示例#1
0
    def load_act(path, scope):
        with open(path, "rb") as f:
            model_data, act_params = cloudpickle.load(f)
        act = co_build_act(**act_params, scope=scope)
        sess = tf.Session()
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            load_variables(os.path.join(td, "model"))

        return ActWrapper(act, act_params)
示例#2
0
    def __init__(
            self,
            env,
            # observation_space,
            # action_space,
            network=None,
            scope='deepq',
            seed=None,
            lr=None,  # Was 5e-4
            lr_mc=5e-4,
            total_episodes=None,
            total_timesteps=100000,
            buffer_size=50000,
            exploration_fraction=0.1,
            exploration_final_eps=None,  # was 0.02
            train_freq=1,
            train_log_freq=100,
            batch_size=32,
            print_freq=100,
            checkpoint_freq=10000,
            # checkpoint_path=None,
            learning_starts=1000,
            gamma=None,
            target_network_update_freq=500,
            prioritized_replay=False,
            prioritized_replay_alpha=0.6,
            prioritized_replay_beta0=0.4,
            prioritized_replay_beta_iters=None,
            prioritized_replay_eps=1e-6,
            save_path=None,
            load_path=None,
            save_reward_threshold=None,
            **network_kwargs):
        super().__init__(env, seed)
        if train_log_freq % train_freq != 0:
            raise ValueError(
                'Train log frequency should be a multiple of train frequency')
        elif checkpoint_freq % train_log_freq != 0:
            raise ValueError(
                'Checkpoint freq should be a multiple of train log frequency, or model saving will not be logged properly'
            )
        print('init dqnlearningagent')
        self.train_log_freq = train_log_freq
        self.scope = scope
        self.learning_starts = learning_starts
        self.save_reward_threshold = save_reward_threshold
        self.batch_size = batch_size
        self.train_freq = train_freq
        self.total_episodes = total_episodes
        self.total_timesteps = total_timesteps
        # TODO: scope not doing anything.
        if network is None and 'lunar' in env.unwrapped.spec.id.lower():
            if lr is None:
                lr = 1e-3
            if exploration_final_eps is None:
                exploration_final_eps = 0.02
            #exploration_fraction = 0.1
            #exploration_final_eps = 0.02
            target_network_update_freq = 1500
            #print_freq = 100
            # num_cpu = 5
            if gamma is None:
                gamma = 0.99

            network = 'mlp'
            network_kwargs = {
                'num_layers': 2,
                'num_hidden': 64,
            }

        self.target_network_update_freq = target_network_update_freq
        self.gamma = gamma

        get_session()
        # set_global_seeds(seed)
        # TODO: Check whether below is ok to substitue for set_global_seeds.
        try:
            import tensorflow as tf
            tf.set_random_seed(seed)
        except ImportError:
            pass

        self.q_func = build_q_func(network, **network_kwargs)

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph

        def make_obs_ph(name):
            return ObservationInput(env.observation_space, name=name)

        act, self.train, self.train_mc, self.update_target, debug = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=self.q_func,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            optimizer_mc=tf.train.AdamOptimizer(learning_rate=lr_mc),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=False,
            scope=scope,
            # reuse=reuse,
        )

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': self.q_func,
            'num_actions': env.action_space.n,
        }

        self._act = ActWrapper(act, act_params)

        self.print_freq = print_freq
        self.checkpoint_freq = checkpoint_freq
        # Create the replay buffer
        self.prioritized_replay = prioritized_replay
        self.prioritized_replay_eps = prioritized_replay_eps

        if self.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                buffer_size,
                alpha=prioritized_replay_alpha,
            )
            if prioritized_replay_beta_iters is None:
                if total_episodes is not None:
                    raise NotImplementedError(
                        'Need to check how to set exploration based on episodes'
                    )
                prioritized_replay_beta_iters = total_timesteps
            self.beta_schedule = LinearSchedule(
                prioritized_replay_beta_iters,
                initial_p=prioritized_replay_beta0,
                final_p=1.0,
            )
        else:
            self.replay_buffer = ReplayBuffer(buffer_size)
            self.replay_buffer_mc = ReplayBuffer(buffer_size)
            self.beta_schedule = None
        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(
            schedule_timesteps=int(
                exploration_fraction *
                total_timesteps if total_episodes is None else total_episodes),
            initial_p=1.0,
            final_p=exploration_final_eps,
        )

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()

        self.episode_lengths = [0]
        self.episode_rewards = [0.0]
        self.discounted_episode_rewards = [0.0]
        self.start_values = [None]
        self.lunar_crashes = [0]
        self.lunar_goals = [0]
        self.saved_mean_reward = None

        self.td = None
        if save_path is None:
            self.td = tempfile.mkdtemp()
            outdir = self.td
            self.model_file = os.path.join(outdir, "model")
        else:
            outdir = os.path.dirname(save_path)
            os.makedirs(outdir, exist_ok=True)
            self.model_file = save_path
        print('DQN agent saving to:', self.model_file)
        self.model_saved = False

        if tf.train.latest_checkpoint(outdir) is not None:
            # TODO: Check scope addition
            load_variables(self.model_file, scope=self.scope)
            # load_variables(self.model_file)
            logger.log('Loaded model from {}'.format(self.model_file))
            self.model_saved = True
            raise Exception('Check that we want to load previous model')
        elif load_path is not None:
            # TODO: Check scope addition
            load_variables(load_path, scope=self.scope)
            # load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        self.train_log_file = None
        if save_path and load_path is None:
            self.train_log_file = self.model_file + '.log.csv'
            with open(self.train_log_file, 'w') as f:
                cols = [
                    'episode',
                    't',
                    'td_max',
                    'td_mean',
                    '100ep_r_mean',
                    '100ep_r_mean_discounted',
                    '100ep_v_mean',
                    '100ep_n_crashes_mean',
                    '100ep_n_goals_mean',
                    'saved_model',
                    'smoothing',
                ]
                f.write(','.join(cols) + '\n')

        self.training_episode = 0
        self.t = 0
        self.episode_t = 0
        """
        n = observation_space.n
        m = action_space.n
        self.Q = np.zeros((n, m))

        self._lr_schedule = lr_schedule
        self._eps_schedule = eps_schedule
        self._boltzmann_schedule = boltzmann_schedule
        """

        # Make placeholder for Q values
        self.q_values = debug['q_values']
示例#3
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          initial_exploration_p=1.0,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=0,#,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          double_q=True,
          num_heads=10,
          **network_kwargs
            ):
    """Train a bootstrap-dqn model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    nenvs = env.num_envs
    print("Bootstrap DQN with {} envs".format(nenvs))

    q_func = build_q_func(network, num_heads, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = bootstrap_dqn.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=double_q,
        num_heads=num_heads
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=initial_exploration_p,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()

    episode_reward = np.zeros(nenvs, dtype = np.float32)
    saved_mean_reward = None
    reset = True
    epoch_episode_rewards = []
    epoch_episode_steps = []
    epoch_actions = []
    epoch_episodes = 0
    episode_rewards_history = deque(maxlen=100)
    episode_step = np.zeros(nenvs, dtype = int)
    episodes = 0 #scalar


    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        print("Model will be saved at " , model_file)
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
            print('Loaded model from {}'.format(load_path))

        t = 0
        while t < total_timesteps:
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            update_eps = exploration.value(t)
            update_param_noise_threshold = 0.

            obs = env.reset()
            head = np.random.randint(num_heads)  # Head initialisation

            for m in range(100):
                action, q_values = act(np.array(obs)[None], head=head, update_eps=update_eps, **kwargs)
                env_action = action
                new_obs, rew, done, _ = env.step(env_action)
                # Store transition in the replay buffer.
                replay_buffer.add(obs, action, rew, np.array([head]*nenvs), new_obs, done)

                if np.random.rand() < 0.01:
                    print (head, obs[0], q_values[0])
                obs = new_obs

                episode_reward += rew
                episode_step += 1

                for d in range(len(done)):
                    if done[d]:
                        epoch_episode_rewards.append(episode_reward[d])
                        episode_rewards_history.append(episode_reward[d])
                        epoch_episode_steps.append(episode_step[d])
                        episode_reward[d] = 0.
                        episode_step[d] = 0
                        epoch_episodes += 1
                        episodes += 1

            t += 100 * nenvs

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, head_t, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, head_t, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, head_t, head_t, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)


            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards_history), 2)
            num_episodes = episodes

            if print_freq is not None and num_episodes % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()
                print("episodes", num_episodes, "steps {}/{}".format(t, total_timesteps))

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                        print("saving model")
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_variables(model_file)

    return act
示例#4
0
    def __init__(self,
                 env,
                 network='mlp',
                 lr=5e-4,
                 buffer_size=50000,
                 exploration_epsilon=0.1,
                 train_freq=1,
                 batch_size=32,
                 learning_starts=1000,
                 target_network_update_freq=500,
                 **network_kwargs):
        """DQN wrapper to train option policies

        Parameters
        -------
        env: gym.Env
            environment to train on
        network: string or a function
            neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
            (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
            will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
        lr: float
            learning rate for adam optimizer
        buffer_size: int
            size of the replay buffer
        exploration_epsilon: float
            value of random action probability
        train_freq: int
            update the model every `train_freq` steps.
        batch_size: int
            size of a batch sampled from replay buffer for training
        learning_starts: int
            how many steps of the model to collect transitions for before learning starts
        target_network_update_freq: int
            update the target network every `target_network_update_freq` steps.
        network_kwargs
            additional keyword arguments to pass to the network builder.
        """

        # Creating the network
        q_func = build_q_func(network, **network_kwargs)

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph

        observation_space = env.controller_observation_space

        def make_obs_ph(name):
            return ObservationInput(observation_space, name=name)

        act, train, update_target, debug = build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=env.controller_action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            grad_norm_clipping=10,
            scope="controller")

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': env.controller_action_space.n,
        }

        act = ActWrapper(act, act_params)

        # Create the replay buffer
        replay_buffer = ReplayBuffer(buffer_size)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        # Variables that are used during learning
        self.act = act
        self.train = train
        self.update_target = update_target
        self.replay_buffer = replay_buffer
        self.exp_epsilon = exploration_epsilon
        self.train_freq = train_freq
        self.batch_size = batch_size
        self.learning_starts = learning_starts
        self.target_network_update_freq = target_network_update_freq
        self.num_actions = env.controller_action_space.n
        self.t = 0
示例#5
0
    def __init__(self,
                 env,
                 gamma,
                 total_timesteps,
                 network='mlp',
                 lr=5e-4,
                 buffer_size=50000,
                 exploration_fraction=0.1,
                 exploration_final_eps=0.02,
                 train_freq=1,
                 batch_size=32,
                 learning_starts=1000,
                 target_network_update_freq=500,
                 prioritized_replay=False,
                 prioritized_replay_alpha=0.6,
                 prioritized_replay_beta0=0.4,
                 prioritized_replay_beta_iters=None,
                 prioritized_replay_eps=1e-6,
                 param_noise=False,
                 **network_kwargs):
        """DQN wrapper to train option policies

        Parameters
        -------
        env: gym.Env
            environment to train on
        gamma: float
            discount factor
        network: string or a function
            neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
            (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
            will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
        total_timesteps: int
            number of env steps to optimizer for
        lr: float
            learning rate for adam optimizer
        buffer_size: int
            size of the replay buffer
        exploration_fraction: float
            fraction of entire training period over which the exploration rate is annealed
        exploration_final_eps: float
            final value of random action probability
        train_freq: int
            update the model every `train_freq` steps.
        batch_size: int
            size of a batch sampled from replay buffer for training
        learning_starts: int
            how many steps of the model to collect transitions for before learning starts
        target_network_update_freq: int
            update the target network every `target_network_update_freq` steps.
        prioritized_replay: True
            if True prioritized replay buffer will be used.
        prioritized_replay_alpha: float
            alpha parameter for prioritized replay buffer
        prioritized_replay_beta0: float
            initial value of beta for prioritized replay buffer
        prioritized_replay_beta_iters: int
            number of iterations over which beta will be annealed from initial value
            to 1.0. If set to None equals to total_timesteps.
        prioritized_replay_eps: float
            epsilon to add to the TD errors when updating priorities.
        param_noise: bool
            whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
        **network_kwargs
            additional keyword arguments to pass to the network builder.
        """

        # Adjusting hyper-parameters by considering the number of options policies to learn
        num_options = env.get_number_of_options()
        buffer_size = num_options * buffer_size
        batch_size = num_options * batch_size

        q_func = build_q_func(network, **network_kwargs)

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph

        observation_space = env.option_observation_space

        def make_obs_ph(name):
            return ObservationInput(observation_space, name=name)

        self.num_actions = env.option_action_space.n

        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=self.num_actions,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=param_noise,
            scope="options")

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': self.num_actions,
        }

        act = ActWrapper(act, act_params)

        # Create the replay buffer
        if prioritized_replay:
            replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
            if prioritized_replay_beta_iters is None:
                prioritized_replay_beta_iters = total_timesteps
            beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                           initial_p=prioritized_replay_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
            beta_schedule = None
        # Create the schedule for exploration starting from 1.
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * total_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        # Variables that are used during learning
        self.act = act
        self.train = train
        self.update_target = update_target
        self.replay_buffer = replay_buffer
        self.beta_schedule = beta_schedule
        self.exploration = exploration
        self.param_noise = param_noise
        self.train_freq = train_freq
        self.batch_size = batch_size
        self.learning_starts = learning_starts
        self.target_network_update_freq = target_network_update_freq

        self.prioritized_replay = prioritized_replay
        self.prioritized_replay_alpha = prioritized_replay_alpha
        self.prioritized_replay_beta0 = prioritized_replay_beta0
        self.prioritized_replay_beta_iters = prioritized_replay_beta_iters
        self.prioritized_replay_eps = prioritized_replay_eps
示例#6
0
def main(args):
    # configure logger, disable logging in child MPI processes (with rank > 0)

    arg_parser = common_arg_parser()
    args, unknown_args = arg_parser.parse_known_args(args)
    extra_args = parse_cmdline_kwargs(unknown_args)

    if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
        rank = 0
        configure_logger(args.log_path)
    else:
        rank = MPI.COMM_WORLD.Get_rank()
        configure_logger(args.log_path, format_strs=[])

    import json
    with open(osp.join(logger.get_dir(), 'args.json'), 'w') as arg_record_file:
        json.dump(args.__dict__, arg_record_file)
    env, constraints = build_env(args)
    hard_constraints = [c for c in constraints if c.is_hard]

    from baselines.deepq.deepq import ActWrapper
    model = ActWrapper.load_act(args.save_path)
    q_vals = np.zeros((int(args.num_timesteps), env.action_space.n))

    # if we have already collected trajectories
    if 'experience_dir' in args.__dict__:
        logger.log("Loading collected experiences")
        # TODO: fix by adding loading of constraint state and finding the right files
        states = np.load(osp.join(args.experience_dir, 'states'))
        if file_exists:
            constraint_states = np.load(
                osp.join(args.experience_dir, 'constraint_states'))
        else:
            constraint_states = []
    else:
        print(extra_args)
        if 'collect_states' in extra_args:
            states = np.zeros((int(args.num_timesteps), ) +
                              env.observation_space.shape)
        constraint_states = []
        episode_rewards = []

        logger.log("Running loaded model")
        obs = env.reset()

        state = model.initial_state if hasattr(model,
                                               'initial_state') else None
        dones = np.zeros((1, ))

        episode_rew = np.zeros(env.num_envs) if isinstance(
            env, VecEnv) else np.zeros(1)
        timestep = 0
        ready_to_exit = False
        while True:
            timestep += 1
            if timestep >= args.num_timesteps:
                ready_to_exit = True

            if hard_constraints:
                constraint_mask = reduce(lambda x, y: x + y, [
                    c.violating_mask(env.action_space.n)
                    for c in hard_constraints
                ])
            else:
                constraint_mask = None

            if state is not None:
                actions, _, state, _ = model.step(obs, S=state, M=dones, hard_constraint_mask=constraint_mask)
            else:
                actions, _, _, _ = model.step(obs, hard_constraint_mask=constraint_mask)

            obs, rew, done, _ = env.step(actions)
            if 'collect_states' in extra_args:
                if type(obs) is tuple:  # with augmentation
                    states[i] = obs[0]
                    constraint_states.append(obs[1])
                else:  # without aug
                    states[i] = obs
            episode_rew += rew
            done_any = done.any() if isinstance(done, np.ndarray) else done
            if done_any:
                for i in np.nonzero(done)[0]:
                    episode_rewards.append(episode_rew[0])
                    episode_rew[i] = 0
                if ready_to_exit:
                    break
                env.reset()

        np.save(osp.join(logger.get_dir(), 'episode_rewards'), episode_rewards)
        if 'collect_states' in extra_args:
            np.save(osp.join(logger.get_dir(), 'states'), states)
        if len(constraint_states) > 0:
            np.save(osp.join(logger.get_dir(), 'constraint_states'),
                    np.array(constraint_states))
        env.close()

    # calculate q values
    if 'collect_states' in extra_args:
        for i, s in enumerate(states):
            if len(constraint_states) > 0:  # with augmentation
                q_input = [(s, constraint_states[i])]
            else:
                q_input = s
            q_vals[i] = model.q(q_input)
        np.save(osp.join(logger.get_dir(), 'q_vals'), q_vals)

    shutil.copyfile(osp.join(logger.get_dir(), 'log.txt'),
                    osp.join(logger.get_dir(), 'final_log.txt'))
示例#7
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          stage1_total_timesteps=None,
          stage2_total_timesteps=None,
          buffer_size=50000,
          exploration_fraction=0.3,
          initial_exploration_p=1.0,
          exploration_final_eps=0.0,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1,
          gamma=1.0,
          target_network_update_freq=100,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          double_q=True,
          obs_dim=None,
          qmdp_expert=None,
          stage1_td_error_threshold=1e-3,
          pretrain_experience=None,
          flatten_belief=False,
          num_experts=None,
          **network_kwargs):
    """Train a bootstrap-dqn model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    qmdp_expert: takes obs, bel -> returns qmdp q-vals
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    nenvs = env.num_envs
    print("{} envs".format(nenvs))

    assert pretrain_experience is not None and qmdp_expert is not None and num_experts is not None

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    # import IPython; IPython.embed()
    #assert isinstance(env.envs[0].env.env.env, ExplicitBayesEnv)
    #belief_space = env.envs[0].env.env.env.belief_space
    #observation_space = env.envs[0].env.env.env.internal_observation_space

    obs_space = env.observation_space

    assert obs_dim is not None

    observation_space = Box(obs_space.low[:obs_dim],
                            obs_space.high[:obs_dim],
                            dtype=np.float32)
    #belief_space = Box(obs_space.low[obs_dim:], obs_space.high[obs_dim:], dtype=np.float32)
    observed_belief_space = Box(obs_space.low[obs_dim:],
                                obs_space.high[obs_dim:],
                                dtype=np.float32)
    belief_space = Box(np.zeros(num_experts),
                       np.ones(num_experts),
                       dtype=np.float32)  # rocksample

    num_experts = belief_space.high.size

    # print("Num experts", num_experts)

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    def make_bel_ph(name):
        return ObservationInput(belief_space, name=name)

    q_func = build_q_func(network, num_experts, **network_kwargs)

    print('=============== got qfunc ============== ')

    if stage1_total_timesteps is None and stage2_total_timesteps is None:
        stage1_total_timesteps = total_timesteps // 2
        stage2_total_timesteps = total_timesteps // 2

    total_timesteps = stage1_total_timesteps + stage2_total_timesteps

    act, train, update_target, debug = rbqnfe_staged.build_train(
        make_obs_ph=make_obs_ph,
        make_bel_ph=make_bel_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=double_q)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=initial_exploration_p,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_reward = np.zeros(nenvs, dtype=np.float32)
    saved_mean_reward = None
    reset = True
    epoch_episode_rewards = []
    epoch_episode_steps = []
    epoch_actions = []
    epoch_episodes = 0
    episode_rewards_history = deque(maxlen=1000)
    episode_step = np.zeros(nenvs, dtype=int)
    episodes = 0  #scalar

    # Load model
    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        print("Model will be saved at ", model_file)
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
            print('Loaded model from {}'.format(load_path))

    t = 0

    accumulated_td_errors = deque(maxlen=100)

    # copy all pre-experiences
    for expert, experience in enumerate(pretrain_experience):
        obs, val, action, rew, new_obs, done = experience
        obs, bel = obs[:, :-observed_belief_space.
                       shape[0]], obs[:, -observed_belief_space.shape[0]:]
        if flatten_belief:
            bel = qmdp_expert.flatten_to_belief(bel,
                                                approximate=True).transpose()
        new_obs, new_bel = new_obs[:, :-observed_belief_space.
                                   shape[0]], new_obs[:,
                                                      -observed_belief_space.
                                                      shape[0]:]
        if flatten_belief:
            new_bel = qmdp_expert.flatten_to_belief(
                new_bel, approximate=True).transpose()  # rocksample specific
        new_expert_qval = qmdp_expert(new_obs, new_bel)
        expert_qval = qmdp_expert(obs, bel)
        obs = obs.astype(np.float32)
        bel = bel.astype(np.float32)
        expert_qval = expert_qval.astype(np.float32)
        action = action.astype(np.float32)
        rew = rew.astype(np.float32).ravel()
        new_obs = new_obs.astype(np.float32)
        new_bel = new_bel.astype(np.float32)
        new_expert_qval = new_expert_qval.astype(np.float32)
        replay_buffer.add(obs, bel, expert_qval, action, rew, new_obs, new_bel,
                          new_expert_qval, done)
        print("Added {} samples to ReplayBuffer".format(
            len(replay_buffer._storage)))

    # Stage 1: Train Residual without exploration, just with batches from replay buffer
    while t < stage1_total_timesteps:
        if callback is not None:
            if callback(locals(), globals()):
                break

        kwargs = {}
        update_param_noise_threshold = 0.

        obs = env.reset()
        episode_reward = np.zeros(nenvs, dtype=np.float32)
        episode_step[:] = 0
        obs, bel = obs[:, :-observed_belief_space.
                       shape[0]], obs[:, -observed_belief_space.shape[0]:]

        expert_qval = qmdp_expert(obs, bel)

        t += 1

        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
            experience = replay_buffer.sample(batch_size,
                                              beta=beta_schedule.value(t))
            obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones, weights, batch_idxes = experience
        else:
            experience = replay_buffer.sample(batch_size)

            obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones = experience
            weights, batch_idxes = np.ones_like(rewards), None

        td_errors = train(obses_t, bels_t, expert_qvals, actions, rewards,
                          obses_tp1, bels_tp1, expert_qvals_1, dones, weights)

        if prioritized_replay:
            new_priorities = np.abs(td_errors) + prioritized_replay_eps
            replay_buffer.update_priorities(batch_idxes, new_priorities)

        accumulated_td_errors.append(np.mean(np.abs(td_errors)))
        if np.random.rand() < 0.01:
            print("Stage 1 TD error", np.around(td_errors, 1))

        if t % target_network_update_freq == 0:
            # Update target network periodically.
            print("Update target")
            update_target()

        if len(accumulated_td_errors) == 100 and np.mean(
                np.abs(accumulated_td_errors)) < stage1_td_error_threshold:
            if saved_mean_reward is not None:
                save_variables(model_file)
                print("Breaking due to low td error",
                      np.mean(accumulated_td_errors))
                break

        if t % print_freq == 0:
            # Just to get test rewards

            obs = env.reset()
            episode_reward = np.zeros(nenvs, dtype=np.float32)
            episode_step[:] = 0
            obs, bel = obs[:, :-observed_belief_space.
                           shape[0]], obs[:, -observed_belief_space.shape[0]:]

            expert_qval = qmdp_expert(obs, bel)

            episode_rewards_history = []
            horizon = 100
            while len(episode_rewards_history) < 1000:
                action, q_values = act(np.array(obs)[None],
                                       np.array(bel)[None],
                                       np.array(expert_qval)[None],
                                       update_eps=0,
                                       **kwargs)
                env_action = action

                new_obs, rew, done, info = env.step(env_action)
                new_obs, new_bel = new_obs[:, :-observed_belief_space.shape[
                    0]], new_obs[:, -observed_belief_space.shape[0]:]

                new_expert_qval = qmdp_expert(new_obs, new_bel)

                if flatten_belief:
                    new_bel = qmdp_expert.flatten_to_belief(new_bel)

                obs = new_obs
                bel = new_bel
                expert_qval = new_expert_qval

                episode_reward += 0.95**episode_step * rew
                episode_step += 1

                for d in range(len(done)):
                    if done[d]:
                        epoch_episode_rewards.append(episode_reward[d])
                        episode_rewards_history.append(episode_reward[d])
                        epoch_episode_steps.append(episode_step[d])
                        episode_reward[d] = 0.
                        episode_step[d] = 0
                        epoch_episodes += 1
                        episodes += 1

            mean_100ep_reward = round(np.mean(episode_rewards_history), 2)
            num_episodes = episodes

            logger.record_tabular("stage", 1)
            logger.record_tabular("steps", t)
            logger.record_tabular("mean 1000 episode reward",
                                  mean_100ep_reward)
            logger.record_tabular("td errors", np.mean(accumulated_td_errors))

            logger.dump_tabular()
            print("episodes   ", num_episodes,
                  "steps {}/{}".format(t, total_timesteps))
            print("mean reward", mean_100ep_reward)
            print("exploration", int(100 * exploration.value(t)))

        if (checkpoint_freq is not None and t > learning_starts
                and num_episodes > 100 and t % checkpoint_freq == 0):
            if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                if print_freq is not None:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".
                        format(saved_mean_reward, mean_100ep_reward))
                    print("saving model")
                save_variables(model_file)
                model_saved = True
                saved_mean_reward = mean_100ep_reward

    if model_saved:
        if print_freq is not None:
            logger.log("Restored model with mean reward: {}".format(
                saved_mean_reward))
        load_variables(model_file)

    # Post stage1 saving
    stage1_model_file = os.path.join(td, "stage1_model")
    save_variables(stage1_model_file)
    update_target()

    print("===========================================")
    print("              Stage 1 complete             ")
    print("===========================================")

    stage1_total_timesteps = t
    episode_rewards_history = deque(maxlen=1000)

    # Stage 2: Train Resisual with explorationi
    t = 0
    while t < stage2_total_timesteps:
        if callback is not None:
            if callback(locals(), globals()):
                break
        # Take action and update exploration to the newest value
        kwargs = {}
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.

        obs = env.reset()
        episode_reward = np.zeros(nenvs, dtype=np.float32)
        episode_step[:] = 0
        obs, bel = obs[:, :-observed_belief_space.
                       shape[0]], obs[:, -observed_belief_space.shape[0]:]

        expert_qval = qmdp_expert(obs, bel)

        start_time = timer.time()
        horizon = 100
        for m in range(horizon):
            action, q_values = act(np.array(obs)[None],
                                   np.array(bel)[None],
                                   np.array(expert_qval)[None],
                                   update_eps=update_eps,
                                   **kwargs)
            env_action = action

            new_obs, rew, done, info = env.step(env_action)
            new_obs, new_bel = new_obs[:, :-observed_belief_space.shape[
                0]], new_obs[:, -observed_belief_space.shape[0]:]

            new_expert_qval = qmdp_expert(new_obs, new_bel)

            if flatten_belief:
                new_bel = qmdp_expert.flatten_to_belief(new_bel)

            # Store transition in the replay buffer.
            replay_buffer.add(obs, bel, expert_qval, action, rew, new_obs,
                              new_bel, new_expert_qval, done)

            # if np.random.rand() < 0.05:
            # #     # write to file
            # #     with open('rbqn_fixed_expert.csv', 'a') as f:
            # #         out = ','.join(str(np.around(x,2)) for x in [bel[0], obs[0], q_values[0]])
            #         # f.write(out + "\n")

            #     print(np.around(bel[-1], 2), rew[-1], np.around(q_values[-1], 1), np.around(expert_qval[-1], 1))

            obs = new_obs
            bel = new_bel
            expert_qval = new_expert_qval

            episode_reward += 0.95**episode_step * rew
            episode_step += 1

            # print(action, done, obs)

            for d in range(len(done)):
                if done[d]:
                    epoch_episode_rewards.append(episode_reward[d])
                    episode_rewards_history.append(episode_reward[d])
                    epoch_episode_steps.append(episode_step[d])
                    episode_reward[d] = 0.
                    episode_step[d] = 0
                    epoch_episodes += 1
                    episodes += 1

        print("Took {}".format(timer.time() - start_time))

        t += 1

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size,
                                                  beta=beta_schedule.value(t))
                if experience is None:
                    continue
                obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones, weights, batch_idxes = experience
            else:
                experience = replay_buffer.sample(batch_size)
                if experience is None:
                    continue

                obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones = experience
                weights, batch_idxes = np.ones_like(rewards), None

            td_errors = train(obses_t, bels_t, expert_qvals, actions, rewards,
                              obses_tp1, bels_tp1, expert_qvals_1, dones,
                              weights)

            if np.random.rand() < 0.01:
                print("TD error", np.around(td_errors, 1))

            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes, new_priorities)

            accumulated_td_errors.append(np.mean(td_errors))

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            print("Update target")
            update_target()

        mean_100ep_reward = round(np.mean(episode_rewards_history), 2)
        num_episodes = episodes

        if print_freq is not None and num_episodes % print_freq == 0:
            logger.record_tabular("stage", 2)
            logger.record_tabular("steps", t + stage1_total_timesteps)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 1000 episode reward",
                                  mean_100ep_reward)
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("td errors", np.mean(accumulated_td_errors))
            logger.dump_tabular()
            print("episodes   ", num_episodes,
                  "steps {}/{}".format(t, total_timesteps))
            print("mean reward", mean_100ep_reward)
            print("exploration", int(100 * exploration.value(t)))

        if (checkpoint_freq is not None and t > learning_starts
                and num_episodes > 100 and t % checkpoint_freq == 0):
            if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                if print_freq is not None:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".
                        format(saved_mean_reward, mean_100ep_reward))
                    print("saving model")
                save_variables(model_file)
                model_saved = True
                saved_mean_reward = mean_100ep_reward
    if model_saved:
        if print_freq is not None:
            logger.log("Restored model with mean reward: {}".format(
                saved_mean_reward))
        load_variables(model_file)

    return act
示例#8
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          initial_exploration_p=1.0,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=100,
          prioritized_replay=True,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          pretraining_obs=None,
          pretraining_targets=None,
          pretrain_steps=1000,
          pretrain_experience=None,
          pretrain_num_episodes=0,
          double_q=True,
          expert_qfunc=None,
          aggrevate_steps=0,
          pretrain_lr=1e-4,
          sampling_starts=0,
          beb_agent=None,
          qvalue_file="qvalue.csv",
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    beb_agent: takes Q values and suggests actions after adding beb bonus
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    nenvs = env.num_envs
    print("Bayes-DeepQ:", env.num_envs)
    print("Total timesteps", total_timesteps)
    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, train_target, copy_target_to_q, debug = brl_deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        pretrain_optimizer=tf.train.AdamOptimizer(learning_rate=pretrain_lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=double_q)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=initial_exploration_p,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        print("Model will be saved at ", model_file)
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
            print('Loaded model from {}'.format(load_path))

    if pretraining_obs is not None:
        # pretrain target and copy to qfunc
        print("Pretrain steps ", pretrain_steps)
        for i in range(pretrain_steps):
            pretrain_errors = train_target(pretraining_obs,
                                           pretraining_targets)
            if i % 500 == 0:
                print("Step {}".format(i), np.mean(pretrain_errors))
            if np.mean(pretrain_errors) < 1e-5:
                break

        min_rew = 0
        # copy all pre-experiences
        if pretrain_experience is not None:
            for obs, action, rew, new_obs, done in zip(*pretrain_experience):
                replay_buffer.add(obs, action, rew, new_obs, float(done))
            print("Added {} samples to ReplayBuffer".format(
                len(replay_buffer._storage)))
            min_rew = min(rew, min_rew)
        print("Pretrain Error", np.mean(pretrain_errors))
    else:
        print("Skipping pretraining")

    update_target()
    print("Save the pretrained model", model_file)
    save_variables(model_file)

    episode_reward = np.zeros(nenvs, dtype=np.float32)
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    epoch_episode_rewards = []
    epoch_episode_steps = []
    epoch_actions = []
    epoch_episodes = 0
    episode_rewards_history = deque(maxlen=100)
    episode_step = np.zeros(nenvs, dtype=int)
    episodes = 0  #scalar

    start = 0

    if expert_qfunc is None:
        aggrevate_steps = 0

    # if pretraining_obs is None or pretraining_obs.size == 0:
    #     episode_rewards = []
    # else:
    #     episode_rewards = [[0.0]] * pretrain_num_episodes
    #     start = len(pretraining_obs)
    #     if print_freq is not None:
    #         for t in range(0, len(pretraining_obs), print_freq):
    #             logger.record_tabular("steps", t)
    #             logger.record_tabular("episodes", pretrain_num_episodes)
    #             logger.record_tabular("mean 100 episode reward", min_rew)
    #             logger.record_tabular("% time spent exploring", 0)
    #             logger.dump_tabular()
    #             print("pretraining episodes", pretrain_num_episodes, "steps {}/{}".format(t, total_timesteps))

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        print("Aggrevate: Model will be saved at ", model_file)
        model_saved = False

        for i in range(aggrevate_steps):
            obses_t, values = [], []
            for j in range(30):
                # TODO: 30 should be changed to max horizon?
                t = np.random.randint(50) + 1

                obs = env.reset()
                for k in range(t):
                    action, value = act(np.array(obs)[None],
                                        update_eps=exploration.value(i))
                    obs, rew, done, _ = env.step(action)

                obses_t.extend(obs)
                # Roll out expert policy
                episode_reward[:] = 0
                dones = np.array([False] * obs.shape[0])
                for k in range(51 - t):
                    obs, rew, done, _ = env.step(
                        [expert_qfunc.step(o) for o in obs])
                    dones[done] = True
                    rew[dones] = 0
                    episode_reward += 0.95**k * rew

                # TODO: change this to exploration-savvy action
                # action = np.random.randint(env.action_space.n, size=len(obs))
                # Rocksample specific, take sensing actions
                # prob = np.array([1] * 6 + [2] * (env.action_space.n - 6), dtype=np.float32)
                # prob = prob / np.sum(prob)
                # action = np.random.choice(env.action_space.n, p=prob, size=len(action))
                # new_obs, rew, done, _ = env.step(action)

                # value = rew.copy()
                # value[np.logical_not(done)] += gamma * np.max(expert_qfunc.value(new_obs[np.logical_not(done)]), axis=1)
                # current_value[tuple(np.array([np.arange(len(action)), action]))] = value

                # episode reward
                # episode_reward[np.logical_not(done)] += np.max(current_value[np.logical_not(done)], axis=1)
                # episode_rewards_history.extend(np.max(current_value, axis=1))
                value[tuple([np.arange(len(action)), action])] = episode_reward
                values.extend(value)

            print("Aggrevate got {} / {} new data".format(
                obs.shape[0] * 30, len(obses_t)))
            # print("Mean expected cost at the explored points", np.mean(np.max(values, axis=1)))
            for j in range(1000):
                obs, val = np.array(obses_t), np.array(values)
                # indices = np.random.choice(len(obs), min(1000, len(obses_t)))
                aggrevate_errors = train_target(obs, val)
                if np.mean(aggrevate_errors) < 1e-5:
                    print("Aggrevate Step {}, {}".format(i, j),
                          np.mean(aggrevate_errors))
                    break
            print("Aggrevate Step {}, {}".format(i, j),
                  np.mean(aggrevate_errors))
            update_target()
            print("Save the aggrevate model", i, model_file)

            # Evaluate current policy
            episode_reward[:] = 0
            obs = env.reset()
            num_episodes = 0
            k = np.zeros(len(obs))
            while num_episodes < 100:
                action, _ = act(np.array(obs)[None], update_eps=0.0)
                # print(action)
                obs, rew, done, _ = env.step(action)
                episode_reward += 0.95**k * rew
                k += 1
                for d in range(len(done)):
                    if done[d]:
                        episode_rewards_history.append(episode_reward[d])
                        episode_reward[d] = 0.
                        k[d] = 0
                        num_episodes += 1
            mean_1000ep_reward = round(np.mean(episode_rewards_history), 2)
            print("Mean discounted reward", mean_1000ep_reward)
            logger.record_tabular("mean 100 episode reward",
                                  mean_1000ep_reward)
            logger.dump_tabular()
            save_variables(model_file)

        t = 0  # could start from pretrain-steps
        epoch = 0
        while True:
            epoch += 1
            if t >= total_timesteps:
                break

            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            # no randomization
            # update_eps = 0
            print('update_eps', int(100 * exploration.value(t)))
            qv_error = []

            obs = env.reset()
            for m in range(100):

                action, q_values = act(np.array(obs)[None],
                                       update_eps=update_eps,
                                       **kwargs)
                if beb_agent is not None:
                    action = beb_agent.step(obs, action, q_values,
                                            exploration.value(t))
                # if expert_qfunc is not None:
                #     v = expert_qfunc.value(obs)
                #     qv_error += [v - q_values[0]]

                env_action = action
                reset = False
                new_obs, rew, done, info = env.step(env_action)

                if t >= sampling_starts:
                    # Store transition in the replay buffer.
                    replay_buffer.add(obs, action, rew, new_obs, done)
                obs = new_obs

                episode_reward += rew
                episode_step += 1

                for d in range(len(done)):
                    if done[d]:
                        # Episode done.

                        # discount(np.array(rewards), gamma) consider doing discount
                        epoch_episode_rewards.append(episode_reward[d])
                        episode_rewards_history.append(episode_reward[d])
                        epoch_episode_steps.append(episode_step[d])
                        episode_reward[d] = 0.
                        episode_step[d] = 0
                        epoch_episodes += 1
                        episodes += 1

            t += 100 * nenvs

            if t > learning_starts:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)

                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if target_network_update_freq is not None and t > sampling_starts \
                and epoch % target_network_update_freq == 0:
                # Update target network periodically.
                print("Update target")
                update_target()

            mean_1000ep_reward = round(np.mean(episode_rewards_history), 2)
            num_episodes = episodes

            if print_freq is not None:
                logger.record_tabular("steps", t)
                logger.record_tabular("td errors", np.mean(td_errors))
                logger.record_tabular("td errors std",
                                      np.std(np.abs(td_errors)))
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 1000 episode reward",
                                      mean_1000ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()
                print("episodes", num_episodes,
                      "steps {}/{}".format(t, total_timesteps))

            if (checkpoint_freq is not None and t > learning_starts
                    and len(episode_rewards_history) >= 1000):
                if saved_mean_reward is None or mean_1000ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_1000ep_reward))
                        print("saving model")
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_1000ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
示例#9
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          initial_exploration_p=1.0,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          pretraining_obs=None,
          pretraining_targets=None,
          pretrain_steps=1000,
          pretrain_experience=None,
          pretrain_num_episodes=0,
          double_q=True,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, train_target, copy_target_to_q, debug = brl_deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        pretrain_optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=double_q)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=initial_exploration_p,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()

    if pretraining_obs is not None:
        # pretrain target and copy to qfunc
        for _ in range(pretrain_steps):
            pretrain_errors = train_target(pretraining_obs,
                                           pretraining_targets)

        min_rew = 0
        # copy all pre-experiences
        if pretrain_experience is not None:
            for obs, action, rew, new_obs, done in zip(*pretrain_experience):
                replay_buffer.add(obs.reshape(1, -1), action, rew,
                                  new_obs.reshape(1, -1), float(done))
            print("Added {} samples to ReplayBuffer".format(
                len(replay_buffer._storage)))
            min_rew = min(rew, min_rew)
        print("Pretrain Error", np.mean(pretrain_errors))
    else:
        print("Skipping pretraining")

    update_target()

    if pretraining_obs is None or pretraining_obs.size == 0:
        episode_rewards = []
        start = 0
    else:
        episode_rewards = [[0.0]] * pretrain_num_episodes
        start = len(pretraining_obs)
        if print_freq is not None:
            for t in range(0, len(pretraining_obs), print_freq):
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", pretrain_num_episodes)
                logger.record_tabular("mean 100 episode reward", min_rew)
                logger.record_tabular("% time spent exploring", 0)
                logger.dump_tabular()
                print("pretraining episodes", pretrain_num_episodes,
                      "steps {}/{}".format(t, total_timesteps))

    saved_mean_reward = None
    obs = env.reset()
    episode_rewards += [[0.0]]
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        print("Model will be saved at ", model_file)
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
            print('Loaded model from {}'.format(load_path))

        for t in range(start, total_timesteps, 1):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += [
                rew if not isinstance(rew, np.ndarray) else rew[0]
            ]

            if done:
                obs = env.reset()
                episode_rewards.append([0.0])
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            last_100ep_rewards = [
                discount(np.array(rewards), gamma)[0]
                for rewards in episode_rewards[-101:-1]
            ]
            mean_100ep_reward = round(np.mean(last_100ep_rewards), 1)

            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()
                print("episodes", num_episodes,
                      "steps {}/{}".format(t, total_timesteps))

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                        print("saving model")
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
示例#10
0
def init_wrapper(env,
                 network_type,
                 lr=1e-4,
                 gamma=1.0,
                 param_noise=True,
                 buffer_size=int(1e5),
                 prioritized_replay_alpha=.6,
                 prioritized_replay=True,
                 prioritized_replay_beta_iters=None,
                 prioritized_replay_beta=.4,
                 exploration_fraction=.1,
                 grad_norm_clipping=10,
                 total_timesteps=int(1e6),
                 exploration_final_eps=0.02,
                 **network_kwargs):
    # decomposes baseline deepq into initialize and inference components
    # basically copied from deepqn repository

    # see baselines repo for concise param documentation

    q_func = build_q_func(network_type, **network_kwargs)

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=grad_norm_clipping,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer

    # WARNING: do not use internal replay buffer, use baselines only for
    # stability reasons

    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # return hashed objects
    return {
        'train_function': train,
        'act_function': act,
        'replay_buffer': replay_buffer,
        'update_target_function': update_target,
        'exploration_scheme': exploration,
        'beta_schedule': beta_schedule
    }
示例#11
0
def learn(env,
          network,
          seed=None,
          lr=1e-3,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          num_cpu=5,
          callback=None,
          scope='co_deepq',
          pilot_tol=0,
          pilot_is_human=False,
          reuse=False,
          load_path=None,
          **network_kwargs):
    # Create all the functions necessary to train the model

    sess = get_session()  #tf.Session(graph=tf.Graph())
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    using_control_sharing = True  #pilot_tol > 0

    if pilot_is_human:
        utils.human_agent_action = init_human_action()
        utils.human_agent_active = False

    act, train, update_target, debug = co_build_train(
        scope=scope,
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        reuse=tf.AUTO_REUSE if reuse else False,
        using_control_sharing=using_control_sharing)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    episode_outcomes = []
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    prev_t = 0
    rollouts = []

    if not using_control_sharing:
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * total_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            masked_obs = mask_helipad(obs)

            act_kwargs = {}
            if using_control_sharing:
                if pilot_is_human:
                    act_kwargs['pilot_action'] = env.unwrapped.pilot_policy(
                        obs[None, :9])
                else:
                    act_kwargs[
                        'pilot_action'] = env.unwrapped.pilot_policy.step(
                            obs[None, :9])
                act_kwargs['pilot_tol'] = pilot_tol if not pilot_is_human or (
                    pilot_is_human and utils.human_agent_active) else 0
            else:
                act_kwargs['update_eps'] = exploration.value(t)

            #action = act(masked_obs[None, :], **act_kwargs)[0][0]
            action = act(np.array(masked_obs)[None], **act_kwargs)[0][0]
            env_action = action
            reset = False
            new_obs, rew, done, info = env.step(env_action)

            if pilot_is_human:
                env.render()

            # Store transition in the replay buffer.
            masked_new_obs = mask_helipad(new_obs)
            replay_buffer.add(masked_obs, action, rew, masked_new_obs,
                              float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

                if pilot_is_human:
                    utils.human_agent_action = init_human_action()
                    utils.human_agent_active = False
                    time.sleep(2)

            if t > learning_starts and t % train_freq == 0:
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)

                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            episode_outcomes.append(rew)
            episode_rewards.append(0.0)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            mean_100ep_succ = round(
                np.mean(
                    [1 if x == 100 else 0 for x in episode_outcomes[-101:-1]]),
                2)
            mean_100ep_crash = round(
                np.mean([
                    1 if x == -100 else 0 for x in episode_outcomes[-101:-1]
                ]), 2)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 100 episode succ", mean_100ep_succ)
                logger.record_tabular("mean 100 episode crash",
                                      mean_100ep_crash)
                logger.dump_tabular()

            if checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0 and (
                    saved_mean_reward is None
                    or mean_100ep_reward > saved_mean_reward):
                if print_freq is not None:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".
                        format(saved_mean_reward, mean_100ep_reward))
                save_variables(model_file)
                model_saved = True
                saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    reward_data = {'rewards': episode_rewards, 'outcomes': episode_outcomes}

    return act, reward_data