in range(total_timesteps):
            # use this for updating purposes
            actual_t = t + 1
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            # receive model 1's action based on the model and observation
            action_1 = act_1(np.array(obs)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
            env_action_1 = action_1
            # do the same for model 2 if in multiplayer
            if multiplayer:
                action_2 = act_2(np.array(obs)[None],
                                 update_eps=update_eps,
                                 **kwargs)[0]
                env_action_2 = action_2
            reset = False
            # apply actions to the environment
            if multiplayer:
                new_obs, rew_1, rew_2, done, _ = env.step(
                    env_action_1, env_action_2)
            # apply single action if there isn't a second model
            else:
                new_obs, rew_1, rew_2, done, _ = env.step(env_action_1)

            # manual clipping for Space Invaders multiplayer
            if isSpaceInvaders and multiplayer:
                # don't reward a player when the other player dies
                # change the reward to 0
                # the only time either player will get rewarded 200 is when the other player dies
                if rew_1 >= 200:
                    rew_1 = rew_1 - 200.0
                if rew_2 >= 200:
                    rew_2 = rew_2 - 200.0
                # manually clip the rewards using the sign function
                rew_1 = np.sign(rew_1)
                rew_2 = np.sign(rew_2)
                combo_factor = 0.25
                rew_1_combo = rew_1 + combo_factor * rew_2
                rew_2_combo = rew_2 + combo_factor * rew_1
                rew_1 = rew_1_combo
                rew_2 = rew_2_combo

            # Store transition in the replay buffers
            replay_buffer_1.add(obs, action_1, rew_1, new_obs, float(done))
            if multiplayer:
                # pass reward_2 to the second player
                # this reward will vary based on the game
                replay_buffer_2.add(obs, action_2, rew_2, new_obs, float(done))
            obs = new_obs
            # separate rewards for each model
            episode_rewards_1[-1] += rew_1
            if multiplayer:
                episode_rewards_2[-1] += rew_2
            if done:
                obs = env.reset()
                episode_rewards_1.append(0.0)
                if multiplayer:
                    episode_rewards_2.append(0.0)
                reset = True
            if actual_t > learning_starts and actual_t % train_freq == 0:

                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                # sample from the two replay buffers
                if prioritized_replay:
                    experience_1 = replay_buffer_1.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t_1, actions_1, rewards_1, obses_tp1_1, dones_1,
                     weights_1, batch_idxes_1) = experience_1
                    # keep all the variables with separate names
                    if multiplayer:
                        experience_2 = replay_buffer_2.sample(
                            batch_size, beta=beta_schedule.value(t))
                        (obses_t_2, actions_2, rewards_2, obses_tp1_2, dones_2,
                         weights_2, batch_idxes_2) = experience_2
                # do the same if there's no prioritization
                else:
                    obses_t_1, actions_1, rewards_1, obses_tp1_1, dones_1 = replay_buffer_1.sample(
                        batch_size)
                    weights_1, batch_idxes_1 = np.ones_like(rewards_1), None
                    if multiplayer:
                        obses_t_2, actions_2, rewards_2, obses_tp1_2, dones_2 = replay_buffer_2.sample(
                            batch_size)
                        weights_2, batch_idxes_2 = np.ones_like(
                            rewards_2), None
                # actually train the model based on the samples
                td_errors_1 = train_1(obses_t_1, actions_1, rewards_1,
                                      obses_tp1_1, dones_1, weights_1)
                if multiplayer:
                    td_errors_2 = train_2(obses_t_2, actions_2, rewards_2,
                                          obses_tp1_2, dones_2, weights_2)
                # give new priority weights to the observations
                if prioritized_replay:
                    new_priorities_1 = np.abs(
                        td_errors_1) + prioritized_replay_eps
                    replay_buffer_1.update_priorities(batch_idxes_1,
                                                      new_priorities_1)
                    if multiplayer:
                        new_priorities_2 = np.abs(
                            td_errors_2) + prioritized_replay_eps
                        replay_buffer_2.update_priorities(
                            batch_idxes_2, new_priorities_2)

            if actual_t > learning_starts and actual_t % target_network_update_freq == 0:
                # Update target networks periodically.
                update_target_1()
                if multiplayer:
                    update_target_2()

            # this section is for the purposes of logging stuff
            # calculate the average reward over the last 100 episodes
            mean_100ep_reward_1 = round(np.mean(episode_rewards_1[-101:-1]), 1)
            if multiplayer:
                mean_100ep_reward_2 = round(
                    np.mean(episode_rewards_2[-101:-1]), 1)
            num_episodes = len(episode_rewards_1)
            # every given number of episodes log and print out the appropriate stuff
            if done and print_freq is not None and len(
                    episode_rewards_1) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                # print out both rewards if multiplayer
                if multiplayer:
                    logger.record_tabular("mean 100 episode reward 1",
                                          mean_100ep_reward_1)
                    logger.record_tabular("mean 100 episode reward 2",
                                          mean_100ep_reward_2)
                else:
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward_1)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            # save best-performing version of each model
            # I've opted out of this for competitive multiplayer because it's difficult to determine what's "best"

            if (checkpoint_freq is not None and actual_t > learning_starts
                    and num_episodes > 100
                    and actual_t % checkpoint_freq == 0):
                # if there's a best reward, save it as the new best model
                if saved_mean_reward_1 is None or mean_100ep_reward_1 > saved_mean_reward_1:
                    if print_freq is not None:
                        if multiplayer:
                            logger.log(
                                "Saving model 1 due to mean reward increase: {} -> {}"
                                .format(saved_mean_reward_1,
                                        mean_100ep_reward_1))
                        else:
                            logger.log(
                                "Saving model due to mean reward increase: {} -> {}"
                                .format(saved_mean_reward_1,
                                        mean_100ep_reward_1))
                    save_variables(model_file_1, sess_1)
                    model_saved_1 = True
                    saved_mean_reward_1 = mean_100ep_reward_1

                if multiplayer and (saved_mean_reward_2 is None or
                                    mean_100ep_reward_2 > saved_mean_reward_2):
                    if print_freq is not None:
                        logger.log(
                            "Saving model 2 due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward_2, mean_100ep_reward_2))
                    save_variables(model_file_2, sess_2)
                    model_saved_2 = True
                    saved_mean_reward_2 = mean_100ep_reward_2

        # restore models at the end to the best performers
        if model_saved_1:
            if print_freq is not None:
                logger.log("Restored model 1 with mean reward: {}".format(
                    saved_mean_reward_1))
            load_variables(model_file_1, sess_1)
        if multiplayer and model_saved_2:
            if print_freq is not None:
                logger.log("Restored model 2 with mean reward: {}".format(
                    saved_mean_reward_2))
            load_variables(model_file_2, sess_2)
    return act_1, act_2, sess_1, sess_2
示例#5
0
        # Create the environment
        env = gym.make("CartPole-v0")
        # Create all the functions necessary to train the model
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: ObservationInput(env.observation_space,
                                                      name=name),
            q_func=model,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
        )
        # Create the replay buffer
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000,
                                     initial_p=1.0,
                                     final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        episode_rewards = [0.0]
        obs = env.reset()
        for t in itertools.count():
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs
示例#6
0
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=1000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
    observation_in: object
              the output of observation placeholder
  num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput((64, 64), name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    num_episodes = 0
    saved_mean_reward = None

    path_memory = np.zeros((64, 64))

    obs = env.reset()

    # Select all marines first
    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    screen = player_relative + path_memory

    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
    obs = env.step(
        actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

    for i in range(len(player_x)):
        xy = [player_x[i], player_y[i]]
        obs = env.step(
            actions=[sc2_actions.FunctionCall(_SELECT_POINT, [[0], xy])])

        group_id = 0
        group_list = []
        unit_xy_list = []
        for i in range(len(player_x)):
            if i % 4 != 0:
                continue

            if group_id > 2:
                break

            xy = [player_x[i], player_y[i]]
            unit_xy_list.append(xy)

            if (len(unit_xy_list) >= 1):
                for idx, xy in enumerate(unit_xy_list):
                    if (idx == 0):
                        obs = env.step(actions=[
                            sc2_actions.FunctionCall(_SELECT_POINT, [[0], xy])
                        ])
                    else:
                        obs = env.step(actions=[
                            sc2_actions.FunctionCall(_SELECT_POINT, [[1], xy])
                        ])

                obs = env.step(actions=[
                    sc2_actions.FunctionCall(
                        _SELECT_CONTROL_GROUP,
                        [[_CONTROL_GROUP_SET], [group_id]])
                ])
                unit_xy_list = []

                group_list.append(group_id)
                group_id += 1

        if (len(unit_xy_list) >= 1):
            for idx, xy in enumerate(unit_xy_list):
                if (idx == 0):
                    obs = env.step(actions=[
                        sc2_actions.FunctionCall(_SELECT_POINT, [[0], xy])
                    ])
                else:
                    obs = env.step(actions=[
                        sc2_actions.FunctionCall(_SELECT_POINT, [[1], xy])
                    ])

            obs = env.step(actions=[
                sc2_actions.FunctionCall(_SELECT_CONTROL_GROUP,
                                         [[_CONTROL_GROUP_SET], [group_id]])
            ])

            group_list.append(group_id)
            group_id += 1

            return obs

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")

        for t in range(max_timesteps):
            if t % 1000 == 0:
                ActWrapper.save(ActWrapper, "mineral_shards.pkl")
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(screen)[None],
                         update_eps=update_eps,
                         **kwargs)[0]
            reset = False
            rew = 0

            #select marines
            player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
            screen = player_relative + path_memory
            player = []

            while (len(group_list) > 0):
                group_id = np.random.choice(group_list)
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(
                        _SELECT_CONTROL_GROUP,
                        [[_CONTROL_GROUP_RECALL], [group_id]])
                ])

                selected = obs[0].observation["screen"][_SELECTED]
                player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()
                if (len(player_y) > 0):
                    player = [int(player_x.mean()), int(player_y.mean())]
                    break
                else:
                    group_list.remove(group_id)

            if (len(player) == 2):

                if (player[0] > 32):
                    screen = shift(LEFT, player[0] - 32, screen)
                elif (player[0] < 32):
                    screen = shift(RIGHT, 32 - player[0], screen)

                if (player[1] > 32):
                    screen = shift(UP, player[1] - 32, screen)
                elif (player[1] < 32):
                    screen = shift(DOWN, 32 - player[1], screen)

            coord = [player[0], player[1]]

            path_memory_ = np.array(path_memory, copy=True)

            if (action == 0):  #UP

                if (player[1] >= 16):
                    coord = [player[0], player[1] - 16]
                    path_memory_[player[1] - 16:player[1], player[0]] = -1
                elif (player[1] > 0):
                    coord = [player[0], 0]
                    path_memory_[0:player[1], player[0]] = -1
                    #else:
                    #  rew -= 1

            elif (action == 1):  #DOWN

                if (player[1] <= 47):
                    coord = [player[0], player[1] + 16]
                    path_memory_[player[1]:player[1] + 16, player[0]] = -1
                elif (player[1] > 47):
                    coord = [player[0], 63]
                    path_memory_[player[1]:63, player[0]] = -1
                    #else:
                    #  rew -= 1

            elif (action == 2):  #LEFT

                if (player[0] >= 16):
                    coord = [player[0] - 16, player[1]]
                    path_memory_[player[1], player[0] - 16:player[0]] = -1
                elif (player[0] < 16):
                    coord = [0, player[1]]
                    path_memory_[player[1], 0:player[0]] = -1
                    #else:
                    #  rew -= 1

            elif (action == 3):  #RIGHT

                if (player[0] <= 47):
                    coord = [player[0] + 16, player[1]]
                    path_memory_[player[1], player[0]:player[0] + 16] = -1
                elif (player[0] > 47):
                    coord = [63, player[1]]
                    path_memory_[player[1], player[0]:63] = -1

            path_memory = np.array(path_memory_)

            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                for i in range(len(player_x)):
                    xy = [player_x[i], player_y[i]]
                    obs = env.step(actions=[
                        sc2_actions.FunctionCall(_SELECT_POINT, [[0], xy])
                    ])
                    #obs = env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # else:
            #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

            obs = env.step(actions=new_action)

            player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
            new_screen = player_relative + path_memory

            selected = obs[0].observation["screen"][_SELECTED]
            player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()

            rew = obs[0].reward

            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer.add(screen, action, rew, new_screen, float(done))
            screen = new_screen

            episode_rewards[-1] += rew
            #episode_minerals[-1] += obs[0].reward

            if done:
                obs = env.reset()
                player_relative = obs[0].observation["screen"][
                    _PLAYER_RELATIVE]

                screen = player_relative + path_memory

                player_y, player_x = (
                    player_relative == _PLAYER_FRIENDLY).nonzero()
                player = [int(player_x.mean()), int(player_y.mean())]

                if (player[0] > 32):
                    screen = shift(LEFT, player[0] - 32, screen)
                elif (player[0] < 32):
                    screen = shift(RIGHT, 32 - player[0], screen)

                if (player[1] > 32):
                    screen = shift(UP, player[1] - 32, screen)
                elif (player[1] < 32):
                    screen = shift(DOWN, 32 - player[1], screen)

                # Select all marines first
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])

                for i in range(len(player_x)):
                    xy = [player_x[i], player_y[i]]
                    obs = env.step(actions=[
                        sc2_actions.FunctionCall(_SELECT_POINT, [[0], xy])
                    ])

                    group_id = 0
                    group_list = []
                    unit_xy_list = []
                    for i in range(len(player_x)):
                        if i % 4 != 0:
                            continue

                        if group_id > 2:
                            break

                        xy = [player_x[i], player_y[i]]
                        unit_xy_list.append(xy)

                        if (len(unit_xy_list) >= 1):
                            for idx, xy in enumerate(unit_xy_list):
                                if (idx == 0):
                                    obs = env.step(actions=[
                                        sc2_actions.FunctionCall(
                                            _SELECT_POINT, [[0], xy])
                                    ])
                                else:
                                    obs = env.step(actions=[
                                        sc2_actions.FunctionCall(
                                            _SELECT_POINT, [[1], xy])
                                    ])

                            obs = env.step(actions=[
                                sc2_actions.FunctionCall(
                                    _SELECT_CONTROL_GROUP,
                                    [[_CONTROL_GROUP_SET], [group_id]])
                            ])
                            unit_xy_list = []

                            group_list.append(group_id)
                            group_id += 1

                    if (len(unit_xy_list) >= 1):
                        for idx, xy in enumerate(unit_xy_list):
                            if (idx == 0):
                                obs = env.step(actions=[
                                    sc2_actions.FunctionCall(
                                        _SELECT_POINT, [[0], xy])
                                ])
                            else:
                                obs = env.step(actions=[
                                    sc2_actions.FunctionCall(
                                        _SELECT_POINT, [[1], xy])
                                ])

                        obs = env.step(actions=[
                            sc2_actions.FunctionCall(
                                _SELECT_CONTROL_GROUP,
                                [[_CONTROL_GROUP_SET], [group_id]])
                        ])

                        group_list.append(group_id)
                        group_id += 1

                    episode_rewards.append(0.0)
                    reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            #mean_100ep_mineral = round(np.mean(episode_minerals[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                #logger.record_tabular("mean 100 episode mineral", mean_100ep_mineral)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act)
示例#7
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=1000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          save_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    logger = logging.getLogger()
    coloredlogs.install(
        level='DEBUG',
        fmt=
        '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s'
    )
    logger.setLevel(logging.DEBUG)

    # DATAVAULT: Set up list of action meanings and two lists to store episode
    # and total sums for each possible action in the list.
    action_names = env.unwrapped.get_action_meanings()
    action_episode_sums = []
    action_total_sums = []
    for x in range(len(action_names)):
        action_episode_sums.append(0)
        action_total_sums.append(0)

    # And obviously, you need a datavault item
    dv = DataVault()

    # Create all the functions necessary to train the model
    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        #DATAVAULT: This is where you usually want to scrape data - in the timestep loop
        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            # if environment is pacman, limit moves to four directions
            name = env.unwrapped.spec.id
            if name == "MsPacmanNoFrameskip-v4":
                while True:
                    step_return = act(np.array(obs)[None],
                                      update_eps=update_eps,
                                      **kwargs)
                    action = step_return[0][0]

                    env_action = action
                    q_values = np.squeeze(step_return[1])
                    # test for break condition
                    if 1 <= action <= 4:
                        break
            else:
                step_return = act(np.array(obs)[None],
                                  update_eps=update_eps,
                                  **kwargs)
                action = step_return[0][0]
                q_values = np.squeeze(step_return[1])
                env_action = action
            reset = False

            new_obs, rew, done, info = env.step(env_action)
            # DATAVAULT: after each step, we push the information out to the datavault
            lives = env.ale.lives()
            #store_data(self, action, action_name, action_episode_sums, action_total_sums, reward, done, info, lives, q_values, observation, mean_reward):
            action_episode_sums, action_total_sums = dv.store_data(
                action, action_names[action], action_episode_sums,
                action_total_sums, rew, done, info, lives, q_values, new_obs,
                saved_mean_reward)

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()
            if (len(episode_rewards[-101:-1]) > 0):
                mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            else:
                mean_100ep_reward = 0
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    dv.make_dataframes()
    print("Save path is: ")
    print(save_path)
    # use parent dir to save data, so we can keep the current folder small and portable
    directory = os.path.abspath(os.path.join(save_path, os.pardir))
    csv_path = os.path.join(directory, 'CSVs')
    os.mkdir(csv_path)
    dv.df_to_csv(csv_path)
    return act
示例#8
0
    with U.make_session(8):
        # Create all the functions necessary to train the model
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: tf.placeholder(tf.int32, [None, None],
                                                    name=name),
            q_func=model,
            num_actions=s.action_space,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
        )
        # Create the replay buffer
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000,
                                     initial_p=1.0,
                                     final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        episode_rewards = [0.0]
        for t in itertools.count(start=1):
            # Take action and update exploration to the newest value
            action = act(np.array(student_history)[None],
                         update_eps=exploration.value(t))[
                             0]  #FIXME: shape (0, ) instead of (None, None)

            (correct, time_passed), reward, done = s.do_exercise(action)
示例#9
0
文件: deepq.py 项目: umvdl/zzz_OpenAI
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    
    ############################## RL-S Prepare #############################################
    
    # model saved name
    saved_name = "0817"

    #####
    # Setup Training Record
    #####
    save_new_data = False
    create_new_file = False
    create_new_file_rule = create_new_file
    save_new_data_rule = save_new_data

    create_new_file_RL = False
    save_new_data_RL = save_new_data
    
    create_new_file_replay_buffer = False
    save_new_data_replay_buffer = save_new_data

    is_training = False
    trajectory_buffer = deque(maxlen=20)

    if create_new_file_replay_buffer:
        if osp.exists("recorded_replay_buffer.txt"):
            os.remove("recorded_replay_buffer.txt")
    else:
        replay_buffer_dataset = np.loadtxt("recorded_replay_buffer.txt")
        for data in replay_buffer_dataset:
            obs, action, rew, new_obs, done = _extract_data(data)
            replay_buffer.add(obs, action, rew, new_obs, done)

    recorded_replay_buffer_outfile = open("recorded_replay_buffer.txt","a")
    recorded_replay_buffer_format = " ".join(("%f",)*31)+"\n"
    
    #####
    # Setup Rule-based Record
    #####
    create_new_file_rule = True

    # create state database
    if create_new_file_rule:
        if osp.exists("state_index_rule.dat"):
            os.remove("state_index_rule.dat")
            os.remove("state_index_rule.idx")
        if osp.exists("visited_state_rule.txt"):
            os.remove("visited_state_rule.txt")
        if osp.exists("visited_value_rule.txt"):
            os.remove("visited_value_rule.txt")

        visited_state_rule_value = []
        visited_state_rule_counter = 0
    else:
        visited_state_rule_value = np.loadtxt("visited_value_rule.txt")
        visited_state_rule_value = visited_state_rule_value.tolist()
        visited_state_rule_counter = len(visited_state_rule_value)

    visited_state_rule_outfile = open("visited_state_rule.txt", "a")
    visited_state_format = " ".join(("%f",)*14)+"\n"

    visited_value_rule_outfile = open("visited_value_rule.txt", "a")
    visited_value_format = " ".join(("%f",)*2)+"\n"

    visited_state_tree_prop = rindex.Property()
    visited_state_tree_prop.dimension = 14
    visited_state_dist = np.array([[0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2]])
    visited_state_rule_tree = rindex.Index('state_index_rule',properties=visited_state_tree_prop)

    #####
    # Setup RL-based Record
    #####

    if create_new_file_RL:
        if osp.exists("state_index_RL.dat"):
            os.remove("state_index_RL.dat")
            os.remove("state_index_RL.idx")
        if osp.exists("visited_state_RL.txt"):
            os.remove("visited_state_RL.txt")
        if osp.exists("visited_value_RL.txt"):
            os.remove("visited_value_RL.txt")

    if create_new_file_RL:
        visited_state_RL_value = []
        visited_state_RL_counter = 0
    else:
        visited_state_RL_value = np.loadtxt("visited_value_RL.txt")
        visited_state_RL_value = visited_state_RL_value.tolist()
        visited_state_RL_counter = len(visited_state_RL_value)

    visited_state_RL_outfile = open("visited_state_RL.txt", "a")
    visited_state_format = " ".join(("%f",)*14)+"\n"

    visited_value_RL_outfile = open("visited_value_RL.txt", "a")
    visited_value_format = " ".join(("%f",)*2)+"\n"

    visited_state_tree_prop = rindex.Property()
    visited_state_tree_prop.dimension = 14
    visited_state_dist = np.array([[0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2]])
    visited_state_RL_tree = rindex.Index('state_index_RL',properties=visited_state_tree_prop)


    ############################## RL-S Prepare End #############################################
    
    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))


        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action, q_function_cz = act(np.array(obs)[None], update_eps=update_eps, **kwargs)
            
            # RLS_action = generate_RLS_action(obs,q_function_cz,action,visited_state_rule_value,
            #                                 visited_state_rule_tree,visited_state_RL_value,
            #                                 visited_state_RL_tree,is_training)

            RLS_action = 0

            env_action = RLS_action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)

            ########### Record data in trajectory buffer and local file, but not in replay buffer ###########

            trajectory_buffer.append((obs, action, float(rew), new_obs, float(done)))

            # Store transition in the replay buffer.
            # replay_buffer.add(obs, action, rew, new_obs, float(done))

            obs = new_obs
            episode_rewards[-1] += rew # safe driving is 1, collision is 0


            while len(trajectory_buffer)>10:
                # if safe driving for 10(can be changed) steps, the state is regarded as safe
                obs_left, action_left, rew_left, new_obs_left, done_left = trajectory_buffer.popleft()
                # save this state in local replay buffer file
                if save_new_data_replay_buffer:
                    recorded_data = _wrap_data(obs_left, action_left, rew_left, new_obs_left, done_left)
                    recorded_replay_buffer_outfile.write(recorded_replay_buffer_format % tuple(recorded_data))
                # put this state in replay buffer
                replay_buffer.add(obs_left[0], action_left, float(rew_left), new_obs_left[0], float(done_left))
                action_to_record = action_left
                r_to_record = rew_left
                obs_to_record = obs_left

                # save this state in rule-based or RL-based visited state
                if action_left == 0:
                    if save_new_data_rule:
                        visited_state_rule_value.append([action_to_record,r_to_record])
                        visited_state_rule_tree.insert(visited_state_rule_counter,
                            tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0]))
                        visited_state_rule_outfile.write(visited_state_format % tuple(obs_to_record[0]))
                        visited_value_rule_outfile.write(visited_value_format % tuple([action_to_record,r_to_record]))
                        visited_state_rule_counter += 1
                else:
                    if save_new_data_RL:
                        visited_state_RL_value.append([action_to_record,r_to_record])
                        visited_state_RL_tree.insert(visited_state_RL_counter,
                            tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0]))
                        visited_state_RL_outfile.write(visited_state_format % tuple(obs_to_record[0]))
                        visited_value_RL_outfile.write(visited_value_format % tuple([action_to_record,r_to_record]))
                        visited_state_RL_counter += 1

            ################# Record data end ########################
            
            
            if done:
                """ 
                Get collision or out of multilane map
                """
                ####### Record the trajectory data and add data in replay buffer #########
                _, _, rew_right, _, _ = trajectory_buffer[-1]

                while len(trajectory_buffer)>0:
                    obs_left, action_left, rew_left, new_obs_left, done_left = trajectory_buffer.popleft()
                    action_to_record = action_left
                    r_to_record = (rew_right-rew_left)*gamma**len(trajectory_buffer) + rew_left
                    # record in local replay buffer file
                    if save_new_data_replay_buffer:
                        obs_to_record = obs_left
                        recorded_data = _wrap_data(obs_left, action_left, r_to_record, new_obs_left, done_left)
                        recorded_replay_buffer_outfile.write(recorded_replay_buffer_format % tuple(recorded_data))
                    # record in replay buffer for trainning
                    replay_buffer.add(obs_left[0], action_left, float(r_to_record), new_obs_left[0], float(done_left))

                    # save visited rule/RL state data in local file
                    if action_left == 0:
                        if save_new_data_rule:
                            visited_state_rule_value.append([action_to_record,r_to_record])
                            visited_state_rule_tree.insert(visited_state_rule_counter,
                                tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0]))
                            visited_state_rule_outfile.write(visited_state_format % tuple(obs_to_record[0]))
                            visited_value_rule_outfile.write(visited_value_format % tuple([action_to_record,r_to_record]))
                            visited_state_rule_counter += 1
                    else:
                        if save_new_data_RL:
                            visited_state_RL_value.append([action_to_record,r_to_record])
                            visited_state_RL_tree.insert(visited_state_RL_counter,
                                tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0]))
                            visited_state_RL_outfile.write(visited_state_format % tuple(obs_to_record[0]))
                            visited_value_RL_outfile.write(visited_value_format % tuple([action_to_record,r_to_record]))
                            visited_state_RL_counter += 1

                ####### Recorded #####

                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            ############### Trainning Part Start #####################
            if not is_training:
                # don't need to train the model
                continue

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

                    rew_str = str(mean_100ep_reward)
                    path = osp.expanduser("~/models/carlaok_checkpoint/"+saved_name+"_"+rew_str)
                    act.save(path)

        #### close the file ####
        visited_state_rule_outfile.close()
        visited_value_rule_outfile.close()
        recorded_replay_buffer_outfile.close()
        if not is_training:
            testing_record_outfile.close()
        #### close the file ###

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_variables(model_file)

    return act
示例#10
0
    def __init__(self,
                 logdir,
                 env_fn,
                 policy_fn,
                 qf_fn,
                 nenv=1,
                 optimizer=torch.optim.Adam,
                 buffer_size=10000,
                 frame_stack=1,
                 learning_starts=1000,
                 update_period=1,
                 batch_size=256,
                 policy_lr=1e-4,
                 qf_lr=1e-3,
                 qf_weight_decay=0.01,
                 gamma=0.99,
                 noise_theta=0.15,
                 noise_sigma=0.2,
                 noise_sigma_final=0.01,
                 noise_decay_period=10000,
                 target_update_period=1,
                 target_smoothing_coef=0.005,
                 reward_scale=1,
                 gpu=True,
                 eval_num_episodes=1,
                 record_num_episodes=1,
                 log_period=1000):
        """Init."""
        self.logdir = logdir
        self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts'))
        self.env_fn = env_fn
        self.nenv = nenv
        self.eval_num_episodes = eval_num_episodes
        self.record_num_episodes = record_num_episodes
        self.gamma = gamma
        self.buffer_size = buffer_size
        self.frame_stack = frame_stack
        self.learning_starts = learning_starts
        self.update_period = update_period
        self.batch_size = batch_size
        if target_update_period < self.update_period:
            self.target_update_period = self.update_period
        else:
            self.target_update_period = target_update_period - (
                target_update_period % self.update_period)
        self.reward_scale = reward_scale
        self.target_smoothing_coef = target_smoothing_coef
        self.log_period = log_period

        self.device = torch.device(
            'cuda:0' if gpu and torch.cuda.is_available() else 'cpu')
        self.t = 0

        self.env = VecEpisodeLogger(env_fn(nenv=nenv))
        self.policy_fn = policy_fn
        self.qf_fn = qf_fn
        eval_env = VecFrameStack(self.env, self.frame_stack)
        self.pi = policy_fn(eval_env)
        self.qf = qf_fn(eval_env)
        self.target_pi = policy_fn(eval_env)
        self.target_qf = qf_fn(eval_env)

        self.pi.to(self.device)
        self.qf.to(self.device)
        self.target_pi.to(self.device)
        self.target_qf.to(self.device)

        self.optimizer = optimizer
        self.policy_lr = policy_lr
        self.qf_lr = qf_lr
        self.qf_weight_decay = qf_weight_decay
        self.opt_pi = optimizer(self.pi.parameters(), lr=policy_lr)
        self.opt_qf = optimizer(self.qf.parameters(),
                                lr=qf_lr,
                                weight_decay=qf_weight_decay)

        self.target_pi.load_state_dict(self.pi.state_dict())
        self.target_qf.load_state_dict(self.qf.state_dict())

        self.noise_schedule = LinearSchedule(noise_decay_period,
                                             noise_sigma_final, noise_sigma)
        self._actor = DDPGActor(self.pi, self.env.action_space, noise_theta,
                                self.noise_schedule.value(self.t))
        self.buffer = ReplayBuffer(buffer_size, frame_stack)
        self.data_manager = ReplayBufferDataManager(self.buffer, self.env,
                                                    self._actor, self.device,
                                                    self.learning_starts,
                                                    self.update_period)

        self.qf_criterion = torch.nn.MSELoss()
        if self.env.action_space.__class__.__name__ == 'Discrete':
            raise ValueError("Action space must be continuous!")

        self.low = torch.from_numpy(self.env.action_space.low).to(self.device)
        self.high = torch.from_numpy(self.env.action_space.high).to(
            self.device)
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def agent():
        """Run the agent, connecting to a (remote) host started independently."""
        agent_module, agent_name = FLAGS.agent.rsplit(".", 1)
        agent_cls = getattr(importlib.import_module(agent_module), agent_name)

        with lan_sc2_env.LanSC2Env(
                host=FLAGS.host,
                config_port=FLAGS.config_port,
                race=sc2_env.Race[FLAGS.agent_race],
                step_mul=FLAGS.step_mul,
                realtime=FLAGS.realtime,
                agent_interface_format=sc2_env.parse_agent_interface_format(
                    feature_screen=FLAGS.feature_screen_size,
                    feature_minimap=FLAGS.feature_minimap_size,
                    rgb_screen=FLAGS.rgb_screen_size,
                    rgb_minimap=FLAGS.rgb_minimap_size,
                    action_space=FLAGS.action_space,
                    use_unit_counts=True,
                    use_camera_position=True,
                    show_cloaked=True,
                    show_burrowed_shadows=True,
                    show_placeholders=True,
                    send_observation_proto=True,
                    crop_to_playable_area=True,
                    raw_crop_to_playable_area=True,
                    allow_cheating_layers=True,
                    add_cargo_to_units=True,
                    use_feature_units=FLAGS.use_feature_units),
                visualize=FLAGS.render) as env:
            agents = [agent_cls()]
            logging.info("Connected, starting run_loop.")
            try:
                run_loop.run_loop(agents, env)
            except lan_sc2_env.RestartError:
                pass
        logging.info("Done.")

    def make_obs_ph(name):
        return BatchInput((1, 16, 16), name=name)

    act_x, train_x, update_target_x, debug_x = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_x")

    act_y, train_y, update_target_y, debug_y = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_y")

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_x = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        replay_buffer_y = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule_x = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)

        beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)
    else:
        replay_buffer_x = ReplayBuffer(buffer_size)
        replay_buffer_y = ReplayBuffer(buffer_size)

        beta_schedule_x = None
        beta_schedule_y = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target_x()
    update_target_y()

    #time.sleep(30)  # Stagger startups, otherwise tshey seem to conflict somehow

    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()

    action_blacklist = ['0']

    #function_id = numpy.random.choice(obs[0].observation.available_actions)

    #step forward a noop so units and prob appear
    obs = env.step(actions=[sc2_actions.FunctionCall(_NO_OP, [])])

    player_relative = obs[0].observation["feature_screen"][_PLAYER_RELATIVE]

    screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
    player = [0, 0]

    reset = True

    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join("model/", "nexus_wars")
        print(model_file)

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action_x = act_x(np.expand_dims(np.array(screen)[None], axis=0),
                             update_eps=update_eps,
                             **kwargs)[0]
            action_y = act_y(np.expand_dims(np.array(screen)[None], axis=0),
                             update_eps=update_eps,
                             **kwargs)[0]

            reset = False

            coord = [player[0], player[1]]
            rew = 0

            coord = [action_x, action_y]

            observation_spec = env.observation_spec()
            action_spec = env.action_spec()

            #get available actions
            avail_actions_now = obs[0].observation.available_actions

            #ready for actions yet? 4 actions = nothing to do yet
            if len(avail_actions_now) > 5:
                #game state is ready for random action commands, get them and args
                function_id = numpy.random.choice(
                    obs[0].observation.available_actions)
                args = [[numpy.random.randint(0, size) for size in arg.sizes]
                        for arg in action_spec[0].functions[function_id].args]

                #issue random command and arg
                obs = env.step(
                    actions=[sc2_actions.FunctionCall(function_id, args)])

                #obs = env.step(actions=[sc2_actions.FunctionCall(_NO_OP, [])])
            else:
                #step no matter wat
                obs = env.step(actions=[sc2_actions.FunctionCall(_NO_OP, [])])

            player_relative = obs[0].observation["feature_screen"][
                _PLAYER_RELATIVE]
            new_screen = (player_relative == _PLAYER_NEUTRAL).astype(int)

            player_y, player_x = (
                player_relative == _PLAYER_FRIENDLY).nonzero()
            # resolve the cannot convert float NaN to integer issue
            if len(player_x) == 0:
                player_x = np.array([0])
            if len(player_y) == 0:
                player_y = np.array([0])
            player = [int(player_x.mean()), int(player_y.mean())]

            rew = obs[0].reward
            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer_x.add(screen, action_x, rew, new_screen, float(done))
            replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

            screen = new_screen

            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                player_relative = obs[0].observation["feature_screen"][
                    _PLAYER_RELATIVE]
                screent = (player_relative == _PLAYER_NEUTRAL).astype(int)

                player_y, player_x = (
                    player_relative == _PLAYER_FRIENDLY).nonzero()
                player = [int(player_x.mean()), int(player_y.mean())]

                # Select all marines first
                env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
                episode_rewards.append(0.0)
                #episode_minerals.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:

                    experience_x = replay_buffer_x.sample(
                        batch_size, beta=beta_schedule_x.value(t))
                    (obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x,
                     weights_x, batch_idxes_x) = experience_x

                    experience_y = replay_buffer_y.sample(
                        batch_size, beta=beta_schedule_y.value(t))
                    (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y,
                     weights_y, batch_idxes_y) = experience_y
                else:

                    obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x = replay_buffer_x.sample(
                        batch_size)
                    weights_x, batch_idxes_x = np.ones_like(rewards_x), None

                    obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(
                        batch_size)
                    weights_y, batch_idxes_y = np.ones_like(rewards_y), None

                td_errors_x = train_x(np.expand_dims(obses_t_x, axis=1),
                                      actions_x, rewards_x,
                                      np.expand_dims(obses_tp1_x, axis=1),
                                      dones_x, weights_x)

                td_errors_y = train_x(np.expand_dims(obses_t_y, axis=1),
                                      actions_y, rewards_y,
                                      np.expand_dims(obses_tp1_y, axis=1),
                                      dones_y, weights_y)

                if prioritized_replay:
                    new_priorities_x = np.abs(
                        td_errors_x) + prioritized_replay_eps
                    new_priorities_y = np.abs(
                        td_errors_y) + prioritized_replay_eps
                    replay_buffer_x.update_priorities(batch_idxes_x,
                                                      new_priorities_x)
                    replay_buffer_y.update_priorities(batch_idxes_y,
                                                      new_priorities_y)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target_x()
                update_target_y()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act_x), ActWrapper(act_y)
示例#12
0
class DDPG(Algorithm):
    """DDPG algorithm."""
    def __init__(self,
                 logdir,
                 env_fn,
                 policy_fn,
                 qf_fn,
                 nenv=1,
                 optimizer=torch.optim.Adam,
                 buffer_size=10000,
                 frame_stack=1,
                 learning_starts=1000,
                 update_period=1,
                 batch_size=256,
                 policy_lr=1e-4,
                 qf_lr=1e-3,
                 qf_weight_decay=0.01,
                 gamma=0.99,
                 noise_theta=0.15,
                 noise_sigma=0.2,
                 noise_sigma_final=0.01,
                 noise_decay_period=10000,
                 target_update_period=1,
                 target_smoothing_coef=0.005,
                 reward_scale=1,
                 gpu=True,
                 eval_num_episodes=1,
                 record_num_episodes=1,
                 log_period=1000):
        """Init."""
        self.logdir = logdir
        self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts'))
        self.env_fn = env_fn
        self.nenv = nenv
        self.eval_num_episodes = eval_num_episodes
        self.record_num_episodes = record_num_episodes
        self.gamma = gamma
        self.buffer_size = buffer_size
        self.frame_stack = frame_stack
        self.learning_starts = learning_starts
        self.update_period = update_period
        self.batch_size = batch_size
        if target_update_period < self.update_period:
            self.target_update_period = self.update_period
        else:
            self.target_update_period = target_update_period - (
                target_update_period % self.update_period)
        self.reward_scale = reward_scale
        self.target_smoothing_coef = target_smoothing_coef
        self.log_period = log_period

        self.device = torch.device(
            'cuda:0' if gpu and torch.cuda.is_available() else 'cpu')
        self.t = 0

        self.env = VecEpisodeLogger(env_fn(nenv=nenv))
        self.policy_fn = policy_fn
        self.qf_fn = qf_fn
        eval_env = VecFrameStack(self.env, self.frame_stack)
        self.pi = policy_fn(eval_env)
        self.qf = qf_fn(eval_env)
        self.target_pi = policy_fn(eval_env)
        self.target_qf = qf_fn(eval_env)

        self.pi.to(self.device)
        self.qf.to(self.device)
        self.target_pi.to(self.device)
        self.target_qf.to(self.device)

        self.optimizer = optimizer
        self.policy_lr = policy_lr
        self.qf_lr = qf_lr
        self.qf_weight_decay = qf_weight_decay
        self.opt_pi = optimizer(self.pi.parameters(), lr=policy_lr)
        self.opt_qf = optimizer(self.qf.parameters(),
                                lr=qf_lr,
                                weight_decay=qf_weight_decay)

        self.target_pi.load_state_dict(self.pi.state_dict())
        self.target_qf.load_state_dict(self.qf.state_dict())

        self.noise_schedule = LinearSchedule(noise_decay_period,
                                             noise_sigma_final, noise_sigma)
        self._actor = DDPGActor(self.pi, self.env.action_space, noise_theta,
                                self.noise_schedule.value(self.t))
        self.buffer = ReplayBuffer(buffer_size, frame_stack)
        self.data_manager = ReplayBufferDataManager(self.buffer, self.env,
                                                    self._actor, self.device,
                                                    self.learning_starts,
                                                    self.update_period)

        self.qf_criterion = torch.nn.MSELoss()
        if self.env.action_space.__class__.__name__ == 'Discrete':
            raise ValueError("Action space must be continuous!")

        self.low = torch.from_numpy(self.env.action_space.low).to(self.device)
        self.high = torch.from_numpy(self.env.action_space.high).to(
            self.device)

    def _norm_actions(self, ac):
        if self.low is not None and self.high is not None:
            return 2 * (ac - self.low) / (self.high - self.low) - 1.0
        else:
            return ac

    def loss(self, batch):
        """Loss function."""
        # compute QFunction loss.
        with torch.no_grad():
            target_action = self.target_pi(batch['next_obs']).normed_action
            target_q = self.target_qf(batch['next_obs'], target_action).value
            qtarg = self.reward_scale * batch['reward'].float() + (
                (1.0 - batch['done']) * self.gamma * target_q)

        q = self.qf(batch['obs'], self._norm_actions(batch['action'])).value
        assert qtarg.shape == q.shape
        qf_loss = self.qf_criterion(q, qtarg)

        # compute policy loss
        action = self.pi(batch['obs'], deterministic=True).normed_action
        q = self.qf(batch['obs'], action).value
        pi_loss = -q.mean()

        # log losses
        if self.t % self.log_period < self.update_period:
            logger.add_scalar('loss/qf', qf_loss, self.t, time.time())
            logger.add_scalar('loss/pi', pi_loss, self.t, time.time())
        return pi_loss, qf_loss

    def step(self):
        """Step optimization."""
        self._actor.update_sigma(self.noise_schedule.value(self.t))
        self.t += self.data_manager.step_until_update()
        if self.t % self.target_update_period == 0:
            soft_target_update(self.target_pi, self.pi,
                               self.target_smoothing_coef)
            soft_target_update(self.target_qf, self.qf,
                               self.target_smoothing_coef)

        if self.t % self.update_period == 0:
            batch = self.data_manager.sample(self.batch_size)

            pi_loss, qf_loss = self.loss(batch)

            # update
            self.opt_qf.zero_grad()
            qf_loss.backward()
            self.opt_qf.step()

            self.opt_pi.zero_grad()
            pi_loss.backward()
            self.opt_pi.step()
        return self.t

    def evaluate(self):
        """Evaluate."""
        eval_env = VecFrameStack(self.env, self.frame_stack)
        self.pi.eval()
        misc.set_env_to_eval_mode(eval_env)

        # Eval policy
        os.makedirs(os.path.join(self.logdir, 'eval'), exist_ok=True)
        outfile = os.path.join(self.logdir, 'eval',
                               self.ckptr.format.format(self.t) + '.json')
        stats = rl_evaluate(eval_env, self.pi, self.eval_num_episodes, outfile,
                            self.device)
        logger.add_scalar('eval/mean_episode_reward', stats['mean_reward'],
                          self.t, time.time())
        logger.add_scalar('eval/mean_episode_length', stats['mean_length'],
                          self.t, time.time())

        # Record policy
        os.makedirs(os.path.join(self.logdir, 'video'), exist_ok=True)
        outfile = os.path.join(self.logdir, 'video',
                               self.ckptr.format.format(self.t) + '.mp4')
        rl_record(eval_env, self.pi, self.record_num_episodes, outfile,
                  self.device)

        self.pi.train()
        misc.set_env_to_train_mode(self.env)
        self.data_manager.manual_reset()

    def save(self):
        """Save."""
        state_dict = {
            'pi': self.pi.state_dict(),
            'qf': self.qf.state_dict(),
            'target_pi': self.target_pi.state_dict(),
            'target_qf': self.target_qf.state_dict(),
            'opt_pi': self.opt_pi.state_dict(),
            'opt_qf': self.opt_qf.state_dict(),
            'env': misc.env_state_dict(self.env),
            't': self.t
        }
        buffer_dict = self.buffer.state_dict()
        state_dict['buffer_format'] = nest.get_structure(buffer_dict)
        self.ckptr.save(state_dict, self.t)

        # save buffer seperately and only once (because it can be huge)
        np.savez(
            os.path.join(self.ckptr.ckptdir, 'buffer.npz'),
            **{f'{i:04d}': x
               for i, x in enumerate(nest.flatten(buffer_dict))})

    def load(self, t=None):
        """Load."""
        state_dict = self.ckptr.load(t)
        if state_dict is None:
            self.t = 0
            return self.t
        self.pi.load_state_dict(state_dict['pi'])
        self.qf.load_state_dict(state_dict['qf'])
        self.target_pi.load_state_dict(state_dict['target_pi'])
        self.target_qf.load_state_dict(state_dict['target_qf'])

        self.opt_pi.load_state_dict(state_dict['opt_pi'])
        self.opt_qf.load_state_dict(state_dict['opt_qf'])
        misc.env_load_state_dict(self.env, state_dict['env'])
        self.t = state_dict['t']

        buffer_format = state_dict['buffer_format']
        buffer_state = dict(
            np.load(os.path.join(self.ckptr.ckptdir, 'buffer.npz')))
        buffer_state = nest.flatten(buffer_state)
        self.buffer.load_state_dict(
            nest.pack_sequence_as(buffer_state, buffer_format))
        self.data_manager.manual_reset()
        return self.t

    def close(self):
        """Close environment."""
        try:
            self.env.close()
        except Exception:
            pass
示例#13
0
def learn(env, args):
    logger.configure('./rainbow_log', ['stdout', 'csv'])

    ob = env.reset()
    ob_shape = ob.shape
    num_action = int(env.action_space.n)

    agent = RainbowAgent(ob_shape, num_action, args)
    replay_buffer = PrioritizedReplayBuffer_NStep(
        args.buffer_size, alpha=args.prioritized_replay_alpha)
    args.prioritized_replay_beta_iters = args.max_timesteps
    beta_schedule = LinearSchedule(args.prioritized_replay_beta_iters,
                                   initial_p=args.prioritized_replay_beta0,
                                   final_p=1.0)
    episode_rewards = [0.0]
    saved_mean_reward = None
    n_step_seq = []

    agent.sample_noise()
    agent.update_target()

    for t in range(args.max_timesteps):
        action = agent.act(ob)
        new_ob, rew, done, _ = env.step(action)
        # Append new step
        n_step_seq.append((ob, action, rew, new_ob, done))
        ob = new_ob

        episode_rewards[-1] += rew
        if done or t % args.max_steps_per_episode == 0:
            ob = env.reset()
            episode_rewards.append(0.0)

        # Add to experience replay once collect enough steps
        if len(n_step_seq) >= args.nstep:
            replay_buffer.add(n_step_seq)
            n_step_seq = []

        if t > args.learning_starts and t % args.replay_period == 0:
            # Replay
            experience = replay_buffer.sample(args.batch_size,
                                              beta=beta_schedule.value(t))
            (obs_n, actions_n, rewards_n, obs_next_n, dones_n, weights,
             batch_idxes) = experience
            # Update network
            kl_errors = agent.update(obs_n, actions_n, rewards_n, obs_next_n,
                                     dones_n, weights)
            agent.sample_noise()
            # Update priorities in buffer
            replay_buffer.update_priorities(batch_idxes,
                                            np.abs(kl_errors) + 1e-6)

        if t > args.learning_starts and t % args.target_network_update_freq == 0:
            # Update target periodically
            agent.update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and args.print_freq is not None and len(
                episode_rewards) % args.print_freq == 0:
            """
示例#14
0
def learn(  # env flags
        env,
        raw_env,
        use_2D_env=True,
        use_multiple_starts=False,
        use_rich_reward=False,
        total_timesteps=100000,
        # dqn
        network=identity_fn,
        exploration_fraction=0.1,
        exploration_final_eps=0.02,
        # hr
        use_feedback=False,
        use_real_feedback=False,
        only_use_hr_until=int(1e3),
        trans_to_rl_in=int(2e4),
        good_feedback_acc=0.7,
        bad_feedback_acc=0.7,
        # dqn training
        lr=5e-4,
        batch_size=32,
        dqn_epochs=3,
        train_freq=1,
        target_network_update_freq=500,
        learning_starts=1000,
        param_noise=True,
        gamma=1.0,
        # hr training
        feedback_lr=1e-3,
        feedback_epochs=4,
        feedback_batch_size=16,
        feedback_minibatch_size=8,
        min_feedback_buffer_size=32,
        feedback_training_prop=0.7,
        feedback_training_new_prop=0.4,
        # replay buffer
        buffer_size=50000,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,
        prioritized_replay_eps=1e-6,
        # rslts saving and others
        checkpoint_freq=10000,
        checkpoint_path=None,
        print_freq=100,
        load_path=None,
        callback=None,
        seed=0,
        **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    # sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)
    hr_func = build_hr_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    observation_space.dtype = np.float32

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train_rl, train_hr, evaluate_hr, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        hr_func=hr_func,
        num_actions=env.action_space.n,
        rl_optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        hr_optimizer=tf.train.AdamOptimizer(learning_rate=feedback_lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'hr_func': hr_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    obs, cor = obs['obs'], obs['nonviz_sensor']
    reset = True

    if use_feedback and use_real_feedback:
        import pylsl
        print("looking for an EEG_Pred stream...", end="", flush=True)
        feedback_LSL_stream = pylsl.StreamInlet(
            pylsl.resolve_stream('type', 'EEG_Pred')[0])
        print(" done")

    target_position = raw_env.robot.get_target_position()
    if use_2D_env:
        judge_action, *_ = run_dijkstra(raw_env, target_position)
    else:
        judge_action = judge_action_1D(raw_env, target_position)

    state_action_buffer = deque(maxlen=100)
    action_idx_buffer = deque(maxlen=100)
    feedback_buffer_train = []
    feedback_buffer_valid = []
    performance = {"feedback": [], "sparse_reward": [], "rich_reward": []}
    epi_feedback_test_num = 0

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}

            if use_feedback:
                update_rl_importance = (t - only_use_hr_until) / trans_to_rl_in
                update_rl_importance = np.clip(update_rl_importance, 0, 1)
                kwargs['update_rl_importance'] = update_rl_importance
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            raw_env.action_idx = t

            new_obs, rewards_dict, done, _ = env.step(env_action)
            new_obs, new_cor = new_obs['obs'], new_obs['nonviz_sensor']

            sparse_reward = rewards_dict["sparse"]
            rich_reward = rewards_dict["rich"]
            rew = rich_reward if use_rich_reward else sparse_reward

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            state_action_buffer.append([obs, action])
            action_idx_buffer.append(t)

            action_idxs, feedbacks, correct_feedbacks = \
                get_simulated_feedback([cor] if use_2D_env else [obs], [action], [t], judge_action,
                                       good_feedback_acc, bad_feedback_acc)

            performance["feedback"].extend(correct_feedbacks)
            performance["sparse_reward"].append(sparse_reward)
            performance["rich_reward"].append(rich_reward)

            obs, cor = new_obs, new_cor

            if use_feedback:
                if use_real_feedback:
                    feedbacks, action_idxs = get_feedback_from_LSL(
                        feedback_LSL_stream)
                feedback_epi_buffer = [
                    state_action_buffer[action_idx_buffer.index(a_idx)] +
                    [feedback]
                    for a_idx, feedback in zip(action_idxs, feedbacks)
                ]

                # add feedbacks into feedback replay buffer
                if feedback_epi_buffer:
                    epi_feedback_test_num += len(feedback_epi_buffer) * (
                        1 - feedback_training_prop)
                    epi_test_int = int(epi_feedback_test_num)
                    epi_feedback_test_num -= epi_test_int
                    epi_test_inds = np.random.choice(len(feedback_epi_buffer),
                                                     epi_test_int,
                                                     replace=False)
                    epi_train_inds = [
                        ind for ind in range(len(feedback_epi_buffer))
                        if ind not in epi_test_inds
                    ]
                    feedback_buffer_train.extend(
                        [feedback_epi_buffer[ind] for ind in epi_train_inds])
                    feedback_buffer_valid.extend(
                        [feedback_epi_buffer[ind] for ind in epi_test_inds])

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                obs, cor = obs['obs'], obs['nonviz_sensor']
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                for _ in range(dqn_epochs):
                    if prioritized_replay:
                        experience = replay_buffer.sample(
                            batch_size, beta=beta_schedule.value(t))
                        (obses_t, actions, rewards, obses_tp1, dones, weights,
                         batch_idxes) = experience
                    else:
                        obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                            batch_size)
                        weights, batch_idxes = np.ones_like(rewards), None
                    td_errors = train_rl(obses_t, actions, rewards, obses_tp1,
                                         dones, weights)
                    if prioritized_replay:
                        new_priorities = np.abs(
                            td_errors) + prioritized_replay_eps
                        replay_buffer.update_priorities(
                            batch_idxes, new_priorities)

            # train feedback regressor
            if use_feedback and len(
                    feedback_buffer_train
            ) >= min_feedback_buffer_size and t <= only_use_hr_until:
                for i in range(feedback_epochs):

                    if i < feedback_epochs * feedback_training_new_prop:
                        inds = np.arange(
                            len(feedback_buffer_train) - feedback_batch_size,
                            len(feedback_buffer_train))
                    else:
                        inds = np.random.choice(len(feedback_buffer_train),
                                                feedback_batch_size,
                                                replace=False)

                    np.random.shuffle(inds)
                    for start in range(0, feedback_batch_size,
                                       feedback_minibatch_size):
                        end = start + feedback_minibatch_size
                        obses = np.asarray([
                            feedback_buffer_train[idx][0]
                            for idx in inds[start:end]
                        ])
                        actions = np.asarray([
                            feedback_buffer_train[idx][1]
                            for idx in inds[start:end]
                        ])
                        feedbacks = np.asarray([
                            feedback_buffer_train[idx][2]
                            for idx in inds[start:end]
                        ])
                        pred, loss = train_hr(obses, actions, feedbacks)

                obs_train = np.asarray(
                    [feedback[0] for feedback in feedback_buffer_train])
                actions_train = np.asarray(
                    [feedback[1] for feedback in feedback_buffer_train])
                feedbacks_train = np.asarray(
                    [feedback[2] for feedback in feedback_buffer_train])
                obs_valid = np.asarray(
                    [feedback[0] for feedback in feedback_buffer_valid])
                actions_valid = np.asarray(
                    [feedback[1] for feedback in feedback_buffer_valid])
                feedbacks_valid = np.asarray(
                    [feedback[2] for feedback in feedback_buffer_valid])
                train_acc, train_loss = evaluate_hr(obs_train, actions_train,
                                                    feedbacks_train)
                valid_acc, valid_loss = evaluate_hr(obs_valid, actions_valid,
                                                    feedbacks_valid)
                print(
                    "HR: train acc {:>4.2f}, loss {:>5.2f}; valid acc {:>4.2f}, loss {:>5.2f}"
                    .format(train_acc, train_loss, valid_acc, valid_loss))

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act, performance
示例#15
0
            dist_params={  #'Vmin': args.vmin,
                #'Vmax': args.vmax,
                'nb_atoms': args.nb_atoms
            })

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
        if state is not None:
            num_iters, replay_buffer = state["num_iters"], state[
                "replay_buffer"],
            monitored_env.set_state(state["monitor_state"])
示例#16
0
def learn(env,
          network,
          seed=None,
          pool=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_initial_eps=1.0,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=100,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          experiment_name='unnamed',
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    experiment_name: str
        name of the experiment (default: trial)
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=exploration_initial_eps,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    reward_shaper = ActionAdviceRewardShaper('../completed-observations')
    reward_shaper.load()

    full_exp_name = '{}-{}'.format(date.today().isoformat(), experiment_name)
    experiment_dir = os.path.join('experiments', full_exp_name)
    if not os.path.exists(experiment_dir):
        os.makedirs(experiment_dir)

    summary_dir = os.path.join(experiment_dir, 'summaries')
    os.makedirs(summary_dir, exist_ok=True)
    summary_writer = tf.summary.FileWriter(summary_dir)

    checkpoint_dir = os.path.join(experiment_dir, 'checkpoints')
    os.makedirs(checkpoint_dir, exist_ok=True)

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_dir or td

        os.makedirs(td, exist_ok=True)
        model_file = os.path.join(td, "best_model")
        model_saved = False
        saved_mean_reward = None

        if os.path.exists(model_file):
            print('Model is loading')
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        episode_rewards = []
        update_step_t = 0
        while update_step_t < total_timesteps:
            # Reset the environment
            obs = env.reset()
            obs = StatePreprocessor.process(obs)
            episode_rewards.append(0.0)
            reset = True
            done = False
            # Sample the episode until it is completed
            act_step_t = update_step_t
            while not done:
                if callback is not None:
                    if callback(locals(), globals()):
                        break
                # Take action and update exploration to the newest value
                kwargs = {}
                if not param_noise:
                    update_eps = exploration.value(act_step_t)
                    update_param_noise_threshold = 0.
                else:
                    update_eps = 0.
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(act_step_t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(act_step_t) +
                        exploration.value(act_step_t) /
                        float(env.action_space.n))
                    kwargs['reset'] = reset
                    kwargs[
                        'update_param_noise_threshold'] = update_param_noise_threshold
                    kwargs['update_param_noise_scale'] = True
                biases = reward_shaper.get_action_potentials(obs)
                action = act(np.array(obs)[None],
                             biases,
                             update_eps=update_eps,
                             **kwargs)[0]
                reset = False

                pairs = env.step(action)
                action, (new_obs, rew, done, _) = pairs[-1]
                # Write down the real reward but learn from normalized version
                episode_rewards[-1] += rew
                rew = np.sign(rew) * np.log(1 + np.abs(rew))
                new_obs = StatePreprocessor.process(new_obs)

                logger.log('{}/{} obs {} action {}'.format(
                    act_step_t, total_timesteps, obs, action))
                act_step_t += 1
                if len(new_obs) == 0:
                    done = True
                else:
                    replay_buffer.add(obs, action, rew, new_obs, float(done))
                    obs = new_obs
            # Post episode logging
            summary = tf.Summary(value=[
                tf.Summary.Value(tag="rewards",
                                 simple_value=episode_rewards[-1])
            ])
            summary_writer.add_summary(summary, act_step_t)
            summary = tf.Summary(
                value=[tf.Summary.Value(tag="eps", simple_value=update_eps)])
            summary_writer.add_summary(summary, act_step_t)
            summary = tf.Summary(value=[
                tf.Summary.Value(tag="episode_steps",
                                 simple_value=act_step_t - update_step_t)
            ])
            summary_writer.add_summary(summary, act_step_t)
            mean_5ep_reward = round(np.mean(episode_rewards[-5:]), 1)
            num_episodes = len(episode_rewards)
            if print_freq is not None and num_episodes % print_freq == 0:
                logger.record_tabular("steps", act_step_t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 5 episode reward", mean_5ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(act_step_t)))
                logger.dump_tabular()
            # Do the learning
            start = time.time()
            while update_step_t < min(act_step_t, total_timesteps):
                if update_step_t % train_freq == 0:
                    # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                    if prioritized_replay:
                        experience = replay_buffer.sample(
                            batch_size,
                            beta=beta_schedule.value(update_step_t))
                        (obses_t, actions, rewards, obses_tp1, dones, weights,
                         batch_idxes) = experience
                    else:
                        obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                            batch_size)
                        weights, batch_idxes = np.ones_like(rewards), None
                    biases_t = pool.map(reward_shaper.get_action_potentials,
                                        obses_t)
                    biases_tp1 = pool.map(reward_shaper.get_action_potentials,
                                          obses_tp1)
                    td_errors, weighted_error = train(obses_t, biases_t,
                                                      actions, rewards,
                                                      obses_tp1, biases_tp1,
                                                      dones, weights)

                    # Loss logging
                    summary = tf.Summary(value=[
                        tf.Summary.Value(tag='weighted_error',
                                         simple_value=weighted_error)
                    ])
                    summary_writer.add_summary(summary, update_step_t)

                    if prioritized_replay:
                        new_priorities = np.abs(
                            td_errors) + prioritized_replay_eps
                        replay_buffer.update_priorities(
                            batch_idxes, new_priorities)
                if update_step_t % target_network_update_freq == 0:
                    # Update target network periodically.
                    update_target()
                update_step_t += 1
            stop = time.time()
            logger.log("Learning took {:.2f} seconds".format(stop - start))
            if checkpoint_freq is not None and num_episodes % checkpoint_freq == 0:
                # Periodically save the model and the replay buffer
                rec_model_file = os.path.join(
                    td, "model_{}_{:.2f}".format(num_episodes,
                                                 mean_5ep_reward))
                save_variables(rec_model_file)
                buffer_file = os.path.join(
                    td, "buffer_{}_{}".format(num_episodes, update_step_t))
                with open(buffer_file, 'wb') as foutput:
                    cloudpickle.dump(replay_buffer, foutput)
                # Check whether it is best
                if saved_mean_reward is None or mean_5ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_5ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_5ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
class DoublePrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha, epsilon, timesteps, initial_p, final_p):
        super(DoublePrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha
        self._epsilon = epsilon
        self._beta_schedule = LinearSchedule(timesteps, initial_p=initial_p, final_p=final_p)
        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

        self._it_sum2 = SumSegmentTree(it_capacity)
        self._it_min2 = MinSegmentTree(it_capacity)
        self._max_priority2 = 1.0

    def add(self, *args, **kwargs):
        idx = self._next_idx
        super().add(*args, **kwargs)
        self._it_sum[idx] = self._max_priority ** self._alpha
        self._it_min[idx] = self._max_priority ** self._alpha

        self._it_sum2[idx] = self._max_priority2 ** self._alpha
        self._it_min2[idx] = self._max_priority2 ** self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        for _ in range(batch_size):
            mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1)
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def _sample_proportional2(self, batch_size):
        res = []
        for _ in range(batch_size):
            mass = random.random() * self._it_sum2.sum(0, len(self._storage) - 1)
            idx = self._it_sum2.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, time_step):
        beta = self._beta_schedule.value(time_step)
        assert beta > 0

        idxes = self._sample_proportional(batch_size)
        self.idxes = idxes # keep to update priorities later

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage)) ** (-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage)) ** (-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        encoded_sample = self._encode_sample(idxes)
        return encoded_sample + (weights,)

    def sample_qmap(self, batch_size, time_step, n_steps=1):
        beta = self._beta_schedule.value(time_step)
        assert beta > 0

        idxes = self._sample_proportional2(batch_size)
        self.idxes2 = idxes # keep to update priorities later

        weights = []
        p_min = self._it_min2.min() / self._it_sum2.sum()
        max_weight = (p_min * len(self._storage)) ** (-beta)

        for idx in idxes:
            p_sample = self._it_sum2[idx] / self._it_sum2.sum()
            weight = (p_sample * len(self._storage)) ** (-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        encoded_sample = self._encode_qmap_sample(idxes, n_steps)
        return encoded_sample + (weights,)

    def update_priorities(self, td_errors):
        priorities = np.abs(td_errors) + self._epsilon
        idxes = self.idxes
        assert len(idxes) == len(priorities)

        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum[idx] = priority ** self._alpha
            self._it_min[idx] = priority ** self._alpha
            self._max_priority = max(self._max_priority, priority)

    def update_priorities_qmap(self, td_errors):
        priorities = np.abs(td_errors) + self._epsilon
        idxes = self.idxes2
        assert len(idxes) == len(priorities)

        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum2[idx] = priority ** self._alpha
            self._it_min2[idx] = priority ** self._alpha
            self._max_priority2 = max(self._max_priority2, priority)
def startTraining():
    # Create the environment
    print('START ENV', RC.GB_CLIENT_ID(), RC.gbRobotHandle())
    env = RobotOperationEnvironment(RC.GB_CLIENT_ID(), RC.GB_CSERVER_ROBOT_ID,
                                    RC.gbRobotHandle())
    #print('ACTION_SPACE', env.action_space.shape)
    # Create all the functions necessary to train the model
    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=lambda name: BatchInput(env.observation_space.shape,
                                            name=name),
        q_func=model,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
    )
    # Create the replay buffer
    replay_buffer = ReplayBuffer(50000)
    # Create the schedule for exploration starting from 1 (every action is random) down to
    # 0.02 (98% of actions are selected according to values predicted by the model).
    exploration = LinearSchedule(schedule_timesteps=10000,
                                 initial_p=1.0,
                                 final_p=0.02)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    obs = env.reset()
    print("Manipulator DEEPQ Training Experiment Start.")
    for t in itertools.count():
        print('Episode ', len(episode_rewards), 'Step ', t, '--------------')
        print('Start waiting for the next action',
              env._robot.getOperationState())
        while (env._robot.getOperationState() != RC.CROBOT_STATE_READY):
            time.sleep(0.01)

        # Take action and update exploration to the newest value
        action = act(obs[None], update_eps=exploration.value(t))[0]
        print('Generated action:', action)
        new_obs, rew, done, _ = env.step(action)
        # Store transition in the replay buffer.
        replay_buffer.add(obs, action, rew, new_obs, float(done))
        obs = new_obs

        episode_rewards[-1] += rew
        if done:
            obs = env.reset()
            episode_rewards.append(0)

        is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
        if is_solved:
            # Show off the result
            #env.render()
            pass
        else:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if t > 1000:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    32)
                print('Generated actions:', actions)
                train(obses_t, actions, rewards, obses_tp1, dones,
                      np.ones_like(rewards))
            # Update target network periodically.
            if t % 1000 == 0:
                update_target()

        if done and len(episode_rewards) % 10 == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", len(episode_rewards))
            logger.record_tabular("mean episode reward",
                                  round(np.mean(episode_rewards[-101:-1]), 1))
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.dump_tabular()
示例#19
0
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None,
          demo_replay=[]):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput((64, 64), name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    # Select all marines first
    #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])

    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    screen = player_relative

    obs = common.init(env, player_relative, obs)

    group_id = 0
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        First = True
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            # custom process for DefeatZerglingsAndBanelings

            obs, screen, player = common.select_marine(env, obs)

            action = act(np.array(screen)[None],
                         update_eps=update_eps,
                         **kwargs)[0]
            reset = False
            rew = 0

            new_action = None

            obs, new_action = common.marine_action(env, obs, player, action)
            army_count = env._obs.observation.player_common.army_count
            #print(army_count)
            #print(env._obs.observation.player_common.idle_worker_count)

            try:
                if army_count > 0 and _ATTACK_SCREEN in obs[0].observation[
                        "available_actions"]:
                    obs = env.step(actions=new_action)
                else:
                    new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
                    obs = env.step(actions=new_action)
            except Exception as e:
                #print(e)
                1  # Do nothing

            player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
            new_screen = player_relative

            rew += obs[0].reward
            game_info = sc_pb.ResponseGameInfo
            obs_tuple = features.Features(screen_size_px=(256, 256),
                                          minimap_size_px=(256, 256),
                                          hide_specific_actions=True)
            test = obs_tuple.transform_obs(
                env._obs.observation)["multi_select"]
            #test1 = test["screen"][_UNIT_TYPE]
            #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
            if First:
                with open('output.txt', 'wb') as abc:
                    np.savetxt(abc, test, delimiter=",")
                #print(test2)
                #for value in test2:
                #print(str(value))
            #test = obs_tuple.transform_obs(obs=obs)
            #if First:
            #with open('output.txt', 'w') as f:
            #for tt in test:
            #f.write(' '.join(str(s) for s in tt) + '\n')
            First = False
            done = obs[0].step_type == environment.StepType.LAST
            # selected = obs[0].observation["screen"][_SELECT_ARMY]
            # if First:
            #   print('hello')
            #   for value in selected:
            #     print(value)
            # First=False

            player_y, player_x = (
                player_relative == _PLAYER_FRIENDLY).nonzero()

            if (len(player_y) > 0):
                player = [int(player_x.mean()), int(player_y.mean())]

            if (len(player) == 2):

                if (player[0] > 32):
                    new_screen = common.shift(LEFT, player[0] - 32, new_screen)
                elif (player[0] < 32):
                    new_screen = common.shift(RIGHT, 32 - player[0],
                                              new_screen)

                if (player[1] > 32):
                    new_screen = common.shift(UP, player[1] - 32, new_screen)
                elif (player[1] < 32):
                    new_screen = common.shift(DOWN, 32 - player[1], new_screen)

            # Store transition in the replay buffer.
            replay_buffer.add(screen, action, rew, new_screen, float(done))
            screen = new_screen

            episode_rewards[-1] += rew

            if done:
                print("Episode Reward : %s" % episode_rewards[-1])
                obs = env.reset()
                player_relative = obs[0].observation["screen"][
                    _PLAYER_RELATIVE]

                screen = player_relative

                group_list = common.init(env, player_relative, obs)

                # Select all marines first
                #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
                episode_rewards.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act)
示例#20
0
def main():
    print('main')
    stats_file = pathlib.Path('stats.csv')
    if stats_file.exists():
        stats_file.unlink()

    broker = dqn.env.Broker('http://localhost:5000')
    env = dqn.env.HaliteEnv(broker)

    with U.make_session(num_cpu=4):
        observation_shape = env.observation_space.shape

        def make_obs_ph(name):
            import dqn.tf_util as U
            return U.BatchInput(observation_shape, name=name)

        # Create all the functions necessary to train the model
        act, train, update_target, debug = dqn.graph.build_train(
            make_obs_ph=make_obs_ph,
            q_func=model,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
        )

        act = dqn.play.ActWrapper(
            act, {
                'make_obs_ph': make_obs_ph,
                'q_func': model,
                'num_actions': env.action_space.n,
            })

        # Create the replay buffer
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=30000,
                                     initial_p=1.0,
                                     final_p=0.03)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        learning_starts = 1000
        target_network_update_freq = 500
        checkpoint_freq = 20

        episode_rewards = [0.0]
        wins = [False]
        saved_mean_reward = None
        obs = env.reset()
        for t in itertools.count():
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, info = env.step(action)

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0)
                wins.append(info['win'])

            win_rate = round(np.mean(wins[-100:]), 4)
            is_solved = t > 100 and win_rate >= 99
            if is_solved:
                print('solved')
                break
            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > learning_starts:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        32)
                    actions = np.argmax(actions, axis=1)
                    train(obses_t, actions, rewards, obses_tp1, dones,
                          np.ones_like(rewards))
                # Update target network periodically.
                if t > learning_starts and t % target_network_update_freq == 0:
                    update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 4)
            num_episodes = len(episode_rewards)
            exploration_rate = int(100 * exploration.value(t))

            if done:
                info = {
                    'date': str(dt.datetime.now()),
                    'episode': len(episode_rewards),
                    **info,
                    'win_rate': win_rate,
                    'mean_100ep_reward': mean_100ep_reward,
                    'exploration_rate': exploration_rate,
                }
                print('episode', info)
                if not stats_file.exists():
                    with stats_file.open('w') as fp:
                        fp.write(','.join(info.keys()) + '\n')
                with stats_file.open('a') as fp:
                    fp.write(','.join(map(str, info.values())) + '\n')

            if done and num_episodes % 10 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("mean episode reward", mean_100ep_reward)
                logger.record_tabular("mean win rate", win_rate)
                logger.record_tabular("% time spent exploring",
                                      exploration_rate)
                logger.dump_tabular()

            if done and (t > learning_starts and num_episodes > 100
                         and num_episodes % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".
                        format(saved_mean_reward, mean_100ep_reward))
                    act.save('dqn_model.pkl')
                    saved_mean_reward = mean_100ep_reward

    act.save('dqn_model.pkl')
    env.close()
示例#21
0
    def learn(self):

        with U.make_session(8):
            # Create the environment
            env = gym.make(self._args.env)
            # Create all the functions necessary to train the model
            act, train, update_target, debug = deepq.build_train(
                make_obs_ph=lambda name: ObservationInput(
                    env.observation_space, name=name),
                q_func=self.model,
                num_actions=env.action_space.n,
                optimizer=tf.train.AdamOptimizer(
                    learning_rate=self._args.learning_rate),
            )
            # Create the replay buffer
            replay_buffer = ReplayBuffer(self._args.replay_buffer_size)
            # Create the schedule for exploration starting from 1 till min_exploration_rate.
            exploration = LinearSchedule(
                schedule_timesteps=self._args.exploration_duration,
                initial_p=1.0,
                final_p=self._args.min_exploration_rate)

            # Initialize the parameters and copy them to the target network.
            U.initialize()
            update_target()

            episode_rewards = [0.0]
            obs = env.reset()
            for t in itertools.count():
                # Take action and update exploration to the newest value
                action = act(obs[None], update_eps=exploration.value(t))[0]
                new_obs, rew, done, _ = env.step(action)
                # Store transition in the replay buffer.
                replay_buffer.add(obs, action, rew, new_obs, float(done))
                obs = new_obs

                episode_rewards[-1] += rew
                if done:
                    obs = env.reset()
                    episode_rewards.append(0)

                mean_episode_reward = np.mean(episode_rewards[-101:-1])
                # Show learned agent:
                if mean_episode_reward >= self._render_reward_threshold:
                    env.render()

                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        32)
                    train(obses_t, actions, rewards, obses_tp1, dones,
                          np.ones_like(rewards))
                # Update target network periodically.
                if t % 1000 == 0:
                    update_target()

                if done and len(episode_rewards) % 10 == 0:
                    self._reward_buffer_mutex.acquire()
                    self._reward_buffer.append(mean_episode_reward)

                    logger.record_tabular("steps", t)
                    logger.record_tabular("episodes", len(episode_rewards))
                    logger.record_tabular("mean episode reward",
                                          round(mean_episode_reward, 1))
                    logger.record_tabular("% time spent exploring",
                                          int(100 * exploration.value(t)))
                    logger.dump_tabular()

                    self._reward_buffer_changed = True
                    self._reward_buffer_mutex.release()
示例#22
0
文件: ddpg.py 项目: ZiyeHu/myCHER
class DDPG(object):
    @store_args
    def __init__(self, input_dims, buffer_size, hidden, layers, network_class, polyak, batch_size,
                 Q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, T,
                 rollout_batch_size, subtract_goals, relative_goals, clip_pos_returns, clip_return,
                 sample_transitions, gamma, temperature, prioritization, env_name,
                 alpha, beta0, beta_iters, eps, max_timesteps, rank_method, reuse=False, **kwargs):
        """Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER).

        Args:
            input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the
                actions (u)
            buffer_size (int): number of transitions that are stored in the replay buffer
            hidden (int): number of units in the hidden layers
            layers (int): number of hidden layers
            network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic')
            polyak (float): coefficient for Polyak-averaging of the target network
            batch_size (int): batch size for training
            Q_lr (float): learning rate for the Q (critic) network
            pi_lr (float): learning rate for the pi (actor) network
            norm_eps (float): a small value used in the normalizer to avoid numerical instabilities
            norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip]
            max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u]
            action_l2 (float): coefficient for L2 penalty on the actions
            clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs]
            scope (str): the scope used for the TensorFlow graph
            T (int): the time horizon for rollouts
            rollout_batch_size (int): number of parallel rollouts per DDPG agent
            subtract_goals (function): function that subtracts goals from each other
            relative_goals (boolean): whether or not relative goals should be fed into the network
            clip_pos_returns (boolean): whether or not positive returns should be clipped
            clip_return (float): clip returns to be in [-clip_return, clip_return]
            sample_transitions (function) function that samples from the replay buffer
            gamma (float): gamma used for Q learning updates
            reuse (boolean): whether or not the networks should be reused
        """
        if self.clip_return is None:
            self.clip_return = np.inf

        self.create_actor_critic = import_function(self.network_class)

        input_shapes = dims_to_shapes(self.input_dims)
        self.dimo = self.input_dims['o']
        self.dimg = self.input_dims['g']
        self.dimu = self.input_dims['u']

        self.prioritization = prioritization
        self.env_name = env_name
        self.temperature = temperature
        self.rank_method = rank_method

        # Prepare staging area for feeding data to the model.
        stage_shapes = OrderedDict()
        for key in sorted(self.input_dims.keys()):
            if key.startswith('info_'):
                continue
            stage_shapes[key] = (None, *input_shapes[key])
        for key in ['o', 'g']:
            stage_shapes[key + '_2'] = stage_shapes[key]
        stage_shapes['r'] = (None,)
        stage_shapes['w'] = (None,)
        self.stage_shapes = stage_shapes

        # Create network.
        with tf.variable_scope(self.scope):
            self.staging_tf = StagingArea(
                dtypes=[tf.float32 for _ in self.stage_shapes.keys()],
                shapes=list(self.stage_shapes.values()))
            self.buffer_ph_tf = [
                tf.placeholder(tf.float32, shape=shape) for shape in self.stage_shapes.values()]
            self.stage_op = self.staging_tf.put(self.buffer_ph_tf)

            self._create_network(reuse=reuse)

        # Configure the replay buffer.
        buffer_shapes = {key: (self.T if key != 'o' else self.T+1, *input_shapes[key])
                         for key, val in input_shapes.items()}
        buffer_shapes['g'] = (buffer_shapes['g'][0], self.dimg)
        buffer_shapes['ag'] = (self.T+1, self.dimg)
        buffer_size = (self.buffer_size // self.rollout_batch_size) * self.rollout_batch_size

        if self.prioritization == 'energy':
            self.buffer = ReplayBufferEnergy(buffer_shapes, buffer_size, self.T, self.sample_transitions, 
                                            self.prioritization, self.env_name)
        elif self.prioritization == 'tderror':
            self.buffer = PrioritizedReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions, alpha, self.env_name)
            if beta_iters is None:
                beta_iters = max_timesteps
            self.beta_schedule = LinearSchedule(beta_iters, initial_p=beta0, final_p=1.0)
        else:
            self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions)

    def _random_action(self, n):
        return np.random.uniform(low=-self.max_u, high=self.max_u, size=(n, self.dimu))

    def _preprocess_og(self, o, ag, g):
        if self.relative_goals:
            g_shape = g.shape
            g = g.reshape(-1, self.dimg)
            ag = ag.reshape(-1, self.dimg)
            g = self.subtract_goals(g, ag)
            g = g.reshape(*g_shape)
        o = np.clip(o, -self.clip_obs, self.clip_obs)
        g = np.clip(g, -self.clip_obs, self.clip_obs)
        return o, g

    def get_actions(self, o, ag, g, noise_eps=0., random_eps=0., use_target_net=False,
                    compute_Q=False):
        o, g = self._preprocess_og(o, ag, g)
        policy = self.target if use_target_net else self.main
        # values to compute
        vals = [policy.pi_tf]
        if compute_Q:
            vals += [policy.Q_pi_tf]
        # feed
        feed = {
            policy.o_tf: o.reshape(-1, self.dimo),
            policy.g_tf: g.reshape(-1, self.dimg),
            policy.u_tf: np.zeros((o.size // self.dimo, self.dimu), dtype=np.float32)
        }

        ret = self.sess.run(vals, feed_dict=feed)

        # action postprocessing
        u = ret[0]
        noise = noise_eps * self.max_u * np.random.randn(*u.shape)  # gaussian noise
        u += noise
        u = np.clip(u, -self.max_u, self.max_u)
        u += np.random.binomial(1, random_eps, u.shape[0]).reshape(-1, 1) * (self._random_action(u.shape[0]) - u)  # eps-greedy
        if u.shape[0] == 1:
            u = u[0]
        u = u.copy()
        ret[0] = u

        if len(ret) == 1:
            return ret[0]
        else:
            return ret

    def get_td_errors(self, o, g, u):
        o, g = self._preprocess_og(o, g, g)
        vals = [self.td_error_tf]
        r = np.ones((o.reshape(-1, self.dimo).shape[0],1))

        feed = {
            self.target.o_tf: o.reshape(-1, self.dimo),
            self.target.g_tf: g.reshape(-1, self.dimg),
            self.bath_tf_r: r,
            self.main.o_tf: o.reshape(-1, self.dimo),
            self.main.g_tf: g.reshape(-1, self.dimg),
            self.main.u_tf: u.reshape(-1, self.dimu)
        }
        td_errors = self.sess.run(vals, feed_dict=feed)
        td_errors = td_errors.copy()

        return td_errors

    def store_episode(self, episode_batch, dump_buffer, w_potential, w_linear, w_rotational, rank_method, clip_energy, update_stats=True):
        """
        episode_batch: array of batch_size x (T or T+1) x dim_key
                       'o' is of size T+1, others are of size T
        """
        if self.prioritization == 'tderror':
            self.buffer.store_episode(episode_batch, dump_buffer)
        elif self.prioritization == 'energy':
            self.buffer.store_episode(episode_batch, w_potential, w_linear, w_rotational, rank_method, clip_energy)
        else:
            self.buffer.store_episode(episode_batch)

        if update_stats:
            # add transitions to normalizer
            episode_batch['o_2'] = episode_batch['o'][:, 1:, :]
            episode_batch['ag_2'] = episode_batch['ag'][:, 1:, :]
            num_normalizing_transitions = transitions_in_episode_batch(episode_batch)
            
            if self.prioritization == 'energy':
                if not self.buffer.current_size==0 and not len(episode_batch['ag'])==0:
                    transitions = self.sample_transitions(episode_batch, num_normalizing_transitions, 'none', 1.0, True)
            elif self.prioritization == 'tderror':
                transitions, weights, episode_idxs = \
                self.sample_transitions(self.buffer, episode_batch, num_normalizing_transitions, beta=0)
            else:
                transitions = self.sample_transitions(episode_batch, num_normalizing_transitions)


            o, o_2, g, ag = transitions['o'], transitions['o_2'], transitions['g'], transitions['ag']
            transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)

            self.o_stats.update(transitions['o'])
            self.g_stats.update(transitions['g'])

            self.o_stats.recompute_stats()
            self.g_stats.recompute_stats()

    def get_current_buffer_size(self):
        return self.buffer.get_current_size()

    def dump_buffer(self, epoch):
        self.buffer.dump_buffer(epoch)

    def _sync_optimizers(self):
        self.Q_adam.sync()
        self.pi_adam.sync()

    def _grads(self):
        # Avoid feed_dict here for performance!
        critic_loss, actor_loss, Q_grad, pi_grad, td_error = self.sess.run([
            self.Q_loss_tf,
            self.main.Q_pi_tf,
            self.Q_grad_tf,
            self.pi_grad_tf,
            self.td_error_tf
        ])
        return critic_loss, actor_loss, Q_grad, pi_grad, td_error

    def _update(self, Q_grad, pi_grad):
        self.Q_adam.update(Q_grad, self.Q_lr)
        self.pi_adam.update(pi_grad, self.pi_lr)

    def sample_batch(self, t):

        if self.prioritization == 'energy':
            transitions = self.buffer.sample(self.batch_size, self.rank_method, temperature=self.temperature)
            weights = np.ones_like(transitions['r']).copy()
        elif self.prioritization == 'tderror':
            transitions, weights, idxs = self.buffer.sample(self.batch_size, beta=self.beta_schedule.value(t))
        else:
            transitions = self.buffer.sample(self.batch_size)
            weights = np.ones_like(transitions['r']).copy()

        o, o_2, g = transitions['o'], transitions['o_2'], transitions['g']
        ag, ag_2 = transitions['ag'], transitions['ag_2']
        transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
        transitions['o_2'], transitions['g_2'] = self._preprocess_og(o_2, ag_2, g)

        transitions['w'] = weights.flatten().copy() # note: ordered dict
        transitions_batch = [transitions[key] for key in self.stage_shapes.keys()]

        if self.prioritization == 'tderror':
            return (transitions_batch, idxs)
        else:
            return transitions_batch

    def stage_batch(self, t, batch=None): #
        if batch is None:
            if self.prioritization == 'tderror':
                batch, idxs = self.sample_batch(t)
            else:
                batch = self.sample_batch(t)
        assert len(self.buffer_ph_tf) == len(batch)
        self.sess.run(self.stage_op, feed_dict=dict(zip(self.buffer_ph_tf, batch)))

        if self.prioritization == 'tderror':
            return idxs

    def train(self, t, dump_buffer, stage=True):
        if not self.buffer.current_size==0:
            if stage:
                if self.prioritization == 'tderror':
                    idxs = self.stage_batch(t)
                else:
                    self.stage_batch(t)
            critic_loss, actor_loss, Q_grad, pi_grad, td_error = self._grads()            
            if self.prioritization == 'tderror':
                new_priorities = np.abs(td_error) + self.eps # td_error

                if dump_buffer:
                    T = self.buffer.buffers['u'].shape[1]
                    episode_idxs = idxs // T
                    t_samples = idxs % T
                    batch_size = td_error.shape[0]
                    with self.buffer.lock:
                        for i in range(batch_size):
                            self.buffer.buffers['td'][episode_idxs[i]][t_samples[i]] = td_error[i]

                self.buffer.update_priorities(idxs, new_priorities)
            self._update(Q_grad, pi_grad)
            return critic_loss, actor_loss

    def _init_target_net(self):
        self.sess.run(self.init_target_net_op)

    def update_target_net(self):
        self.sess.run(self.update_target_net_op)

    def clear_buffer(self):
        self.buffer.clear_buffer()

    def _vars(self, scope):
        res = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope + '/' + scope)
        assert len(res) > 0
        return res

    def _global_vars(self, scope):
        res = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope + '/' + scope)
        return res

    def _create_network(self, reuse=False):
        logger.info("Creating a DDPG agent with action space %d x %s..." % (self.dimu, self.max_u))

        self.sess = tf.get_default_session()
        if self.sess is None:
            self.sess = tf.InteractiveSession()

        # running averages
        with tf.variable_scope('o_stats') as vs:
            if reuse:
                vs.reuse_variables()
            self.o_stats = Normalizer(self.dimo, self.norm_eps, self.norm_clip, sess=self.sess)
        with tf.variable_scope('g_stats') as vs:
            if reuse:
                vs.reuse_variables()
            self.g_stats = Normalizer(self.dimg, self.norm_eps, self.norm_clip, sess=self.sess)

        # mini-batch sampling.
        batch = self.staging_tf.get()
        batch_tf = OrderedDict([(key, batch[i])
                                for i, key in enumerate(self.stage_shapes.keys())])
        batch_tf['r'] = tf.reshape(batch_tf['r'], [-1, 1])
        batch_tf['w'] = tf.reshape(batch_tf['w'], [-1, 1])

        # networks
        with tf.variable_scope('main') as vs:
            if reuse:
                vs.reuse_variables()
            self.main = self.create_actor_critic(batch_tf, net_type='main', **self.__dict__)
            vs.reuse_variables()
        with tf.variable_scope('target') as vs:
            if reuse:
                vs.reuse_variables()
            target_batch_tf = batch_tf.copy()
            target_batch_tf['o'] = batch_tf['o_2']
            target_batch_tf['g'] = batch_tf['g_2']
            self.target = self.create_actor_critic(
                target_batch_tf, net_type='target', **self.__dict__)
            vs.reuse_variables()
        assert len(self._vars("main")) == len(self._vars("target"))

        # loss functions
        target_Q_pi_tf = self.target.Q_pi_tf
        clip_range = (-self.clip_return, 0. if self.clip_pos_returns else np.inf)
        target_tf = tf.clip_by_value(batch_tf['r'] + self.gamma * target_Q_pi_tf, *clip_range)

        self.td_error_tf = tf.stop_gradient(target_tf) - self.main.Q_tf
        self.errors_tf = tf.square(self.td_error_tf)
        self.errors_tf = tf.reduce_mean(batch_tf['w'] * self.errors_tf)
        self.Q_loss_tf = tf.reduce_mean(self.errors_tf)

        self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
        self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
        Q_grads_tf = tf.gradients(self.Q_loss_tf, self._vars('main/Q'))
        pi_grads_tf = tf.gradients(self.pi_loss_tf, self._vars('main/pi'))
        assert len(self._vars('main/Q')) == len(Q_grads_tf)
        assert len(self._vars('main/pi')) == len(pi_grads_tf)
        self.Q_grads_vars_tf = zip(Q_grads_tf, self._vars('main/Q'))
        self.pi_grads_vars_tf = zip(pi_grads_tf, self._vars('main/pi'))
        self.Q_grad_tf = flatten_grads(grads=Q_grads_tf, var_list=self._vars('main/Q'))
        self.pi_grad_tf = flatten_grads(grads=pi_grads_tf, var_list=self._vars('main/pi'))

        # optimizers
        self.Q_adam = MpiAdam(self._vars('main/Q'), scale_grad_by_procs=False)
        self.pi_adam = MpiAdam(self._vars('main/pi'), scale_grad_by_procs=False)

        # polyak averaging
        self.main_vars = self._vars('main/Q') + self._vars('main/pi')
        self.target_vars = self._vars('target/Q') + self._vars('target/pi')
        self.stats_vars = self._global_vars('o_stats') + self._global_vars('g_stats')
        self.init_target_net_op = list(
            map(lambda v: v[0].assign(v[1]), zip(self.target_vars, self.main_vars)))
        self.update_target_net_op = list(
            map(lambda v: v[0].assign(self.polyak * v[0] + (1. - self.polyak) * v[1]), zip(self.target_vars, self.main_vars)))

        # initialize all variables
        tf.variables_initializer(self._global_vars('')).run()
        self._sync_optimizers()
        self._init_target_net()

    def logs(self, prefix=''):
        logs = []
        logs += [('stats_o/mean', np.mean(self.sess.run([self.o_stats.mean])))]
        logs += [('stats_o/std', np.mean(self.sess.run([self.o_stats.std])))]
        logs += [('stats_g/mean', np.mean(self.sess.run([self.g_stats.mean])))]
        logs += [('stats_g/std', np.mean(self.sess.run([self.g_stats.std])))]
        
        if prefix is not '' and not prefix.endswith('/'):
            return [(prefix + '/' + key, val) for key, val in logs]
        else:
            return logs

    def __getstate__(self):
        """Our policies can be loaded from pkl, but after unpickling you cannot continue training.
        """
        excluded_subnames = ['_tf', '_op', '_vars', '_adam', 'buffer', 'sess', '_stats',
                             'main', 'target', 'lock', 'env', 'sample_transitions',
                             'stage_shapes', 'create_actor_critic']

        state = {k: v for k, v in self.__dict__.items() if all([not subname in k for subname in excluded_subnames])}
        state['buffer_size'] = self.buffer_size
        state['tf'] = self.sess.run([x for x in self._global_vars('') if 'buffer' not in x.name])
        return state

    def __setstate__(self, state):
        if 'sample_transitions' not in state:
            # We don't need this for playing the policy.
            state['sample_transitions'] = None
        state['env_name'] = None # No need for playing the policy

        self.__init__(**state)
        # set up stats (they are overwritten in __init__)
        for k, v in state.items():
            if k[-6:] == '_stats':
                self.__dict__[k] = v
        # load TF variables
        vars = [x for x in self._global_vars('') if 'buffer' not in x.name]
        assert(len(vars) == len(state["tf"]))
        node = [tf.assign(var, val) for var, val in zip(vars, state["tf"])]
        self.sess.run(node)
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U2.BatchInput((16, 16), name=name)

    act_x, train_x, update_target_x, debug_x = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_x")

    act_y, train_y, update_target_y, debug_y = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_y")

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_x = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        replay_buffer_y = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule_x = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)

        beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)
    else:
        replay_buffer_x = ReplayBuffer(buffer_size)
        replay_buffer_y = ReplayBuffer(buffer_size)

        beta_schedule_x = None
        beta_schedule_y = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target_x()
    update_target_y()

    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    # Select all marines first
    obs = env.step(
        actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
    player = [int(player_x.mean()), int(player_y.mean())]

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join("model/", "mineral_shards")
        print(model_file)

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action_x = act_x(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]

            action_y = act_y(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]

            reset = False

            coord = [player[0], player[1]]
            rew = 0

            coord = [action_x, action_y]

            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])

            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # else:
            #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

            obs = env.step(actions=new_action)

            player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
            new_screen = (player_relative == _PLAYER_NEUTRAL).astype(int)

            player_y, player_x = (
                player_relative == _PLAYER_FRIENDLY).nonzero()
            player = [int(player_x.mean()), int(player_y.mean())]

            rew = obs[0].reward

            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer_x.add(screen, action_x, rew, new_screen, float(done))
            replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

            screen = new_screen

            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                player_relative = obs[0].observation["screen"][
                    _PLAYER_RELATIVE]
                screent = (player_relative == _PLAYER_NEUTRAL).astype(int)

                player_y, player_x = (
                    player_relative == _PLAYER_FRIENDLY).nonzero()
                player = [int(player_x.mean()), int(player_y.mean())]

                # Select all marines first
                env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
                episode_rewards.append(0.0)
                #episode_minerals.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:

                    experience_x = replay_buffer_x.sample(
                        batch_size, beta=beta_schedule_x.value(t))
                    (obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x,
                     weights_x, batch_idxes_x) = experience_x

                    experience_y = replay_buffer_y.sample(
                        batch_size, beta=beta_schedule_y.value(t))
                    (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y,
                     weights_y, batch_idxes_y) = experience_y
                else:

                    obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x = replay_buffer_x.sample(
                        batch_size)
                    weights_x, batch_idxes_x = np.ones_like(rewards_x), None

                    obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(
                        batch_size)
                    weights_y, batch_idxes_y = np.ones_like(rewards_y), None

                td_errors_x = train_x(obses_t_x, actions_x, rewards_x,
                                      obses_tp1_x, dones_x, weights_x)

                td_errors_y = train_x(obses_t_y, actions_y, rewards_y,
                                      obses_tp1_y, dones_y, weights_y)

                if prioritized_replay:
                    new_priorities_x = np.abs(
                        td_errors_x) + prioritized_replay_eps
                    new_priorities_y = np.abs(
                        td_errors_y) + prioritized_replay_eps
                    replay_buffer_x.update_priorities(batch_idxes_x,
                                                      new_priorities_x)
                    replay_buffer_y.update_priorities(batch_idxes_y,
                                                      new_priorities_y)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target_x()
                update_target_y()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U2.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U2.load_state(model_file)

    return ActWrapper(act_x), ActWrapper(act_y)
示例#24
0
文件: ddpg.py 项目: ZiyeHu/myCHER
    def __init__(self, input_dims, buffer_size, hidden, layers, network_class, polyak, batch_size,
                 Q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, T,
                 rollout_batch_size, subtract_goals, relative_goals, clip_pos_returns, clip_return,
                 sample_transitions, gamma, temperature, prioritization, env_name,
                 alpha, beta0, beta_iters, eps, max_timesteps, rank_method, reuse=False, **kwargs):
        """Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER).

        Args:
            input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the
                actions (u)
            buffer_size (int): number of transitions that are stored in the replay buffer
            hidden (int): number of units in the hidden layers
            layers (int): number of hidden layers
            network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic')
            polyak (float): coefficient for Polyak-averaging of the target network
            batch_size (int): batch size for training
            Q_lr (float): learning rate for the Q (critic) network
            pi_lr (float): learning rate for the pi (actor) network
            norm_eps (float): a small value used in the normalizer to avoid numerical instabilities
            norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip]
            max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u]
            action_l2 (float): coefficient for L2 penalty on the actions
            clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs]
            scope (str): the scope used for the TensorFlow graph
            T (int): the time horizon for rollouts
            rollout_batch_size (int): number of parallel rollouts per DDPG agent
            subtract_goals (function): function that subtracts goals from each other
            relative_goals (boolean): whether or not relative goals should be fed into the network
            clip_pos_returns (boolean): whether or not positive returns should be clipped
            clip_return (float): clip returns to be in [-clip_return, clip_return]
            sample_transitions (function) function that samples from the replay buffer
            gamma (float): gamma used for Q learning updates
            reuse (boolean): whether or not the networks should be reused
        """
        if self.clip_return is None:
            self.clip_return = np.inf

        self.create_actor_critic = import_function(self.network_class)

        input_shapes = dims_to_shapes(self.input_dims)
        self.dimo = self.input_dims['o']
        self.dimg = self.input_dims['g']
        self.dimu = self.input_dims['u']

        self.prioritization = prioritization
        self.env_name = env_name
        self.temperature = temperature
        self.rank_method = rank_method

        # Prepare staging area for feeding data to the model.
        stage_shapes = OrderedDict()
        for key in sorted(self.input_dims.keys()):
            if key.startswith('info_'):
                continue
            stage_shapes[key] = (None, *input_shapes[key])
        for key in ['o', 'g']:
            stage_shapes[key + '_2'] = stage_shapes[key]
        stage_shapes['r'] = (None,)
        stage_shapes['w'] = (None,)
        self.stage_shapes = stage_shapes

        # Create network.
        with tf.variable_scope(self.scope):
            self.staging_tf = StagingArea(
                dtypes=[tf.float32 for _ in self.stage_shapes.keys()],
                shapes=list(self.stage_shapes.values()))
            self.buffer_ph_tf = [
                tf.placeholder(tf.float32, shape=shape) for shape in self.stage_shapes.values()]
            self.stage_op = self.staging_tf.put(self.buffer_ph_tf)

            self._create_network(reuse=reuse)

        # Configure the replay buffer.
        buffer_shapes = {key: (self.T if key != 'o' else self.T+1, *input_shapes[key])
                         for key, val in input_shapes.items()}
        buffer_shapes['g'] = (buffer_shapes['g'][0], self.dimg)
        buffer_shapes['ag'] = (self.T+1, self.dimg)
        buffer_size = (self.buffer_size // self.rollout_batch_size) * self.rollout_batch_size

        if self.prioritization == 'energy':
            self.buffer = ReplayBufferEnergy(buffer_shapes, buffer_size, self.T, self.sample_transitions, 
                                            self.prioritization, self.env_name)
        elif self.prioritization == 'tderror':
            self.buffer = PrioritizedReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions, alpha, self.env_name)
            if beta_iters is None:
                beta_iters = max_timesteps
            self.beta_schedule = LinearSchedule(beta_iters, initial_p=beta0, final_p=1.0)
        else:
            self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions)
示例#25
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            action = act(np.array(obs)[None],
                         update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
示例#26
0
if __name__ == '__main__':
    with U.make_session(num_cpu=1):
        # Create the environment
        env = gym.make("CartPole-v0")
        # Create all the functions necessary to train the model
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
            q_func=model,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
        )
        # Create the replay buffer
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000, initial_p=1.0, final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()
        reward_list = []  ###list for saving sum of reward to file
        episode_rewards = [0.0]
        obs = env.reset()
        for t in itertools.count():
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            reward_list.append(rew)  ###append reward to list
            obs = new_obs
示例#27
0
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=args.double_q,
            param_noise=args.param_noise
        )

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([
            (0, 1.0),
            (approximate_num_iters / 50, 0.1),
            (approximate_num_iters / 5, 0.01)
        ], outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
        if state is not None:
            num_iters, replay_buffer = state["num_iters"], state["replay_buffer"],
            monitored_env.set_state(state["monitor_state"])

        start_time, start_steps = None, None
        steps_per_iter = RunningAvg(0.999)
示例#28
0
dueling = True
layer_norm = True
activation_fn = tf.nn.elu

# Q-map
if args.qmap:
    q_map_model = ConvDeconvMap(convs=[(32, 8, 2), (32, 6, 2), (64, 4, 2)],
                                middle_hiddens=[1024],
                                deconvs=[(64, 4, 2), (32, 6, 2),
                                         (env.action_space.n, 4, 1)],
                                coords_shape=coords_shape,
                                dueling=dueling,
                                layer_norm=layer_norm,
                                activation_fn=activation_fn)
    q_map_random_schedule = LinearSchedule(schedule_timesteps=n_steps,
                                           initial_p=0.1,
                                           final_p=0.05)
else:
    q_map_model = None
    q_map_random_schedule = None

# DQN
if args.dqn:
    dqn_model = ConvMlp(
        convs=[(32, 8, 2), (32, 6, 2), (32, 4, 2)],
        hiddens=[1024],
        dueling=True,
    )
    exploration_schedule = LinearSchedule(schedule_timesteps=n_steps,
                                          initial_p=1.0,
                                          final_p=0.05)
示例#29
0
def learn(env,
          q_func,
          isKfac=False,
          kfac_paras=None,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return U.BatchInput(observation_space_shape, name=name)

    if isKfac:
        from baselines.deepq.kfac import KfacOptimizer
        optimizer = KfacOptimizer(learning_rate=lr,
                              momentum=kfac_paras['momentum'], clip_kl=kfac_paras['clip_kl'], kfac_update=1,
                              epsilon=kfac_paras['epsilon'], stats_decay=kfac_paras['stats_decay'],
                              async=1, cold_iter=kfac_paras['cold_iter'])

        act, train, update_target, debug, queue_runner = deepq.build_train(
            make_obs_ph=make_obs_ph,  # lambda name: U.Uint8Input(env.observation_space.shape, name=name),
            isKfac=True,
            fisher_metric=kfac_paras['fisher_metric'],
            q_func=q_func,
            num_actions=env.action_space.n,
            optimizer=optimizer,
            gamma=0.99,
            grad_norm_clipping=10,
        )
    else:
        act, train, update_target, debug, _ = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=param_noise
        )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    if isKfac:
       enqueue_threads = queue_runner.create_threads(sess, coord=tf.train.Coordinator(), start=True)

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        import time
        start = time.time()
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            if isinstance(env.action_space, gym.spaces.MultiBinary):
                env_action = np.zeros(env.action_space.n)
                env_action[action] = 1
            else:
                env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.record_tabular("fps", int(t * 1.0 / (time.time() - start)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            U.load_state(model_file)

    return act
示例#30
0
def learn(
        env,
        p_dist_func,
        lr=5e-4,
        eps=0.0003125,
        max_timesteps=100000,
        buffer_size=50000,
        exp_t1=1e6,
        exp_p1=0.1,
        exp_t2=25e6,
        exp_p2=0.01,
        # exploration_fraction=0.1,
        # exploration_final_eps=0.02,
        train_freq=1,
        batch_size=32,
        print_freq=1,
        checkpoint_freq=10000,
        learning_starts=1000,
        gamma=0.95,
        target_network_update_freq=500,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,
        prioritized_replay_eps=1e-6,
        num_cpu=16,
        param_noise=False,
        callback=None,
        dist_params=None,
        n_action=None,
        action_map=None):
    """Train a distdeepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    p_dist_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/distdeepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = make_session(num_cpu=num_cpu)
    sess.__enter__()

    logger.configure(dir=os.path.join(
        '.',
        datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f")))

    # logger.configure()

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    if dist_params is None:
        raise ValueError('dist_params is required')

    # z, dz = build_z(**dist_params)

    act, train, update_target, debug = distdeepq_mog.build_train(
        make_obs_ph=make_obs_ph,
        p_dist_func=p_dist_func,
        # num_actions=env.action_space.n,
        n_action=n_action,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr, epsilon=eps),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        dist_params=dist_params)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'p_dist_func': p_dist_func,
        'num_actions': n_action,
        'dist_params': dist_params
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    #exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
    #                             initial_p=1.0,
    #                             final_p=exploration_final_eps)
    # exploration = PiecewiseSchedule([(0, 1.0),(max_timesteps/25, 0.1),
    #                                   (max_timesteps, 0.01)], outside_value=0.01)
    exploration = PiecewiseSchedule([(0, 1.0), (exp_t1, exp_p1),
                                     (exp_t2, exp_p2)],
                                    outside_value=exp_p2)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    avg_success_list = deque(maxlen=100)
    avg_collision_list = deque(maxlen=100)
    avg_derail_list = deque(maxlen=100)
    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            reset = False

            action_val = action_map[action]
            new_obs, rew, done, info = env.step(action_val)
            # env.render()
            # rew = rew-1 for proposed loss with new metric
            # rew = rew-1
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                if info == 1:
                    avg_success_list.append(1.0)
                    avg_collision_list.append(0.0)
                    avg_derail_list.append(0.0)
                elif info == -1:
                    avg_success_list.append(0.0)
                    avg_collision_list.append(1.0)
                    avg_derail_list.append(0.0)
                elif info == -2:
                    avg_success_list.append(0.0)
                    avg_collision_list.append(0.0)
                    avg_derail_list.append(1.0)
                else:
                    avg_success_list.append(0.0)
                    avg_collision_list.append(0.0)
                    avg_derail_list.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                errors = train(obses_t, actions, rewards, obses_tp1, dones,
                               weights)

                if prioritized_replay:
                    new_priorities = np.abs(errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                # debug['pi'] = tf.Print(debug['pi'], [debug['pi'], "target pi"])
                # tf.Print(debug['mu'], [debug['mu'], "target mu"])
                # tf.Print(debug['sigma'], [debug['sigma'], "target sigma"])
                logger.record_tabular("Success rate",
                                      np.mean(avg_success_list))
                logger.record_tabular("Collision rate",
                                      np.mean(avg_collision_list))
                logger.record_tabular("Derailment rate",
                                      np.mean(avg_derail_list))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act, act_params)