示例#1
0
def learn(policy, env, seed, nsteps=5, nstack=4, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    num_procs = len(env.remotes) # HACK
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close()
示例#2
0
    def call(self, on_policy):
        runner, model, buffer, steps = self.runner, self.model, self.buffer, self.steps
        if on_policy:
            enc_obs, obs, actions, rewards, mus, dones, masks = runner.run()
            self.episode_stats.feed(rewards, dones)
            if buffer is not None:
                buffer.put(enc_obs, actions, rewards, mus, dones, masks)
        else:
            # get obs, actions, rewards, mus, dones from buffer.
            obs, actions, rewards, mus, dones, masks = buffer.get()


        # reshape stuff correctly
        obs = obs.reshape(runner.batch_ob_shape)
        actions = actions.reshape([runner.nbatch])
        rewards = rewards.reshape([runner.nbatch])
        mus = mus.reshape([runner.nbatch, runner.nact])
        dones = dones.reshape([runner.nbatch])
        masks = masks.reshape([runner.batch_ob_shape[0]])

        names_ops, values_ops = model.train(obs, actions, rewards, dones, mus, model.initial_state, masks, steps)

        if on_policy and (int(steps/runner.nbatch) % self.log_interval == 0):
            logger.record_tabular("total_timesteps", steps)
            logger.record_tabular("fps", int(steps/(time.time() - self.tstart)))
            # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, not just at the terminal state.
            # Thus, this is mean until end of life, not end of episode.
            # For true episode rewards, see the monitor files in the log folder.
            logger.record_tabular("mean_episode_length", self.episode_stats.mean_length())
            logger.record_tabular("mean_episode_reward", self.episode_stats.mean_reward())
            for name, val in zip(names_ops, values_ops):
                logger.record_tabular(name, float(val))
            logger.dump_tabular()
示例#3
0
def train(policy, rollout_worker, evaluator,
          n_epochs, n_test_rollouts, n_cycles, n_batches, policy_save_interval,
          save_policies, **kwargs):
    rank = MPI.COMM_WORLD.Get_rank()

    latest_policy_path = os.path.join(logger.get_dir(), 'policy_latest.pkl')
    best_policy_path = os.path.join(logger.get_dir(), 'policy_best.pkl')
    periodic_policy_path = os.path.join(logger.get_dir(), 'policy_{}.pkl')

    logger.info("Training...")
    best_success_rate = -1
    for epoch in range(n_epochs):
        # train
        rollout_worker.clear_history()
        for _ in range(n_cycles):
            episode = rollout_worker.generate_rollouts()
            policy.store_episode(episode)
            for _ in range(n_batches):
                policy.train()
            policy.update_target_net()

        # test
        evaluator.clear_history()
        for _ in range(n_test_rollouts):
            evaluator.generate_rollouts()

        # record logs
        logger.record_tabular('epoch', epoch)
        for key, val in evaluator.logs('test'):
            logger.record_tabular(key, mpi_average(val))
        for key, val in rollout_worker.logs('train'):
            logger.record_tabular(key, mpi_average(val))
        for key, val in policy.logs():
            logger.record_tabular(key, mpi_average(val))

        if rank == 0:
            logger.dump_tabular()

        # save the policy if it's better than the previous ones
        success_rate = mpi_average(evaluator.current_success_rate())
        if rank == 0 and success_rate >= best_success_rate and save_policies:
            best_success_rate = success_rate
            logger.info('New best success rate: {}. Saving policy to {} ...'.format(best_success_rate, best_policy_path))
            evaluator.save_policy(best_policy_path)
            evaluator.save_policy(latest_policy_path)
        if rank == 0 and policy_save_interval > 0 and epoch % policy_save_interval == 0 and save_policies:
            policy_path = periodic_policy_path.format(epoch)
            logger.info('Saving periodic policy to {} ...'.format(policy_path))
            evaluator.save_policy(policy_path)

        # make sure that different threads have different seeds
        local_uniform = np.random.uniform(size=(1,))
        root_uniform = local_uniform.copy()
        MPI.COMM_WORLD.Bcast(root_uniform, root=0)
        if rank != 0:
            assert local_uniform[0] != root_uniform[0]
示例#4
0
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
                 ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
                 kfac_clip=0.001, save_interval=None, lrschedule='linear'):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
                                =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
                                vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
                                lrschedule=lrschedule)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()

    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    nbatch = nenvs*nsteps
    tstart = time.time()
    coord = tf.train.Coordinator()
    enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True)
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        model.old_obs = obs
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()

        if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
            savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update)
            print('Saving to', savepath)
            model.save(savepath)
    coord.request_stop()
    coord.join(enqueue_threads)
    env.close()
示例#5
0
def main(policy_file, seed, n_test_rollouts, render):
    set_global_seeds(seed)

    # Load policy.
    with open(policy_file, 'rb') as f:
        policy = pickle.load(f)
    env_name = policy.info['env_name']

    # Prepare params.
    params = config.DEFAULT_PARAMS
    if env_name in config.DEFAULT_ENV_PARAMS:
        params.update(config.DEFAULT_ENV_PARAMS[env_name])  # merge env-specific parameters in
    params['env_name'] = env_name
    params = config.prepare_params(params)
    config.log_params(params, logger=logger)

    dims = config.configure_dims(params)

    eval_params = {
        'exploit': True,
        'use_target_net': params['test_with_polyak'],
        'compute_Q': True,
        'rollout_batch_size': 1,
        'render': bool(render),
    }

    for name in ['T', 'gamma', 'noise_eps', 'random_eps']:
        eval_params[name] = params[name]
    
    evaluator = RolloutWorker(params['make_env'], policy, dims, logger, **eval_params)
    evaluator.seed(seed)

    # Run evaluation.
    evaluator.clear_history()
    for _ in range(n_test_rollouts):
        evaluator.generate_rollouts()

    # record logs
    for key, val in evaluator.logs('test'):
        logger.record_tabular(key, np.mean(val))
    logger.dump_tabular()
示例#6
0
def learn(policy, env,
          nsteps=5, total_episodes=int(10e3), max_timesteps=int(20e5),
          vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5,
          lr=7e-4, lrschedule='linear', epsilon=1e-5,
          alpha=0.99, gamma=0.99,
          save_interval=100, log_interval=100, keep_all_ckpt=False,
          paths=100, epopt_epsilon=1.0  # EPOpt specific
          ):

    # In the original paper, epsilon is fixed to 1.0 for the first 100
    # "iterations" before updating to desired value
    if isinstance(epopt_epsilon, float):
        epopt_epsilon = constfn(epopt_epsilon)
    else:
        assert callable(epopt_epsilon)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    max_episode_len = env.venv.envs[0].spec.max_episode_steps
    make_model = lambda: EPOptModel(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=max_episode_len, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=max_timesteps, lrschedule=lrschedule)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()
    runner = EPOptRunner(env, model, nsteps=max_episode_len, gamma=gamma)

    nbatch = nenvs*nsteps
    tfirststart = time.time()
    update = 0
    episodes_so_far = 0
    old_savepath = None
    while True:
        update += 1
        if episodes_so_far >= total_episodes:
            break

        epsilonnow = epopt_epsilon(update)
        obs, states, rewards, masks, actions, values, num_episodes, lens = runner.run(paths=paths, epsilon=epsilonnow)
        episodes_so_far += num_episodes

        policy_loss = np.zeros(num_episodes)
        value_loss = np.zeros(num_episodes)
        policy_entropy = np.zeros(num_episodes)
        for i in range(num_episodes):
            policy_loss[i], value_loss[i], policy_entropy[i] = model.train(obs[i], states, rewards[i], masks[i], actions[i], values[i], lens[i])
        nseconds = time.time()-tfirststart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = np.mean([explained_variance(values[i], rewards[i]) for i in range(num_episodes)])
            logger.record_tabular("nupdates", update)
            logger.record_tabular("epsilon", epsilonnow)
            #logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("total_episodes", episodes_so_far)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", np.mean(policy_entropy))
            logger.record_tabular("value_loss", np.mean(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("time_elapsed", nseconds)
            logger.dump_tabular()

        if save_interval and logger.get_dir() and (update % save_interval == 0 or update == 1):
            checkdir = osp.join(logger.get_dir(), 'checkpoints')
            os.makedirs(checkdir, exist_ok=True)
            savepath = osp.join(checkdir, '%.5i'%update)
            print('Saving to', savepath)
            obs_norms = {}
            obs_norms['clipob'] = env.clipob
            obs_norms['mean'] = env.ob_rms.mean
            obs_norms['var'] = env.ob_rms.var+env.epsilon
            with open(osp.join(checkdir, 'normalize'), 'wb') as f:
                pickle.dump(obs_norms, f, pickle.HIGHEST_PROTOCOL) 
            model.save(savepath)

            if not keep_all_ckpt and old_savepath:
                print('Removing previous checkpoint', old_savepath)
                os.remove(old_savepath)
            old_savepath = savepath

    env.close()
示例#7
0
def train(env, nb_epochs, nb_epoch_cycles, render_eval, reward_scale, render, param_noise, actor, critic,
    normalize_returns, normalize_observations, critic_l2_reg, actor_lr, critic_lr, action_noise,
    popart, gamma, clip_norm, nb_train_steps, nb_rollout_steps, nb_eval_steps, batch_size, memory,
    tau=0.01, eval_env=None, param_noise_adaption_interval=50):
    rank = MPI.COMM_WORLD.Get_rank()

    assert (np.abs(env.action_space.low) == env.action_space.high).all()  # we assume symmetric actions.
    max_action = env.action_space.high
    logger.info('scaling actions by {} before executing in env'.format(max_action))
    agent = DDPG(actor, critic, memory, env.observation_space.shape, env.action_space.shape,
        gamma=gamma, tau=tau, normalize_returns=normalize_returns, normalize_observations=normalize_observations,
        batch_size=batch_size, action_noise=action_noise, param_noise=param_noise, critic_l2_reg=critic_l2_reg,
        actor_lr=actor_lr, critic_lr=critic_lr, enable_popart=popart, clip_norm=clip_norm,
        reward_scale=reward_scale)
    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    # Set up logging stuff only for a single worker.
    if rank == 0:
        saver = tf.train.Saver()
    else:
        saver = None

    step = 0
    episode = 0
    eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)
    with U.single_threaded_session() as sess:
        # Prepare everything.
        agent.initialize(sess)
        sess.graph.finalize()

        agent.reset()
        obs = env.reset()
        if eval_env is not None:
            eval_obs = eval_env.reset()
        done = False
        episode_reward = 0.
        episode_step = 0
        episodes = 0
        t = 0

        epoch = 0
        start_time = time.time()

        epoch_episode_rewards = []
        epoch_episode_steps = []
        epoch_episode_eval_rewards = []
        epoch_episode_eval_steps = []
        epoch_start_time = time.time()
        epoch_actions = []
        epoch_qs = []
        epoch_episodes = 0
        for epoch in range(nb_epochs):
            for cycle in range(nb_epoch_cycles):
                # Perform rollouts.
                for t_rollout in range(nb_rollout_steps):
                    # Predict next action.
                    action, q = agent.pi(obs, apply_noise=True, compute_Q=True)
                    assert action.shape == env.action_space.shape

                    # Execute next action.
                    if rank == 0 and render:
                        env.render()
                    assert max_action.shape == action.shape
                    new_obs, r, done, info = env.step(max_action * action)  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                    t += 1
                    if rank == 0 and render:
                        env.render()
                    episode_reward += r
                    episode_step += 1

                    # Book-keeping.
                    epoch_actions.append(action)
                    epoch_qs.append(q)
                    agent.store_transition(obs, action, r, new_obs, done)
                    obs = new_obs

                    if done:
                        # Episode done.
                        epoch_episode_rewards.append(episode_reward)
                        episode_rewards_history.append(episode_reward)
                        epoch_episode_steps.append(episode_step)
                        episode_reward = 0.
                        episode_step = 0
                        epoch_episodes += 1
                        episodes += 1

                        agent.reset()
                        obs = env.reset()

                # Train.
                epoch_actor_losses = []
                epoch_critic_losses = []
                epoch_adaptive_distances = []
                for t_train in range(nb_train_steps):
                    # Adapt param noise, if necessary.
                    if memory.nb_entries >= batch_size and t % param_noise_adaption_interval == 0:
                        distance = agent.adapt_param_noise()
                        epoch_adaptive_distances.append(distance)

                    cl, al = agent.train()
                    epoch_critic_losses.append(cl)
                    epoch_actor_losses.append(al)
                    agent.update_target_net()

                # Evaluate.
                eval_episode_rewards = []
                eval_qs = []
                if eval_env is not None:
                    eval_episode_reward = 0.
                    for t_rollout in range(nb_eval_steps):
                        eval_action, eval_q = agent.pi(eval_obs, apply_noise=False, compute_Q=True)
                        eval_obs, eval_r, eval_done, eval_info = eval_env.step(max_action * eval_action)  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                        if render_eval:
                            eval_env.render()
                        eval_episode_reward += eval_r

                        eval_qs.append(eval_q)
                        if eval_done:
                            eval_obs = eval_env.reset()
                            eval_episode_rewards.append(eval_episode_reward)
                            eval_episode_rewards_history.append(eval_episode_reward)
                            eval_episode_reward = 0.

            mpi_size = MPI.COMM_WORLD.Get_size()
            # Log stats.
            # XXX shouldn't call np.mean on variable length lists
            duration = time.time() - start_time
            stats = agent.get_stats()
            combined_stats = stats.copy()
            combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
            combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
            combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
            combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
            combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
            combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses)
            combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses)
            combined_stats['train/param_noise_distance'] = np.mean(epoch_adaptive_distances)
            combined_stats['total/duration'] = duration
            combined_stats['total/steps_per_second'] = float(t) / float(duration)
            combined_stats['total/episodes'] = episodes
            combined_stats['rollout/episodes'] = epoch_episodes
            combined_stats['rollout/actions_std'] = np.std(epoch_actions)
            # Evaluation statistics.
            if eval_env is not None:
                combined_stats['eval/return'] = eval_episode_rewards
                combined_stats['eval/return_history'] = np.mean(eval_episode_rewards_history)
                combined_stats['eval/Q'] = eval_qs
                combined_stats['eval/episodes'] = len(eval_episode_rewards)
            def as_scalar(x):
                if isinstance(x, np.ndarray):
                    assert x.size == 1
                    return x[0]
                elif np.isscalar(x):
                    return x
                else:
                    raise ValueError('expected scalar, got %s'%x)
            combined_stats_sums = MPI.COMM_WORLD.allreduce(np.array([as_scalar(x) for x in combined_stats.values()]))
            combined_stats = {k : v / mpi_size for (k,v) in zip(combined_stats.keys(), combined_stats_sums)}

            # Total statistics.
            combined_stats['total/epochs'] = epoch + 1
            combined_stats['total/steps'] = t

            for key in sorted(combined_stats.keys()):
                logger.record_tabular(key, combined_stats[key])
            logger.dump_tabular()
            logger.info('')
            logdir = logger.get_dir()
            if rank == 0 and logdir:
                if hasattr(env, 'get_state'):
                    with open(os.path.join(logdir, 'env_state.pkl'), 'wb') as f:
                        pickle.dump(env.get_state(), f)
                if eval_env and hasattr(eval_env, 'get_state'):
                    with open(os.path.join(logdir, 'eval_env_state.pkl'), 'wb') as f:
                        pickle.dump(eval_env.get_state(), f)
示例#8
0
def learn(env, policy_func, *,
        timesteps_per_batch, # what to train on
        max_kl, cg_iters,
        gamma, lam, # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_timesteps=0, max_episodes=0, max_iters=0,  # time constraint
        callback=None
        ):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)    
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([U.sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield
    
    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1

    while True:        
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), 
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()
示例#9
0
def learn(network,
          env,
          seed=None,
          nsteps=5,
          total_timesteps=int(80e6),
          vf_coef=0.5,
          ent_coef=0.01,
          max_grad_norm=0.5,
          lr=7e-4,
          lrschedule='linear',
          epsilon=1e-5,
          alpha=0.99,
          gamma=0.99,
          log_interval=100,
          load_path=None,
          **network_kwargs):
    '''
    Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm.

    Parameters:
    -----------

    network:            policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
                        specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
                        tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
                        neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
                        See baselines.common/policies.py/lstm for more details on using recurrent nets in policies


    env:                RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py)


    seed:               seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible)

    nsteps:             int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
                        nenv is number of environment copies simulated in parallel)

    total_timesteps:    int, total number of timesteps to train on (default: 80M)

    vf_coef:            float, coefficient in front of value function loss in the total loss function (default: 0.5)

    ent_coef:           float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01)

    max_gradient_norm:  float, gradient is clipped to have global L2 norm no more than this value (default: 0.5)

    lr:                 float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4)

    lrschedule:         schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and
                        returns fraction of the learning rate (specified as lr) as output

    epsilon:            float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5)

    alpha:              float, RMSProp decay parameter (default: 0.99)

    gamma:              float, reward discounting parameter (default: 0.99)

    log_interval:       int, specifies how frequently the logs are printed out (default: 100)

    **network_kwargs:   keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
                        For instance, 'mlp' network architecture has arguments num_hidden and num_layers.

    '''

    set_global_seeds(seed)

    # Get the nb of env
    nenvs = env.num_envs
    policy = build_policy(env, network, **network_kwargs)

    # Instantiate the model object (that creates step_model and train_model)
    model = Model(policy=policy,
                  env=env,
                  nsteps=nsteps,
                  ent_coef=ent_coef,
                  vf_coef=vf_coef,
                  max_grad_norm=max_grad_norm,
                  lr=lr,
                  alpha=alpha,
                  epsilon=epsilon,
                  total_timesteps=total_timesteps,
                  lrschedule=lrschedule)
    if load_path is not None:
        model.load(load_path)

    # Instantiate the runner object
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    epinfobuf = deque(maxlen=100)

    # Calculate the batch_size
    nbatch = nenvs * nsteps

    # Start total timer
    tstart = time.time()

    prev_d = np.zeros([
        29475,
    ])
    prev_g = np.zeros([
        29475,
    ])
    for update in range(1, total_timesteps // nbatch + 1):
        # Set the mixing parameter alpha
        if update == 0:
            alpha_mix = 1
        else:
            alpha_mix = 1 / update**(2 / 3)

        # Get mini batch of experiences
        obs, states, rewards, masks, actions, values, epinfos = runner.run()
        epinfobuf.extend(epinfos)

        policy_loss, value_loss, policy_entropy, prev_d, prev_g = model.train(
            obs, states, rewards, masks, actions, values, alpha_mix, prev_d,
            prev_g)
        nseconds = time.time() - tstart

        # Calculate the fps (frame per second)
        fps = int((update * nbatch) / nseconds)
        if update % log_interval == 0 or update == 1:
            # Calculates if value function is a good predicator of the returns (ev > 1)
            # or if it's just worse than predicting nothing (ev =< 0)
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update * nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular(
                "eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.record_tabular(
                "eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.dump_tabular()
    return model
示例#10
0
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
                 ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
                 kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, is_async=True, **network_kwargs):
    set_global_seeds(seed)


    if network == 'cnn':
        network_kwargs['one_dim_bias'] = True

    policy = build_policy(env, network, **network_kwargs)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
                                =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
                                vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
                                lrschedule=lrschedule, is_async=is_async)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()

    if load_path is not None:
        model.load(load_path)

    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    epinfobuf = deque(maxlen=100)
    nbatch = nenvs*nsteps
    tstart = time.time()
    coord = tf.train.Coordinator()
    if is_async:
        enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True)
    else:
        enqueue_threads = []

    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values, epinfos = runner.run()
        epinfobuf.extend(epinfos)
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        model.old_obs = obs
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.dump_tabular()

        if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
            savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update)
            print('Saving to', savepath)
            model.save(savepath)
    coord.request_stop()
    coord.join(enqueue_threads)
    return model
def learn(
    env,
    policy_fn,
    *,
    timesteps_per_actorbatch,  # timesteps per actor per update
    clip_param,
    entcoeff,  # clipping parameter epsilon, entropy coeff
    optim_epochs,
    optim_stepsize,
    optim_batchsize,  # optimization hypers
    gamma,
    lam,  # advantage estimation
    max_timesteps=0,
    max_episodes=0,
    max_iters=0,
    max_seconds=0,  # time constraint
    callback=None,  # you can do anything in the callback, since it takes locals(), globals()
    adam_epsilon=1e-5,
    schedule='constant'  # annealing for stepsize parameters (epsilon and adam)
):
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space,
                   ac_space)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed clipping parameter epsilon

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param,
                             1.0 + clip_param) * atarg  #
    pol_surr = -tf.reduce_mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_actorbatch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards

    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************" % iters_so_far)

        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                    shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for batch in d.iterate_once(optim_batchsize):
                *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)
                adam.update(g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))

        logger.log("Evaluating losses...")
        losses = []
        for batch in d.iterate_once(optim_batchsize):
            newlosses = compute_losses(batch["ob"], batch["ac"],
                                       batch["atarg"], batch["vtarg"],
                                       cur_lrmult)
            losses.append(newlosses)
        meanlosses, _, _ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

    return pi
示例#12
0
  def run(self):
    mb_obs, mb_rewards, mb_base_actions, \
    mb_xy0, mb_xy1, \
    mb_values, mb_dones \
      = [],[],[],[],[],[], []
    # ,[],[],[],[],[],[],[],[],[],[],[]

    mb_states = self.states
    for n in range(self.nsteps):
      # pi, pi2, x1, y1, x2, y2, v0
      pi1, pi_xy0, pi_xy1, values, states = self.model.step(
        self.obs, self.states, self.dones)

      pi1_noise = np.random.random_sample((self.nenv, 2)) * 0.3
      # avail = self.env.available_actions()
      # print("pi1 : ", pi1)
      # print("pi1 * self.base_act_mask : ", pi1 * self.base_act_mask)
      # print("pi1 * self.base_act_mask + pi1_noise : ", pi1 * self.base_act_mask + pi1_noise)

      base_actions = np.argmax(
        pi1 * self.base_act_mask + pi1_noise, axis=1)
      xy0 = np.argmax(pi_xy0, axis=1)

      x0 = (xy0 % 32).astype(int)
      y0 = (xy0 / 32).astype(int)

      xy1 = np.argmax(pi_xy1, axis=1)
      x1 = (xy1 % 32).astype(int)
      y1 = (xy1 / 32).astype(int)

      # pi (2?, 524) * (2?, 524) masking
      # print("base_actions : ", base_actions)
      # print("base_action_spec : ", base_action_spec)
      # sub1_act_mask, sub2_act_mask, sub3_act_mask = self.get_sub_act_mask(base_action_spec)
      # print("base_actions : ", base_actions, "base_action_spec", base_action_spec,
      #       "sub1_act_mask :", sub1_act_mask, "sub2_act_mask :", sub2_act_mask, "sub3_act_mask :", sub3_act_mask)
      # sub3_actions = np.argmax(pi_sub3, axis=1) # pi (2?, 2) [1 0]
      # sub4_actions = np.argmax(pi_sub4, axis=1) # pi (2?, 5) [4 4]
      # sub5_actions = np.argmax(pi_sub5, axis=1) # pi (2?, 10) [1 4]
      # sub6_actions = np.argmax(pi_sub6, axis=1) # pi (2?, 4) [3 1]
      # sub7_actions = np.argmax(pi_sub7, axis=1) # pi (2?, 2)
      # sub8_actions = np.argmax(pi_sub8, axis=1) # pi (2?, 4)
      # sub9_actions = np.argmax(pi_sub9, axis=1) # pi (2?, 500)
      # sub10_actions = np.argmax(pi_sub10, axis=1) # pi (2?, 4)
      # sub11_actions = np.argmax(pi_sub11, axis=1) # pi (2?, 10)
      # sub12_actions = np.argmax(pi_sub12, axis=1) # pi (2?, 500)

      # Scripted Agent Hacking

      for env_num in range(self.nenv):
        if (env_num >= self.nscripts):  # only for scripted agents
          continue

        ob = self.obs[env_num, :, :, :]
        # extra = ob[:,:,-1]
        # selected = ob[:, :, -2]
        player_relative = ob[:, :, -1]

        #if(common.check_group_list())
        self.group_list[env_num] = common.update_group_list2(
          self.control_groups[env_num])
        # if(len(self.action_queue[env_num]) == 0 and len(self.group_list[env_num]) == 0):
        #
        #   # Scripted Agent is only for even number agents
        #   self.action_queue[env_num] = common.group_init_queue(player_relative)

        if (len(self.action_queue[env_num]) == 0):

          self.action_queue[env_num], self.group_id[env_num], self.dest_per_marine[env_num], self.xy_per_marine[env_num] = \
            common.solve_tsp(player_relative,
                             self.selected[env_num][0],
                             self.group_list[env_num],
                             self.group_id[env_num],
                             self.dest_per_marine[env_num],
                             self.xy_per_marine[env_num])

        base_actions[env_num] = 0
        x0[env_num] = 0
        y0[env_num] = 0
        x1[env_num] = 0
        y1[env_num] = 0

        if (len(self.action_queue[env_num]) > 0):
          action = self.action_queue[env_num].pop(0)
          # print("action :", action)
          base_actions[env_num] = action.get("base_action", 0)

          x0[env_num] = action.get("x0", 0)
          y0[env_num] = action.get("y0", 0)
          xy0[env_num] = y0[env_num] * 32 + x0[env_num]

          x1[env_num] = action.get("x1", 0)
          y1[env_num] = action.get("y1", 0)
          xy1[env_num] = y1[env_num] * 32 + x1[env_num]

      base_actions = self.valid_base_action(base_actions)
      # print("valid_base_actions : ", base_actions)
      new_base_actions = self.trans_base_actions(base_actions)
      # print("new_base_actions : ", new_base_actions)

      base_action_spec = self.env.action_spec(new_base_actions)

      actions = self.construct_action(
        base_actions,
        base_action_spec,
        # sub3_actions, sub4_actions, sub5_actions,
        # sub6_actions,
        # sub7_actions, sub8_actions,
        # sub9_actions, sub10_actions,
        # sub11_actions, sub12_actions,
        x0,
        y0,
        x1,
        y1
        # , x2, y2
      )

      mb_obs.append(np.copy(self.obs))
      mb_base_actions.append(base_actions)
      # mb_sub3_actions.append(sub3_actions)
      # mb_sub4_actions.append(sub4_actions)
      # mb_sub5_actions.append(sub5_actions)
      # mb_sub6_actions.append(sub6_actions)
      # mb_sub7_actions.append(sub7_actions)
      # mb_sub8_actions.append(sub8_actions)
      # mb_sub9_actions.append(sub9_actions)
      # mb_sub10_actions.append(sub10_actions)
      # mb_sub11_actions.append(sub11_actions)
      # mb_sub12_actions.append(sub12_actions)

      mb_xy0.append(xy0)
      # mb_y0.append(y0)
      mb_xy1.append(xy1)
      # mb_y1.append(y1)
      # mb_x2.append(x2)
      # mb_y2.append(y2)
      mb_values.append(values)
      mb_dones.append(self.dones)

      #print("final acitons : ", actions)
      obs, rewards, dones, available_actions, army_counts, control_groups, selected, xy_per_marine = self.env.step(
        actions=actions)
      self.army_counts = army_counts
      self.control_groups = control_groups
      self.selected = selected
      for env_num, data in enumerate(xy_per_marine):
        self.xy_per_marine[env_num] = data
      self.update_available(available_actions)

      self.states = states
      self.dones = dones
      for n, done in enumerate(dones):
        self.total_reward[n] += float(rewards[n])
        if done:
          self.obs[n] = self.obs[n] * 0
          self.episodes += 1
          num_episodes = self.episodes
          self.episode_rewards.append(self.total_reward[n])

          if (n < self.nscripts):  # scripted agents
            self.episode_rewards_script.append(
              self.total_reward[n])
            mean_100ep_reward_script = round(
              np.mean(self.episode_rewards_script[-101:-1]), 1)
            logger.record_tabular("reward script",
                                  self.total_reward[n])
            logger.record_tabular("mean reward script",
                                  mean_100ep_reward_script)
          else:
            self.episode_rewards_a2c.append(self.total_reward[n])
            mean_100ep_reward_a2c = round(
              np.mean(self.episode_rewards_a2c[-101:-1]), 1)
            logger.record_tabular("reward a2c",
                                  self.total_reward[n])
            logger.record_tabular("mean reward a2c",
                                  mean_100ep_reward_a2c)

          mean_100ep_reward = round(
            np.mean(self.episode_rewards[-101:-1]), 1)

          print("env %s done! reward : %s mean_100ep_reward : %s " %
                (n, self.total_reward[n], mean_100ep_reward))
          logger.record_tabular("reward", self.total_reward[n])
          logger.record_tabular("mean 100 episode reward",
                                mean_100ep_reward)
          logger.record_tabular("episodes", self.episodes)

          logger.dump_tabular()

          self.total_reward[n] = 0
          self.group_list[n] = []

          model = self.model
          if self.callback is not None:
            self.callback(locals(), globals())

      print("rewards : ", rewards)
      print("self.total_reward :", self.total_reward)
      self.update_obs(obs)
      mb_rewards.append(rewards)
    mb_dones.append(self.dones)
    #batch of steps to batch of rollouts
    mb_obs = np.asarray(
      mb_obs, dtype=np.uint8).swapaxes(1, 0).reshape(
      self.batch_ob_shape)
    mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
    mb_base_actions = np.asarray(
      mb_base_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub3_actions = np.asarray(mb_sub3_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub4_actions = np.asarray(mb_sub4_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub5_actions = np.asarray(mb_sub5_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub6_actions = np.asarray(mb_sub6_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub7_actions = np.asarray(mb_sub7_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub8_actions = np.asarray(mb_sub8_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub9_actions = np.asarray(mb_sub9_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub10_actions = np.asarray(mb_sub10_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub11_actions = np.asarray(mb_sub11_actions, dtype=np.int32).swapaxes(1, 0)
    # mb_sub12_actions = np.asarray(mb_sub12_actions, dtype=np.int32).swapaxes(1, 0)

    mb_xy0 = np.asarray(mb_xy0, dtype=np.int32).swapaxes(1, 0)
    # mb_y0 = np.asarray(mb_y0, dtype=np.int32).swapaxes(1, 0)
    mb_xy1 = np.asarray(mb_xy1, dtype=np.int32).swapaxes(1, 0)
    # mb_y1 = np.asarray(mb_y1, dtype=np.int32).swapaxes(1, 0)
    # mb_x2 = np.asarray(mb_x2, dtype=np.int32).swapaxes(1, 0)
    # mb_y2 = np.asarray(mb_y2, dtype=np.int32).swapaxes(1, 0)

    mb_values = np.asarray(mb_values, dtype=np.float32).swapaxes(1, 0)
    mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
    mb_masks = mb_dones[:, :-1]
    mb_dones = mb_dones[:, 1:]
    last_values = self.model.value(self.obs, self.states,
                                   self.dones).tolist()
    #discount/bootstrap off value fn
    for n, (rewards, dones, value) in enumerate(
        zip(mb_rewards, mb_dones, last_values)):
      rewards = rewards.tolist()
      dones = dones.tolist()
      if dones[-1] == 0:
        rewards = discount_with_dones(rewards + [value], dones + [0],
                                      self.gamma)[:-1]
      else:
        rewards = discount_with_dones(rewards, dones, self.gamma)
      mb_rewards[n] = rewards
    mb_rewards = mb_rewards.flatten()
    mb_base_actions = mb_base_actions.flatten()
    # mb_sub3_actions = mb_sub3_actions.flatten()
    # mb_sub4_actions = mb_sub4_actions.flatten()
    # mb_sub5_actions = mb_sub5_actions.flatten()
    # mb_sub6_actions = mb_sub6_actions.flatten()
    # mb_sub7_actions = mb_sub7_actions.flatten()
    # mb_sub8_actions = mb_sub8_actions.flatten()
    # mb_sub9_actions = mb_sub9_actions.flatten()
    # mb_sub10_actions = mb_sub10_actions.flatten()
    # mb_sub11_actions = mb_sub11_actions.flatten()
    # mb_sub12_actions = mb_sub12_actions.flatten()
    mb_xy0 = mb_xy0.flatten()
    # mb_y0 = mb_y0.flatten()
    mb_xy1 = mb_xy1.flatten()
    # mb_y1 = mb_y1.flatten()
    # mb_x2 = mb_x2.flatten()
    # mb_y2 = mb_y2.flatten()

    mb_values = mb_values.flatten()
    mb_masks = mb_masks.flatten()
    return mb_obs, mb_states, mb_rewards, mb_masks, \
           mb_base_actions, mb_xy0, mb_xy1, mb_values
示例#13
0
                    }, info["rewards"], info["steps"])

            if info["steps"] > args.num_steps:
                break

            if done:
                steps_left = args.num_steps - info["steps"]
                completion = np.round(info["steps"] / args.num_steps, 1)

                logger.record_tabular("% completion", completion)
                logger.record_tabular("steps", info["steps"])
                logger.record_tabular("iters", num_iters)
                logger.record_tabular("episodes", len(info["rewards"]))
                logger.record_tabular("reward (100 epi mean)",
                                      np.mean(info["rewards"][-100:]))
                logger.record_tabular("head for episode", (head + 1))
                logger.record_tabular("exploration",
                                      exploration.value(num_iters))
                if args.prioritized:
                    logger.record_tabular("max priority",
                                          replay_buffer._max_priority)
                fps_estimate = (float(steps_per_iter) /
                                (float(iteration_time_est) + 1e-6)
                                if steps_per_iter._value is not None else
                                "calculating...")
                logger.dump_tabular()
                logger.log()
                logger.log("ETA: " +
                           pretty_eta(int(steps_left / fps_estimate)))
                logger.log()
示例#14
0
def train(env,
          nb_epochs,
          nb_epoch_cycles,
          render_eval,
          reward_scale,
          render,
          param_noise,
          actor,
          critic,
          normalize_returns,
          normalize_observations,
          critic_l2_reg,
          actor_lr,
          critic_lr,
          action_noise,
          popart,
          gamma,
          clip_norm,
          nb_train_steps,
          nb_rollout_steps,
          nb_eval_episodes,
          batch_size,
          memory,
          tau=0.001,
          eval_env=None,
          param_noise_adaption_interval=50):
    rank = MPI.COMM_WORLD.Get_rank()

    assert (np.abs(env.action_space.low) == env.action_space.high
            ).all()  # we assume symmetric actions.
    max_action = env.action_space.high
    logger.info(
        'scaling actions by {} before executing in env'.format(max_action))
    agent = DDPG(actor,
                 critic,
                 memory,
                 env.observation_space.shape,
                 env.action_space.shape,
                 gamma=gamma,
                 tau=tau,
                 normalize_returns=normalize_returns,
                 normalize_observations=normalize_observations,
                 batch_size=batch_size,
                 action_noise=action_noise,
                 param_noise=param_noise,
                 critic_l2_reg=critic_l2_reg,
                 actor_lr=actor_lr,
                 critic_lr=critic_lr,
                 enable_popart=popart,
                 clip_norm=clip_norm,
                 reward_scale=reward_scale)
    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    # Set up logging stuff only for a single worker.
    if rank == 0:
        saver = tf.train.Saver()
    else:
        saver = None

    step = 0
    episode = 0
    eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)
    cus_sess = custom_session.CustomSession()
    time_step_holder = TimeStepHolder(0, 0)
    test = Tester(episodes=100,
                  period=200,
                  env=eval_env,
                  file='./results',
                  time_step_holder=time_step_holder,
                  session=cus_sess)
    with cus_sess.make_session(tf.get_default_graph(),
                               percent=0.1,
                               adaptive=False) as sess:
        # Prepare everything.
        agent.initialize(sess)
        sess.graph.finalize()

        agent.reset()
        obs = env.reset()
        if eval_env is not None:
            eval_obs = eval_env.reset()
        done = False
        episode_reward = 0.
        episode_step = 0
        episodes = 0
        t = 0

        epoch = 0
        start_time = time.time()

        epoch_episode_rewards = []
        epoch_episode_steps = []
        epoch_episode_eval_rewards = []
        epoch_episode_eval_steps = []
        epoch_start_time = time.time()
        epoch_actions = []
        epoch_qs = []
        epoch_episodes = 0
        for epoch in range(nb_epochs):
            for cycle in range(nb_epoch_cycles):
                # Perform rollouts.
                for t_rollout in range(nb_rollout_steps):
                    # Predict next action.
                    action, q = agent.pi(obs, apply_noise=True, compute_Q=True)
                    assert action.shape == env.action_space.shape

                    # Execute next action.
                    if rank == 0 and render:
                        env.render()
                    assert max_action.shape == action.shape
                    new_obs, r, done, info = env.step(
                        max_action * action
                    )  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                    t += 1
                    if rank == 0 and render:
                        env.render()
                    episode_reward += r
                    episode_step += 1
                    if episode_step > MAX_ITER:
                        done = True
                    # Book-keeping.
                    epoch_actions.append(action)
                    epoch_qs.append(q)
                    agent.store_transition(obs, action, r, new_obs, done)
                    obs = new_obs

                    if done:
                        # Episode done.
                        epoch_episode_rewards.append(episode_reward)
                        episode_rewards_history.append(episode_reward)
                        epoch_episode_steps.append(episode_step)
                        episode_reward = 0.
                        episode_step = 0
                        epoch_episodes += 1
                        episodes += 1

                        agent.reset()
                        obs = env.reset()

                # Train.
                epoch_actor_losses = []
                epoch_critic_losses = []
                epoch_adaptive_distances = []
                for t_train in range(nb_train_steps):
                    # Adapt param noise, if necessary.
                    if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0:
                        distance = agent.adapt_param_noise()
                        epoch_adaptive_distances.append(distance)

                    cl, al = agent.train()
                    epoch_critic_losses.append(cl)
                    epoch_actor_losses.append(al)
                    agent.update_target_net()

            # Evaluate.
            eval_episode_rewards = []
            eval_qs = []
            eval_first_q = []
            if eval_env is not None:
                eval_episode_reward = 0.
                for t_rollout in range(nb_eval_episodes):
                    eval_episode_step = 0
                    while True:
                        eval_action, eval_q = agent.pi(eval_obs,
                                                       apply_noise=False,
                                                       compute_Q=True)
                        eval_obs, eval_r, eval_done, eval_info = eval_env.step(
                            max_action * eval_action
                        )  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                        if len(eval_first_q) <= t_rollout:
                            eval_first_q.append(eval_q)
                        if render_eval:
                            eval_env.render()
                        eval_episode_reward += eval_r
                        eval_qs.append(eval_q)
                        eval_episode_step += 1
                        if eval_episode_step > MAX_ITER:
                            eval_done = True
                        if eval_done:
                            eval_obs = eval_env.reset()
                            eval_episode_rewards.append(eval_episode_reward)
                            eval_episode_rewards_history.append(
                                eval_episode_reward)
                            eval_episode_reward = 0.
                            break

            mpi_size = MPI.COMM_WORLD.Get_size()
            # Log stats.
            # XXX shouldn't call np.mean on variable length lists
            duration = time.time() - start_time
            stats = agent.get_stats()
            combined_stats = stats.copy()
            combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
            combined_stats['rollout/return_history'] = np.mean(
                episode_rewards_history)
            combined_stats['rollout/episode_steps'] = np.mean(
                epoch_episode_steps)
            combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
            combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
            combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses)
            combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses)
            combined_stats['train/param_noise_distance'] = np.mean(
                epoch_adaptive_distances)
            combined_stats['total/duration'] = duration
            combined_stats['total/steps_per_second'] = float(t) / float(
                duration)
            combined_stats['total/episodes'] = episodes
            combined_stats['rollout/episodes'] = epoch_episodes
            combined_stats['rollout/actions_std'] = np.std(epoch_actions)
            # Evaluation statistics.
            if eval_env is not None:
                combined_stats['eval/return'] = np.mean(eval_episode_rewards)
                combined_stats['eval/return_history'] = np.mean(
                    eval_episode_rewards_history)
                combined_stats['eval/Q'] = np.mean(eval_qs)
                combined_stats['eval/episodes'] = len(eval_episode_rewards)
                combined_stats['eval/first_q'] = np.mean(eval_first_q)

            def as_scalar(x):
                if isinstance(x, np.ndarray):
                    assert x.size == 1
                    return x[0]
                elif np.isscalar(x):
                    return x
                else:
                    raise ValueError('expected scalar, got %s' % x)

            combined_stats_sums = MPI.COMM_WORLD.allreduce(
                np.array([as_scalar(x) for x in combined_stats.values()]))
            combined_stats = {
                k: v / mpi_size
                for (k, v) in zip(combined_stats.keys(), combined_stats_sums)
            }

            # Total statistics.
            combined_stats['total/epochs'] = epoch + 1
            combined_stats['total/steps'] = t

            test.add_custom_record('avg return',
                                   x=t,
                                   y=combined_stats['eval/return'],
                                   x_name='time step',
                                   y_name='avg ret')
            test.add_custom_record('q',
                                   x=t,
                                   y=combined_stats['eval/Q'],
                                   x_name='time step',
                                   y_name='q')
            test.add_custom_record('loss_actor',
                                   x=t,
                                   y=combined_stats['train/loss_actor'],
                                   x_name='time step',
                                   y_name='loss_actor')
            test.add_custom_record('loss_critic',
                                   x=t,
                                   y=combined_stats['train/loss_critic'],
                                   x_name='time step',
                                   y_name='loss_critic')
            test.add_custom_record('first_q',
                                   x=t,
                                   y=combined_stats['eval/first_q'],
                                   x_name='time_step',
                                   y_name='eval first q')

            for key in sorted(combined_stats.keys()):
                logger.record_tabular(key, combined_stats[key])
            logger.dump_tabular()
            logger.info('')
            logdir = logger.get_dir()
            if rank == 0 and logdir:
                if hasattr(env, 'get_state'):
                    with open(os.path.join(logdir, 'env_state.pkl'),
                              'wb') as f:
                        pickle.dump(env.get_state(), f)
                if eval_env and hasattr(eval_env, 'get_state'):
                    with open(os.path.join(logdir, 'eval_env_state.pkl'),
                              'wb') as f:
                        pickle.dump(eval_env.get_state(), f)
示例#15
0
def learn(env, policy, vf, gamma, lam, timesteps_per_batch, num_timesteps,
    animate=False, callback=None, desired_kl=0.002):

    obfilter = ZFilter(env.observation_space.shape)

    max_pathlength = env.spec.timestep_limit
    stepsize = tf.Variable(initial_value=np.float32(np.array(0.03)), name='stepsize')
    inputs, loss, loss_sampled = policy.update_info
    optim = kfac.KfacOptimizer(learning_rate=stepsize, cold_lr=stepsize*(1-0.9), momentum=0.9, kfac_update=2,\
                                epsilon=1e-2, stats_decay=0.99, async=1, cold_iter=1,
                                weight_decay_dict=policy.wd_dict, max_grad_norm=None)
    pi_var_list = []
    for var in tf.trainable_variables():
        if "pi" in var.name:
            pi_var_list.append(var)

    update_op, q_runner = optim.minimize(loss, loss_sampled, var_list=pi_var_list)
    do_update = U.function(inputs, update_op)
    U.initialize()

    # start queue runners
    enqueue_threads = []
    coord = tf.train.Coordinator()
    for qr in [q_runner, vf.q_runner]:
        assert (qr != None)
        enqueue_threads.extend(qr.create_threads(tf.get_default_session(), coord=coord, start=True))

    i = 0
    timesteps_so_far = 0
    while True:
        if timesteps_so_far > num_timesteps:
            break
        logger.log("********** Iteration %i ************"%i)

        # Collect paths until we have enough timesteps
        timesteps_this_batch = 0
        paths = []
        while True:
            path = rollout(env, policy, max_pathlength, animate=(len(paths)==0 and (i % 10 == 0) and animate), obfilter=obfilter)
            paths.append(path)
            n = pathlength(path)
            timesteps_this_batch += n
            timesteps_so_far += n
            if timesteps_this_batch > timesteps_per_batch:
                break

        # Estimate advantage function
        vtargs = []
        advs = []
        for path in paths:
            rew_t = path["reward"]
            return_t = common.discount(rew_t, gamma)
            vtargs.append(return_t)
            vpred_t = vf.predict(path)
            vpred_t = np.append(vpred_t, 0.0 if path["terminated"] else vpred_t[-1])
            delta_t = rew_t + gamma*vpred_t[1:] - vpred_t[:-1]
            adv_t = common.discount(delta_t, gamma * lam)
            advs.append(adv_t)
        # Update value function
        vf.fit(paths, vtargs)

        # Build arrays for policy update
        ob_no = np.concatenate([path["observation"] for path in paths])
        action_na = np.concatenate([path["action"] for path in paths])
        oldac_dist = np.concatenate([path["action_dist"] for path in paths])
        adv_n = np.concatenate(advs)
        standardized_adv_n = (adv_n - adv_n.mean()) / (adv_n.std() + 1e-8)

        # Policy update
        do_update(ob_no, action_na, standardized_adv_n)

        min_stepsize = np.float32(1e-8)
        max_stepsize = np.float32(1e0)
        # Adjust stepsize
        kl = policy.compute_kl(ob_no, oldac_dist)
        if kl > desired_kl * 2:
            logger.log("kl too high")
            tf.assign(stepsize, tf.maximum(min_stepsize, stepsize / 1.5)).eval()
        elif kl < desired_kl / 2:
            logger.log("kl too low")
            tf.assign(stepsize, tf.minimum(max_stepsize, stepsize * 1.5)).eval()
        else:
            logger.log("kl just right!")

        logger.record_tabular("EpRewMean", np.mean([path["reward"].sum() for path in paths]))
        logger.record_tabular("EpRewSEM", np.std([path["reward"].sum()/np.sqrt(len(paths)) for path in paths]))
        logger.record_tabular("EpLenMean", np.mean([pathlength(path) for path in paths]))
        logger.record_tabular("KL", kl)
        if callback:
            callback()
        logger.dump_tabular()
        i += 1

    coord.request_stop()
    coord.join(enqueue_threads)
示例#16
0
def learn(network, env,
          seed=None,
          total_timesteps=None,
          nb_epochs=None, # with default settings, perform 1M steps total
          nb_epoch_cycles=20,
          nb_rollout_steps=100,
          reward_scale=1.0,
          render=False,
          render_eval=False,
          noise_type='adaptive-param_0.2',
          normalize_returns=False,
          normalize_observations=True,
          critic_l2_reg=1e-2,
          actor_lr=1e-4,
          critic_lr=1e-3,
          popart=False,
          gamma=0.99,
          clip_norm=None,
          nb_train_steps=50, # per epoch cycle and MPI worker,
          nb_eval_steps=100,
          batch_size=64, # per MPI worker
          tau=0.01,
          eval_env=None,
          param_noise_adaption_interval=50,
          **network_kwargs):

    set_global_seeds(seed)

    if total_timesteps is not None:
        assert nb_epochs is None
        nb_epochs = int(total_timesteps) // (nb_epoch_cycles * nb_rollout_steps)
    else:
        nb_epochs = 500

    if MPI is not None:
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        rank = 0

    nb_actions = env.action_space.shape[-1]
    assert (np.abs(env.action_space.low) == env.action_space.high).all()  # we assume symmetric actions.

    memory = Memory(limit=int(1e6), action_shape=env.action_space.shape, observation_shape=env.observation_space.shape)
    critic = Critic(network=network, **network_kwargs)
    actor = Actor(nb_actions, network=network, **network_kwargs)

    action_noise = None
    param_noise = None
    if noise_type is not None:
        for current_noise_type in noise_type.split(','):
            current_noise_type = current_noise_type.strip()
            if current_noise_type == 'none':
                pass
            elif 'adaptive-param' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(stddev), desired_action_stddev=float(stddev))
            elif 'normal' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = NormalActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions))
            elif 'ou' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions))
            else:
                raise RuntimeError('unknown noise type "{}"'.format(current_noise_type))

    max_action = env.action_space.high
    logger.info('scaling actions by {} before executing in env'.format(max_action))

    agent = DDPG(actor, critic, memory, env.observation_space.shape, env.action_space.shape,
        gamma=gamma, tau=tau, normalize_returns=normalize_returns, normalize_observations=normalize_observations,
        batch_size=batch_size, action_noise=action_noise, param_noise=param_noise, critic_l2_reg=critic_l2_reg,
        actor_lr=actor_lr, critic_lr=critic_lr, enable_popart=popart, clip_norm=clip_norm,
        reward_scale=reward_scale)
    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)
    sess = U.get_session()
    # Prepare everything.
    agent.initialize(sess)
    sess.graph.finalize()

    agent.reset()

    obs = env.reset()
    if eval_env is not None:
        eval_obs = eval_env.reset()
    nenvs = obs.shape[0]

    episode_reward = np.zeros(nenvs, dtype = np.float32) #vector
    episode_step = np.zeros(nenvs, dtype = int) # vector
    episodes = 0 #scalar
    t = 0 # scalar

    epoch = 0



    start_time = time.time()

    epoch_episode_rewards = []
    epoch_episode_steps = []
    epoch_actions = []
    epoch_qs = []
    epoch_episodes = 0
    for epoch in range(nb_epochs):
        for cycle in range(nb_epoch_cycles):
            # Perform rollouts.
            if nenvs > 1:
                # if simulating multiple envs in parallel, impossible to reset agent at the end of the episode in each
                # of the environments, so resetting here instead
                agent.reset()
            for t_rollout in range(nb_rollout_steps):
                # Predict next action.
                action, q, _, _ = agent.step(obs, apply_noise=True, compute_Q=True)

                # Execute next action.
                if rank == 0 and render:
                    env.render()

                # max_action is of dimension A, whereas action is dimension (nenvs, A) - the multiplication gets broadcasted to the batch
                new_obs, r, done, info = env.step(max_action * action)  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                # note these outputs are batched from vecenv

                t += 1
                if rank == 0 and render:
                    env.render()
                episode_reward += r
                episode_step += 1

                # Book-keeping.
                epoch_actions.append(action)
                epoch_qs.append(q)
                agent.store_transition(obs, action, r, new_obs, done) #the batched data will be unrolled in memory.py's append.

                obs = new_obs

                for d in range(len(done)):
                    if done[d]:
                        # Episode done.
                        epoch_episode_rewards.append(episode_reward[d])
                        episode_rewards_history.append(episode_reward[d])
                        epoch_episode_steps.append(episode_step[d])
                        episode_reward[d] = 0.
                        episode_step[d] = 0
                        epoch_episodes += 1
                        episodes += 1
                        if nenvs == 1:
                            agent.reset()



            # Train.
            epoch_actor_losses = []
            epoch_critic_losses = []
            epoch_adaptive_distances = []
            for t_train in range(nb_train_steps):
                # Adapt param noise, if necessary.
                if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0:
                    distance = agent.adapt_param_noise()
                    epoch_adaptive_distances.append(distance)

                cl, al = agent.train()
                epoch_critic_losses.append(cl)
                epoch_actor_losses.append(al)
                agent.update_target_net()

            # Evaluate.
            eval_episode_rewards = []
            eval_qs = []
            if eval_env is not None:
                nenvs_eval = eval_obs.shape[0]
                eval_episode_reward = np.zeros(nenvs_eval, dtype = np.float32)
                for t_rollout in range(nb_eval_steps):
                    eval_action, eval_q, _, _ = agent.step(eval_obs, apply_noise=False, compute_Q=True)
                    eval_obs, eval_r, eval_done, eval_info = eval_env.step(max_action * eval_action)  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                    if render_eval:
                        eval_env.render()
                    eval_episode_reward += eval_r

                    eval_qs.append(eval_q)
                    for d in range(len(eval_done)):
                        if eval_done[d]:
                            eval_episode_rewards.append(eval_episode_reward[d])
                            eval_episode_rewards_history.append(eval_episode_reward[d])
                            eval_episode_reward[d] = 0.0

        if MPI is not None:
            mpi_size = MPI.COMM_WORLD.Get_size()
        else:
            mpi_size = 1

        # Log stats.
        # XXX shouldn't call np.mean on variable length lists
        duration = time.time() - start_time
        stats = agent.get_stats()
        combined_stats = stats.copy()
        combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
        combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
        combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
        combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
        combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
        combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses)
        combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses)
        combined_stats['train/param_noise_distance'] = np.mean(epoch_adaptive_distances)
        combined_stats['total/duration'] = duration
        combined_stats['total/steps_per_second'] = float(t) / float(duration)
        combined_stats['total/episodes'] = episodes
        combined_stats['rollout/episodes'] = epoch_episodes
        combined_stats['rollout/actions_std'] = np.std(epoch_actions)
        # Evaluation statistics.
        if eval_env is not None:
            combined_stats['eval/return'] = eval_episode_rewards
            combined_stats['eval/return_history'] = np.mean(eval_episode_rewards_history)
            combined_stats['eval/Q'] = eval_qs
            combined_stats['eval/episodes'] = len(eval_episode_rewards)
        def as_scalar(x):
            if isinstance(x, np.ndarray):
                assert x.size == 1
                return x[0]
            elif np.isscalar(x):
                return x
            else:
                raise ValueError('expected scalar, got %s'%x)

        combined_stats_sums = np.array([ np.array(x).flatten()[0] for x in combined_stats.values()])
        if MPI is not None:
            combined_stats_sums = MPI.COMM_WORLD.allreduce(combined_stats_sums)

        combined_stats = {k : v / mpi_size for (k,v) in zip(combined_stats.keys(), combined_stats_sums)}

        # Total statistics.
        combined_stats['total/epochs'] = epoch + 1
        combined_stats['total/steps'] = t

        for key in sorted(combined_stats.keys()):
            logger.record_tabular(key, combined_stats[key])

        if rank == 0:
            logger.dump_tabular()
        logger.info('')
        logdir = logger.get_dir()
        if rank == 0 and logdir:
            if hasattr(env, 'get_state'):
                with open(os.path.join(logdir, 'env_state.pkl'), 'wb') as f:
                    pickle.dump(env.get_state(), f)
            if eval_env and hasattr(eval_env, 'get_state'):
                with open(os.path.join(logdir, 'eval_env_state.pkl'), 'wb') as f:
                    pickle.dump(eval_env.get_state(), f)


    return agent
def learn(
        env,
        policy_fn,
        *,
        timesteps_per_batch,  # what to train on
        epsilon,
        beta,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        TRPO=False):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    discrete_ac_space = isinstance(ac_space, gym.spaces.Discrete)
    print("ob_space: " + str(ob_space))
    print("ac_space: " + str(ac_space))
    pi = policy_fn("pi", ob_space, ac_space)
    oldpi = policy_fn("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    old_entropy = oldpi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "Entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    all_var_list = [
        v for v in all_var_list if v.name.split("/")[0].startswith("pi")
    ]
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    #????gvp and fvp???
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    if discrete_ac_space:
        init_eta = 1
        init_omega = 0.5
        eta_omega_optimizer = EtaOmegaOptimizerDiscrete(
            beta, epsilon, init_eta, init_omega)
    else:
        init_eta = 0.5
        init_omega = 2.0
        #????eta_omega_optimizer details?????
        eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                                init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        #print(ob[:20])
        #print(ac[:20])

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            print(pi.ob_rms.mean)
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()

            if TRPO:
                #
                # TRPO specific code.
                # Find correct step size using line search
                #
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / epsilon)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > epsilon * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                '''else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)'''
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            else:
                #
                # COPOS specific implementation.
                #
                copos_update_dir = stepdir

                # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                w_theta, w_beta = pi.split_w(copos_update_dir)

                tmp_ob = np.zeros(
                    (1, ) + env.observation_space.shape
                )  # We assume that entropy does not depend on the NN

                # Optimize eta and omega
                if discrete_ac_space:
                    entropy = lossbefore[4]
                    #entropy = - 1/timesteps_per_batch * np.sum(np.sum(pi.get_action_prob(ob) * pi.get_log_action_prob(ob), axis=1))
                    eta, omega = eta_omega_optimizer.optimize(
                        pi.compute_F_w(ob, copos_update_dir),
                        pi.get_log_action_prob(ob), timesteps_per_batch,
                        entropy)
                else:
                    Waa, Wsa = pi.w2W(w_theta)
                    wa = pi.get_wa(ob, w_beta)

                    varphis = pi.get_varphis(ob)

                    #old_ent = old_entropy.eval({oldpi.ob: tmp_ob})[0]
                    old_ent = lossbefore[4]
                    eta, omega = eta_omega_optimizer.optimize(
                        w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                        pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                logger.log("Initial eta: " + str(eta) + " and omega: " +
                           str(omega))

                current_theta_beta = get_flat()
                prev_theta, prev_beta = pi.all_to_theta_beta(
                    current_theta_beta)

                if discrete_ac_space:
                    # Do a line search for both theta and beta parameters by adjusting only eta
                    eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                     compute_losses, get_flat, set_from_flat,
                                     pi, epsilon, args, discrete_ac_space)
                    logger.log("Updated eta, eta: " + str(eta))
                    set_from_flat(pi.theta_beta_to_all(prev_theta, prev_beta))
                    # Find proper omega for new eta. Use old policy parameters first.
                    eta, omega = eta_omega_optimizer.optimize(
                        pi.compute_F_w(ob, copos_update_dir),
                        pi.get_log_action_prob(ob), timesteps_per_batch,
                        entropy, eta)
                    logger.log("Updated omega, eta: " + str(eta) +
                               " and omega: " + str(omega))

                    # do line search for ratio for non-linear "beta" parameter values
                    #ratio = beta_ratio_line_search(w_theta, w_beta, eta, omega, allmean, compute_losses, get_flat, set_from_flat, pi,
                    #                     epsilon, beta, args)
                    # set ratio to 1 if we do not use beta ratio line search
                    ratio = 1
                    #print("ratio from line search: " + str(ratio))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + ratio * w_beta.reshape(-1, ) / eta
                else:
                    for i in range(2):
                        # Do a line search for both theta and beta parameters by adjusting only eta
                        eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                         compute_losses, get_flat,
                                         set_from_flat, pi, epsilon, args)
                        logger.log("Updated eta, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                        # Find proper omega for new eta. Use old policy parameters first.
                        set_from_flat(
                            pi.theta_beta_to_all(prev_theta, prev_beta))
                        eta, omega = \
                            eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                         pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                        logger.log("Updated omega, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                    # Use final policy
                    logger.log("Final eta: " + str(eta) + " and omega: " +
                               str(omega))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + w_beta.reshape(-1, ) / eta

                paramnew = allmean(pi.theta_beta_to_all(cur_theta, cur_beta))
                set_from_flat(paramnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (paramnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
                ##copos specific over
#cg over

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)


#policy update over
        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        print("Reward max: " + str(max(rewbuffer)))
        print("Reward min: " + str(min(rewbuffer)))

        logger.record_tabular(
            "EpLenMean",
            np.mean(lenbuffer) if np.sum(lenbuffer) != 0.0 else 0.0)
        logger.record_tabular(
            "EpRewMean",
            np.mean(rewbuffer) if np.sum(rewbuffer) != 0.0 else 0.0)
        logger.record_tabular(
            "AverageReturn",
            np.mean(rewbuffer) if np.sum(rewbuffer) != 0.0 else 0.0)
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
示例#18
0
def learn(policy,
          env,
          seed,
          nsteps=10,
          nstack=1,
          total_timesteps=int(80e6),
          vf_coef=0.5,
          ent_coef=0.01,
          max_grad_norm=0.5,
          lr=7e-3,
          lrschedule='linear',
          epsilon=1e-5,
          alpha=0.99,
          gamma=0.99,
          log_interval=100):
    save_interval = 1000
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    num_procs = len(env.remotes)  # HACK
    model = Model(policy=policy,
                  ob_space=ob_space,
                  ac_space=ac_space,
                  nenvs=nenvs,
                  nsteps=nsteps,
                  nstack=nstack,
                  num_procs=num_procs,
                  ent_coef=ent_coef,
                  vf_coef=vf_coef,
                  max_grad_norm=max_grad_norm,
                  lr=lr,
                  alpha=alpha,
                  epsilon=epsilon,
                  total_timesteps=total_timesteps,
                  lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)

    nbatch = nenvs * nsteps
    tstart = time.time()
    for update in range(1, total_timesteps // nbatch + 1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(
            obs, states, rewards, masks, actions, values)
        nseconds = time.time() - tstart
        fps = int((update * nbatch) / nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update * nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("reward", float(np.sum(rewards)))
            logger.dump_tabular()
        if update % save_interval == 0 and update > 0:
            save_path = '/home/daniel/Documents/saved_models'
            model_name = '%09d_rad.model' % update
            model.save(save_path, model_name)
    env.close()
    model.save('/home/daniel/Documents/saved_models', 'final_rad.model')
示例#19
0
def learn(
        env,
        policy_func,
        *,
        timesteps_per_batch,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        num_options=1,
        app='',
        saves=False,
        wsaves=False,
        epoch=-1,
        seed=1,
        dc=0):

    optim_batchsize_ideal = optim_batchsize
    np.random.seed(seed)
    tf.set_random_seed(seed)
    env.seed(seed)

    ### Book-keeping
    gamename = env.spec.id[:-3].lower()
    gamename += 'seed' + str(seed)
    gamename += app
    version_name = 'FINAL_NORM-ACT-LOWER-LR-len-400-wNoise-update1-ppo-ESCH-1-0-0-nI'

    dirname = '{}_{}_{}opts_saves/'.format(version_name, gamename, num_options)
    print(dirname)
    #input ("wait here after dirname")

    if wsaves:
        first = True
        if not os.path.exists(dirname):
            os.makedirs(dirname)
            first = False
        # while os.path.exists(dirname) and first:
        #     dirname += '0'

        files = ['pposgd_simple.py', 'mlp_policy.py', 'run_mujoco.py']
        first = True
        for i in range(len(files)):
            src = os.path.join(
                '/home/nfunk/Code_MA/ppoc_off_tryout/baselines/baselines/ppo1/'
            ) + files[i]
            print(src)
            #dest = os.path.join('/home/nfunk/results_NEW/ppo1/') + dirname
            dest = dirname + "src_code/"
            if (first):
                os.makedirs(dest)
                first = False
            print(dest)
            shutil.copy2(src, dest)
        # brute force copy normal env file at end of copying process:
        src = os.path.join(
            '/home/nfunk/Code_MA/ppoc_off_tryout/nfunk/envs_nf/pendulum_nf.py')
        shutil.copy2(src, dest)
    ###

    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    max_action = env.action_space.high

    # add the dimension in the observation space!
    ob_space.shape = ((ob_space.shape[0] + ac_space.shape[0]), )
    print(ob_space.shape)
    print(ac_space.shape)
    #input ("wait here where the spaces are printed!!!")
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    pol_ov_op_ent = tf.placeholder(dtype=tf.float32,
                                   shape=None)  # Empirical return

    # option = tf.placeholder(dtype=tf.int32, shape=[None])

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    # pdb.set_trace()
    ob = U.get_placeholder_cached(name="ob")
    option = U.get_placeholder_cached(name="option")
    term_adv = U.get_placeholder(name='term_adv',
                                 dtype=tf.float32,
                                 shape=[None])

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    atarg_clip = atarg  #tf.clip_by_value(atarg,-10,10)
    surr1 = ratio * atarg_clip  #atarg # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param,
                   1.0 + clip_param) * atarg_clip  #atarg #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)

    #vf_loss = U.mean(tf.square(tf.clip_by_value(pi.vpred - ret, -10.0, 10.0)))
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    term_loss = pi.tpred * term_adv

    force_pi_loss = U.mean(
        tf.square(
            tf.clip_by_value(pi.op_pi, 1e-5, 1.0) -
            tf.constant([[0.05, 0.95]])))

    log_pi = tf.log(tf.clip_by_value(pi.op_pi, 1e-5, 1.0))
    #log_pi = tf.Print(log_pi, [log_pi, tf.shape(tf.transpose(log_pi))])
    old_log_pi = tf.log(tf.clip_by_value(oldpi.op_pi, 1e-5, 1.0))
    entropy = -tf.reduce_sum(pi.op_pi * log_pi, reduction_indices=1)

    ratio_pol_ov_op = tf.exp(
        tf.transpose(log_pi)[option[0]] -
        tf.transpose(old_log_pi)[option[0]])  # pnew / pold
    term_adv_clip = term_adv  #tf.clip_by_value(term_adv,-10,10)
    surr1_pol_ov_op = ratio_pol_ov_op * term_adv_clip  # surrogate from conservative policy iteration
    surr2_pol_ov_op = U.clip(ratio_pol_ov_op, 1.0 - clip_param,
                             1.0 + clip_param) * term_adv_clip  #
    pol_surr_pol_ov_op = -U.mean(
        tf.minimum(surr1_pol_ov_op,
                   surr2_pol_ov_op))  # PPO's pessimistic surrogate (L^CLIP)

    op_loss = pol_surr_pol_ov_op - pol_ov_op_ent * tf.reduce_sum(entropy)
    #op_loss = pol_surr_pol_ov_op

    #total_loss += force_pi_loss
    total_loss += op_loss

    var_list = pi.get_trainable_variables()
    term_list = var_list[6:8]

    lossandgrad = U.function(
        [ob, ac, atarg, ret, lrmult, option, term_adv, pol_ov_op_ent],
        losses + [U.flatgrad(total_loss, var_list)])
    termloss = U.function([ob, option, term_adv],
                          [U.flatgrad(term_loss, var_list)
                           ])  # Since we will use a different step size.
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses)

    U.initialize()
    adam.sync()

    saver = tf.train.Saver(max_to_keep=10000)
    saver_best = tf.train.Saver(max_to_keep=1)

    ### More book-kepping
    results = []
    if saves:
        results = open(
            version_name + '_' + gamename + '_' + str(num_options) + 'opts_' +
            '_results.csv', 'w')
        results_best_model = open(
            dirname + version_name + '_' + gamename + '_' + str(num_options) +
            'opts_' + '_bestmodel.csv', 'w')

        out = 'epoch,avg_reward'

        for opt in range(num_options):
            out += ',option {} dur'.format(opt)
        for opt in range(num_options):
            out += ',option {} std'.format(opt)
        for opt in range(num_options):
            out += ',option {} term'.format(opt)
        for opt in range(num_options):
            out += ',option {} adv'.format(opt)
        out += '\n'
        results.write(out)
        # results.write('epoch,avg_reward,option 1 dur, option 2 dur, option 1 term, option 2 term\n')
        results.flush()

    if epoch >= 0:

        dirname = '{}_{}opts_saves/'.format(gamename, num_options)
        print("Loading weights from iteration: " + str(epoch))

        filename = dirname + '{}_epoch_{}.ckpt'.format(gamename, epoch)
        saver.restore(U.get_session(), filename)
    ###

    episodes_so_far = 0
    timesteps_so_far = 0
    global iters_so_far
    iters_so_far = 0
    des_pol_op_ent = 0.1
    max_val = -100000
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards

    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True,
                                     num_options=num_options,
                                     saves=saves,
                                     results=results,
                                     rewbuffer=rewbuffer,
                                     dc=dc)

    datas = [0 for _ in range(num_options)]

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************" % iters_so_far)

        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        opt_d = []
        for i in range(num_options):
            dur = np.mean(
                seg['opt_dur'][i]) if len(seg['opt_dur'][i]) > 0 else 0.
            opt_d.append(dur)

        std = []
        for i in range(num_options):
            logstd = np.mean(
                seg['logstds'][i]) if len(seg['logstds'][i]) > 0 else 0.
            std.append(np.exp(logstd))
        print("mean opt dur:", opt_d)
        print("mean op pol:", np.mean(np.array(seg['optpol_p']), axis=0))
        print("mean term p:", np.mean(np.array(seg['term_p']), axis=0))
        print("mean value val:", np.mean(np.array(seg['value_val']), axis=0))

        ob, ac, opts, atarg, tdlamret = seg["ob"], seg["ac"], seg["opts"], seg[
            "adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy
        if hasattr(pi, "ob_rms_only"):
            pi.ob_rms_only.update(ob[:, :-ac_space.shape[0]]
                                  )  # update running mean/std for policy
        assign_old_eq_new()  # set old parameter values to new parameter values

        if (iters_so_far + 1) % 1000 == 0:
            des_pol_op_ent = des_pol_op_ent / 10

        if iters_so_far % 50 == 0 and wsaves:
            print("weights are saved...")
            filename = dirname + '{}_epoch_{}.ckpt'.format(
                gamename, iters_so_far)
            save_path = saver.save(U.get_session(), filename)

        # adaptively save best run:
        if (np.mean(rewbuffer) > max_val) and wsaves:
            max_val = np.mean(rewbuffer)
            results_best_model.write('epoch: ' + str(iters_so_far) + 'rew: ' +
                                     str(np.mean(rewbuffer)) + '\n')
            results_best_model.flush()
            filename = dirname + 'best.ckpt'.format(gamename, iters_so_far)
            save_path = saver_best.save(U.get_session(), filename)

        min_batch = 160  # Arbitrary
        t_advs = [[] for _ in range(num_options)]
        for opt in range(num_options):
            indices = np.where(opts == opt)[0]
            print("batch size:", indices.size)
            opt_d[opt] = indices.size
            if not indices.size:
                t_advs[opt].append(0.)
                continue

            ### This part is only necessasry when we use options. We proceed to these verifications in order not to discard any collected trajectories.
            if datas[opt] != 0:
                if (indices.size < min_batch and datas[opt].n > min_batch):
                    datas[opt] = Dataset(dict(ob=ob[indices],
                                              ac=ac[indices],
                                              atarg=atarg[indices],
                                              vtarg=tdlamret[indices]),
                                         shuffle=not pi.recurrent)
                    t_advs[opt].append(0.)
                    continue

                elif indices.size + datas[opt].n < min_batch:
                    # pdb.set_trace()
                    oldmap = datas[opt].data_map

                    cat_ob = np.concatenate((oldmap['ob'], ob[indices]))
                    cat_ac = np.concatenate((oldmap['ac'], ac[indices]))
                    cat_atarg = np.concatenate(
                        (oldmap['atarg'], atarg[indices]))
                    cat_vtarg = np.concatenate(
                        (oldmap['vtarg'], tdlamret[indices]))
                    datas[opt] = Dataset(dict(ob=cat_ob,
                                              ac=cat_ac,
                                              atarg=cat_atarg,
                                              vtarg=cat_vtarg),
                                         shuffle=not pi.recurrent)
                    t_advs[opt].append(0.)
                    continue

                elif (indices.size + datas[opt].n > min_batch and datas[opt].n
                      < min_batch) or (indices.size > min_batch
                                       and datas[opt].n < min_batch):

                    oldmap = datas[opt].data_map
                    cat_ob = np.concatenate((oldmap['ob'], ob[indices]))
                    cat_ac = np.concatenate((oldmap['ac'], ac[indices]))
                    cat_atarg = np.concatenate(
                        (oldmap['atarg'], atarg[indices]))
                    cat_vtarg = np.concatenate(
                        (oldmap['vtarg'], tdlamret[indices]))
                    datas[opt] = d = Dataset(dict(ob=cat_ob,
                                                  ac=cat_ac,
                                                  atarg=cat_atarg,
                                                  vtarg=cat_vtarg),
                                             shuffle=not pi.recurrent)

                if (indices.size > min_batch and datas[opt].n > min_batch):
                    datas[opt] = d = Dataset(dict(ob=ob[indices],
                                                  ac=ac[indices],
                                                  atarg=atarg[indices],
                                                  vtarg=tdlamret[indices]),
                                             shuffle=not pi.recurrent)

            elif datas[opt] == 0:
                datas[opt] = d = Dataset(dict(ob=ob[indices],
                                              ac=ac[indices],
                                              atarg=atarg[indices],
                                              vtarg=tdlamret[indices]),
                                         shuffle=not pi.recurrent)
            ###

            optim_batchsize = optim_batchsize or ob.shape[0]
            optim_epochs = np.clip(
                np.int(10 * (indices.size /
                             (timesteps_per_batch / num_options))), 10,
                10) if num_options > 1 else optim_epochs
            print("optim epochs:", optim_epochs)
            logger.log("Optimizing...")

            # Here we do a bunch of optimization epochs over the data
            for _ in range(optim_epochs):
                losses = [
                ]  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize):

                    #tadv,nodc_adv = pi.get_term_adv(batch["ob"],[opt])
                    tadv, nodc_adv = pi.get_opt_adv(batch["ob"], [opt])
                    tadv = tadv if num_options > 1 else np.zeros_like(tadv)
                    t_advs[opt].append(nodc_adv)

                    #if (opt==1):
                    #    *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt], tadv)
                    #else:
                    #    *newlosses, grads = lossandgrad0(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt], tadv)
                    *newlosses, grads = lossandgrad(batch["ob"], batch["ac"],
                                                    batch["atarg"],
                                                    batch["vtarg"], cur_lrmult,
                                                    [opt], tadv,
                                                    des_pol_op_ent)
                    #*newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt], tadv)
                    #termg = termloss(batch["ob"], [opt], tadv)
                    #adam.update(termg[0], 5e-7 * cur_lrmult)
                    adam.update(grads, optim_stepsize * cur_lrmult)
                    losses.append(newlosses)

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

        ### Book keeping
        if saves:
            out = "{},{}"
            for _ in range(num_options):
                out += ",{},{},{},{}"
            out += "\n"

            info = [iters_so_far, np.mean(rewbuffer)]
            for i in range(num_options):
                info.append(opt_d[i])
            for i in range(num_options):
                info.append(std[i])
            for i in range(num_options):
                info.append(np.mean(np.array(seg['term_p']), axis=0)[i])
            for i in range(num_options):
                info.append(np.mean(t_advs[i]))

            results.write(out.format(*info))
            results.flush()
示例#20
0
文件: a2c.py 项目: maxiaoba/QMDPNET
def learn_a2c(policy,
              env,
              seed,
              nsteps=5,
              N_itr=1e4,
              vf_coef=0.5,
              ent_coef=0.01,
              max_grad_norm=0.5,
              lr=7e-4,
              lrschedule='linear',
              epsilon=1e-5,
              alpha=0.99,
              gamma=0.99,
              log_interval=1,
              save_interval=10,
              save_path="./Data/a2c",
              load_path=None):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space

    total_timesteps = N_itr * nenvs * nsteps

    model = Model(policy=policy,
                  ob_space=ob_space,
                  ac_space=ac_space,
                  nenvs=nenvs,
                  nsteps=nsteps,
                  ent_coef=ent_coef,
                  vf_coef=vf_coef,
                  max_grad_norm=max_grad_norm,
                  lr=lr,
                  alpha=alpha,
                  epsilon=epsilon,
                  total_timesteps=total_timesteps,
                  lrschedule=lrschedule)

    if load_path is not None:
        model.load(load_path)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    nbatch = nenvs * nsteps
    tstart = time.time()

    # writer = tf.summary.FileWriter(logdir=save_path)

    for update in range(N_itr):
        obs, states, rewards, masks, actions, values, info = runner.run(
        )  # here, values are the discounted rewards, i believe

        # policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        policy_loss, value_loss, policy_entropy, grads_val = model.train(
            obs, states, rewards, masks, actions, values)

        nseconds = time.time() - tstart
        fps = int((update * nbatch) / nseconds)

        if update % log_interval == 0 or update == 1:
            params = [x[1] for x in model.grads]
            params_val = model.sess.run(model.params)
            for param, grad_val, param_val in zip(params, grads_val,
                                                  params_val):
                # print(param.name+" value: ",np.mean(np.abs(param_val)))
                # print(param.name+"gradient: ",np.max(np.abs(grad_val)))
                logger.record_tabular(param.name + " gradient: ",
                                      np.max(np.abs(grad_val)))

            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update * nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("explained_variance", float(ev))

            for key in info.keys():
                logger.record_tabular(key, info[key])
            logger.dump_tabular()
        if update % save_interval == 0 or update == 1:
            model.save(save_path + "a2c_" + str(update) + ".pkl")
    # writer.add_graph(model.sess.graph)
    # writer.close()
    env.close()
示例#21
0
def learn(env,
          estimator_policy,
          estimator_value,
          max_timesteps=1000,
          discount_factor=1.0,
          print_freq=100,
          outdir="/tmp/experiments/continuous/VPG/"):
    """
    Vanilla Policy Gradient (VPG) extended using basic Actor-Critic techniques to reduce the variance.
    This method optimizes the value function approximator using policy gradient.

    Parameters
    ----------
    env: object
        OpenAI environment.
    estimator_policy: object
        Policy Function to be optimized
    estimator_value: object
        Value function approximator, used as a critic
    max_timesteps: int
        Number of steps to run for
    discount_factor: float
        Time-discount factor (gamma)
    print_freq: int
        Period (in episodes) to log results
    outdir: string
        Directory where to store tensorboard results

    Returns
    -------
    An EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards.
    """
    # 1. Initialize policy (e.g. NNs) parameter $\theta$ and baseline $b$
    #       in this particular case, they come as params
    # tensorboard logging
    summary_writer = tf.summary.FileWriter(outdir,
                                           graph=tf.get_default_graph())
    # Keeps track of useful statistics
    # stats = plotting.EpisodeStats(
    #     episode_lengths=np.zeros(num_episodes),
    #     episode_rewards=np.zeros(num_episodes))

    # # Variable to represent the number of steps executed
    # Transition = collections.namedtuple("Transition", ["state", "action", "reward", "next_state", "done"])

    global scaler, featurizer
    scaler, featurizer = preprocess(env)

    # Record number of episodes
    num_episodes = 0
    # Reset the environment and get firs state
    state = env.reset()
    # each episode's reward
    episode_reward = 0
    # save all of the episodes' rewards
    rewards = []
    # 2. For iteration=1,2,... do
    #     2.1 Collect a set of trajectories by executing the current policy obtaining $\mathbf{s}_{0:H},\mathbf{a}_{0:H},r_{0:H}$
    for timestep in range(max_timesteps):
        #     2.2 At each timestep in each trajectory, compute
        # episode = []
        # One step in the environment
        # for t in itertools.count():

        # env.render()
        action = estimator_policy.predict(state)
        next_state, reward, done, _ = env.step(action)

        # # Keep track of the transition
        # episode.append(Transition(
        #   state=state, action=action, reward=reward, next_state=next_state, done=done))

        # Update statistics
        # stats.episode_rewards[num_episodes] += reward
        episode_reward += reward
        # stats.episode_lengths[num_episodes] = timestep

        # Calculate TD Target
        #   More about TD-learning at:
        # http://www.scholarpedia.org/article/Reinforcement_learning
        # http://www.scholarpedia.org/article/TD-learning

        # calculate the bias b
        value_next = estimator_value.predict(next_state)
        #         2.2.1 the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t}r_{t'}$ and
        td_target = reward + discount_factor * value_next
        #         2.2.2 the advantage estimate $\hat{A_t} = R_t - b(s_t)$.
        td_error = td_target - estimator_value.predict(state)
        #     2.3 Re-fit the baseline (recomputing the value function) by minimizing
        #         $|| b(s_t) - R_t||^2$, summed over all trajectories and timesteps.
        #
        #           $b=\frac{\left\langle \left(  \sum\nolimits_{h=0}^{H} \mathbf{\nabla}_{\theta_{k}}\log\pi_{\mathbf{\theta}}\left(  \mathbf{a}_{h}\left\vert \mathbf{s}_{h}\right.  \right)  \right)  ^{2}\sum\nolimits_{l=0}^{H} \gamma r_{l}\right\rangle }{\left\langle \left(
        #           \sum\nolimits_{h=0}^{H}\mathbf{\nabla}_{\theta_{k}}\log\pi_{\mathbf{\theta}
        #           }\left(  \mathbf{a}_{h}\left\vert \mathbf{x}_{h}\right.  \right)  \right)
        #           ^{2}\right\rangle }$
        # Update the value estimator
        estimator_value.update(state, td_target)
        #     2.4 Update the policy, using a policy gradient estimate $\hat{g}$,
        #         which is a sum of terms $\nabla_\theta log\pi(a_t | s_t,\theta)\hat(A_t)$.
        #         In other words:
        #
        #           $g_{k}=\left\langle \left(  \sum\nolimits_{h=0}^{H}\mathbf{\nabla
        #           }_{\theta_{k}}\log\pi_{\mathbf{\theta}}\left(  \mathbf{a}_{h}\left\vert
        #           \mathbf{s}_{h}\right.  \right)  \right)  \left(  \sum\nolimits_{l=0}^{H}
        #           \gamma r_{l}-b\right)  \right\rangle$
        # Update the policy estimator
        # using the td error as our advantage estimate
        estimator_policy.update(state, td_error, action)

        # # Print out which step we're on, useful for debugging.
        # print("\rStep {} @ Episode {} ({})".format(
        #         timestep + 1, num_episodes, episode_reward), end="")

        if done:
            # Add the reward to the overall rewards
            rewards.append(episode_reward)

            # Log the episode reward
            # episode_total_rew = stats.episode_rewards[num_episodes]
            summary = tf.Summary(value=[
                tf.Summary.Value(tag="Episode Reward",
                                 simple_value=episode_reward)
            ])
            summary_writer.add_summary(summary, timestep)
            summary = tf.Summary(value=[
                tf.Summary.Value(tag="EpRewMean",
                                 simple_value=np.mean(rewards))
            ])
            summary_writer.add_summary(summary, timestep)
            summary_writer.flush()

            if print_freq is not None and num_episodes % print_freq == 0:
                logger.record_tabular("steps", timestep)
                logger.record_tabular("episode", num_episodes)
                logger.record_tabular("reward", episode_reward)
                # logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            # Reset the environment and get firs state
            state = env.reset()

            # Iterate episodes
            num_episodes += 1

            # Reset the episode reward
            episode_reward = 0
        else:
            state = next_state
            # 3. **end for**
    return estimator_policy
示例#22
0
            # Save the model and training state.
            if num_iters > 0 and (num_iters % args.save_freq == 0 or info["steps"] > args.num_steps):
                maybe_save_model(savedir, container, {
                    'replay_buffer': replay_buffer,
                    'num_iters': num_iters,
                    'monitor_state': monitored_env.get_state(),
                })

            if info["steps"] > args.num_steps:
                break

            if done:
                steps_left = args.num_steps - info["steps"]
                completion = np.round(info["steps"] / args.num_steps, 1)

                logger.record_tabular("% completion", completion)
                logger.record_tabular("steps", info["steps"])
                logger.record_tabular("iters", num_iters)
                logger.record_tabular("episodes", len(info["rewards"]))
                logger.record_tabular("reward (100 epi mean)", np.mean(info["rewards"][-100:]))
                logger.record_tabular("exploration", exploration.value(num_iters))
                if args.prioritized:
                    logger.record_tabular("max priority", replay_buffer._max_priority)
                fps_estimate = (float(steps_per_iter) / (float(iteration_time_est) + 1e-6)
                                if steps_per_iter._value is not None else "calculating...")
                logger.dump_tabular()
                logger.log()
                logger.log("ETA: " + pretty_eta(int(steps_left / fps_estimate)))
                logger.log()
def learn(env,
          policy,
          seed,
          total_timesteps=int(10e6),
          max_grad_norm=0.5,
          p_lr=0.0001,
          vf_lr=0.001,
          cv_lr=0.001,
          cv_num=25,
          lrschedule='linear',
          epsilon=1e-5,
          alpha=0.99,
          gamma=0.99,
          lam=0.97,
          timesteps_per_batch=2500,
          num_timesteps=1e6,
          animate=False,
          callback=None,
          desired_kl=0.002,
          log_interval=100,
          logdir=None,
          endwhendone=False,
          score=9100.0,
          var_check=False):

    set_global_seeds(seed)
    num_procs = 1

    obfilter = ZFilter(env.observation_space.shape)

    max_pathlength = env.spec.timestep_limit
    ob_dim = env.observation_space.shape[0]
    ac_dim = env.action_space.shape[0]
    stepsize = tf.Variable(np.float32(np.array(p_lr)), dtype=tf.float32)
    optim = tf.train.AdamOptimizer(stepsize)

    model = Model(optim=optim,
                  policy=policy,
                  ob_dim=ob_dim,
                  ac_dim=ac_dim,
                  num_procs=num_procs,
                  max_grad_norm=max_grad_norm,
                  vf_lr=vf_lr,
                  cv_lr=cv_lr,
                  cv_num=cv_num,
                  alpha=alpha,
                  epsilon=epsilon,
                  total_timesteps=total_timesteps,
                  lrschedule=lrschedule,
                  logdir=logdir)

    runner = RolloutRunner(env, model.step_model, max_pathlength, gamma, lam,
                           obfilter, animate, score)

    pi_var_list = []
    for var in tf.trainable_variables():
        if "pi" in var.name:
            pi_var_list.append(var)

    i = 0
    timesteps_so_far = 0
    while True:
        if timesteps_so_far > num_timesteps:
            break
        logger.log("********** Iteration %i ************" % i)

        if var_check:
            pgs = []
            if i % 10 == 0:
                for _ in range(10):
                    path, vtarg, value, adv = runner.run(update_counters=False)

                    std_adv = (adv - adv.mean()) / (adv.std() + 1e-8)
                    vf_in = model.step_model.preproc(path)

                    pg = model.get_grads(path["observation"], path["action"],
                                         std_adv, vtarg, vf_in, value)
                    pgs.append(pg)
                pgs = np.array(pg)
                pgv = np.var(pgs, axis=0)
                lpgv = np.log(pgv)
                lpgv = np.mean(lpgv)
                logger.record_tabular("log_variance", lpgv)

        # Collect paths until we have enough timesteps
        timesteps_this_batch = 0
        paths = []
        vtargs = []
        advs = []
        std_advs = []
        vf_ins = []
        values = []
        cv_grads = []
        while True:
            runner.animate = (len(paths) == 0 and (i % 10 == 0) and animate)
            path, vtarg, value, adv = runner.run()

            if model.train_model.relaxed:
                std_adv = (adv - adv.mean()) / (adv.std() + 1e-8)
                vf_in = model.step_model.preproc(path)
                cv_grad = model.get_cv_grads(path["observation"],
                                             path["action"], std_adv, vtarg,
                                             vf_in, value)
                cv_grads.append(cv_grad)
                std_advs.append(std_adv)
                vf_ins.append(vf_in)
            vtargs.append(vtarg)
            values.append(value)
            advs.append(adv)

            paths.append(path)
            n = pathlength(path)
            timesteps_this_batch += n
            timesteps_so_far += n
            if timesteps_this_batch > timesteps_per_batch:
                break

        # Build arrays for policy update
        ob_no = np.concatenate([path["observation"] for path in paths])
        action_na = np.concatenate([path["action"] for path in paths])
        oldac_dist = np.concatenate([path["action_dist"] for path in paths])
        adv_n = np.concatenate(advs)
        standardized_adv_n = (adv_n - adv_n.mean()) / (adv_n.std() + 1e-8)
        rewards_n = np.concatenate(vtargs)
        values_n = np.concatenate(values)

        # for value function
        x = np.concatenate([model.step_model.preproc(p) for p in paths])
        logger.record_tabular(
            "EVBefore",
            common.explained_variance(model.step_model.value(ob_no, x),
                                      rewards_n))

        # update policy and value network
        policy_loss, value_loss = model.update_policy_and_value(
            ob_no, action_na, standardized_adv_n, rewards_n, x, values_n)

        if model.train_model.relaxed:
            # update control variate cv_num times
            for r in range(cv_num):
                cv_gs = []
                for k in range(len(cv_grads[0])):
                    cvg = 0
                    for l in range(len(cv_grads)):
                        cvg += cv_grads[l][k]
                    cvg /= len(cv_grads)
                    cv_gs.append(cvg.astype(np.float32))

                model.update_cv(cv_gs)

                # get updated cv_grads
                cv_grads = []
                for p in range(len(paths)):
                    cv_grads.append(
                        model.get_cv_grads(paths[p]["observation"],
                                           paths[p]["action"], std_advs[p],
                                           vtargs[p], vf_ins[p], values[p]))

        logger.record_tabular(
            "EVAfter",
            common.explained_variance(model.step_model.value(ob_no, x),
                                      rewards_n))

        min_stepsize = np.float32(1e-8)
        max_stepsize = np.float32(1e0)
        # Adjust stepsize
        kl = model.step_model.compute_kl(ob_no, oldac_dist)
        if kl > desired_kl * 2:
            logger.log("kl too high")
            model.sess.run(
                tf.assign(stepsize, tf.maximum(min_stepsize, stepsize / 1.5)))
        elif kl < desired_kl / 2:
            logger.log("kl too low")
            model.sess.run(
                tf.assign(stepsize, tf.minimum(max_stepsize, stepsize * 1.5)))
        else:
            logger.log("kl just right!")

        logger.record_tabular("last_r", runner.rewards[-1])
        logger.record_tabular(
            "EpRewMean", np.mean([path["reward"].sum() for path in paths]))
        logger.record_tabular(
            "EpRewSEM",
            np.std([
                path["reward"].sum() / np.sqrt(len(paths)) for path in paths
            ]))
        logger.record_tabular("EpLenMean",
                              np.mean([pathlength(path) for path in paths]))
        logger.record_tabular("KL", kl)
        if callback:
            callback()
        logger.dump_tabular()
        i += 1
    with open(logdir + "/results.txt", "w") as f:
        f.write("-----------------------------\n")
        f.write("Done!\n")
        f.write("episodes till done: %s\n" % runner.episodes_till_done)
        f.write("frames till done: %s\n" % runner.frames_till_done)
        f.write("-----------------------------")
示例#24
0
def do_agent_exploration(updates_queue: multiprocessing.Queue,
                         q_func_vars_trained_queue: multiprocessing.Queue,
                         network, seed, config, lr, total_timesteps,
                         learning_starts, buffer_size, exploration_fraction,
                         exploration_initial_eps, exploration_final_eps,
                         train_freq, batch_size, print_freq, checkpoint_freq,
                         gamma, target_network_update_freq, prioritized_replay,
                         prioritized_replay_alpha, prioritized_replay_beta0,
                         prioritized_replay_beta_iters, prioritized_replay_eps,
                         experiment_name, load_path, network_kwargs):
    env = DotaEnvironment()

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, _, _, debug = deepq.build_train(
        scope='deepq_act',
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=exploration_initial_eps,
                                 final_p=exploration_final_eps)

    U.initialize()

    reward_shaper = ActionAdviceRewardShaper(config=config)
    reward_shaper.load()
    reward_shaper.generate_merged_demo()

    full_exp_name = '{}-{}'.format(date.today().strftime('%Y%m%d'),
                                   experiment_name)
    experiment_dir = os.path.join('experiments', full_exp_name)
    os.makedirs(experiment_dir, exist_ok=True)

    summary_dir = os.path.join(experiment_dir, 'summaries')
    os.makedirs(summary_dir, exist_ok=True)
    summary_writer = tf.summary.FileWriter(summary_dir)
    checkpoint_dir = os.path.join(experiment_dir, 'checkpoints')
    os.makedirs(checkpoint_dir, exist_ok=True)
    stats_dir = os.path.join(experiment_dir, 'stats')
    os.makedirs(stats_dir, exist_ok=True)

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_dir or td

        os.makedirs(td, exist_ok=True)
        model_file = os.path.join(td, "best_model")
        model_saved = False
        saved_mean_reward = None

        # if os.path.exists(model_file):
        #     print('Model is loading')
        #     load_variables(model_file)
        #     logger.log('Loaded model from {}'.format(model_file))
        #     model_saved = True
        # elif load_path is not None:
        #     load_variables(load_path)
        #     logger.log('Loaded model from {}'.format(load_path))

        def synchronize_q_func_vars():
            updates_queue.put(
                UpdateMessage(UPDATE_STATUS_SEND_WEIGHTS, None, None))
            q_func_vars_trained = q_func_vars_trained_queue.get()
            update_q_func_expr = []
            for var, var_trained in zip(debug['q_func_vars'],
                                        q_func_vars_trained):
                update_q_func_expr.append(var.assign(var_trained))
            update_q_func_expr = tf.group(*update_q_func_expr)
            sess.run(update_q_func_expr)

        synchronize_q_func_vars()

        episode_rewards = []
        act_step_t = 0
        while act_step_t < total_timesteps:
            # Reset the environment
            obs = env.reset()
            obs = StatePreprocessor.process(obs)
            episode_rewards.append(0.0)
            done = False
            # Demo preservation variables
            demo_picked = 0
            demo_picked_step = 0
            # Demo switching statistics
            demo_switching_stats = [(0, 0)]
            # Sample the episode until it is completed
            act_started_step_t = act_step_t
            while not done:
                # Take action and update exploration to the newest value
                biases, demo_indexes = reward_shaper.get_action_potentials_with_indexes(
                    obs, act_step_t)
                update_eps = exploration.value(act_step_t)
                actions, is_randoms = act(np.array(obs)[None],
                                          biases,
                                          update_eps=update_eps)
                action, is_random = actions[0], is_randoms[0]
                if not is_random:
                    bias_demo = demo_indexes[action]
                    if bias_demo != demo_switching_stats[-1][1]:
                        demo_switching_stats.append(
                            (act_step_t - act_started_step_t, bias_demo))
                    if bias_demo != 0 and demo_picked == 0:
                        demo_picked = bias_demo
                        demo_picked_step = act_step_t + 1
                pairs = env.step(action)
                action, (new_obs, rew, done, _) = pairs[-1]
                logger.log(
                    f'{act_step_t}/{total_timesteps} obs {obs} action {action}'
                )

                # Compute state on the real reward but learn from the normalized version
                episode_rewards[-1] += rew
                rew = np.sign(rew) * np.log(1 + np.abs(rew))
                new_obs = StatePreprocessor.process(new_obs)

                if len(new_obs) == 0:
                    done = True
                else:
                    transition = (obs, action, rew, new_obs, float(done),
                                  act_step_t)
                    obs = new_obs
                    act_step_t += 1
                    if act_step_t - demo_picked_step >= MIN_STEPS_TO_FOLLOW_DEMO_FOR:
                        demo_picked = 0
                    reward_shaper.set_demo_picked(act_step_t, demo_picked)
                    updates_queue.put(
                        UpdateMessage(UPDATE_STATUS_CONTINUE, transition,
                                      demo_picked))
            # Post episode logging
            summary = tf.Summary(value=[
                tf.Summary.Value(tag="rewards",
                                 simple_value=episode_rewards[-1])
            ])
            summary_writer.add_summary(summary, act_step_t)
            summary = tf.Summary(
                value=[tf.Summary.Value(tag="eps", simple_value=update_eps)])
            summary_writer.add_summary(summary, act_step_t)
            summary = tf.Summary(value=[
                tf.Summary.Value(tag="episode_steps",
                                 simple_value=act_step_t - act_started_step_t)
            ])
            summary_writer.add_summary(summary, act_step_t)
            mean_5ep_reward = round(float(np.mean(episode_rewards[-5:])), 1)
            num_episodes = len(episode_rewards)
            if print_freq is not None and num_episodes % print_freq == 0:
                logger.record_tabular("steps", act_step_t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 5 episode reward", mean_5ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(act_step_t)))
                logger.dump_tabular()
            # Wait for the learning to finish and synchronize
            synchronize_q_func_vars()
            # Record demo_switching_stats
            if num_episodes % 10 == 0:
                save_demo_switching_stats(demo_switching_stats, stats_dir,
                                          num_episodes)
            if checkpoint_freq is not None and num_episodes % checkpoint_freq == 0:
                # Periodically save the model
                rec_model_file = os.path.join(
                    td, "model_{}_{:.2f}".format(num_episodes,
                                                 mean_5ep_reward))
                save_variables(rec_model_file)
                # Check whether the model is the best so far
                if saved_mean_reward is None or mean_5ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_5ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_5ep_reward

        updates_queue.put(UpdateMessage(UPDATE_STATUS_FINISH, None, None))
示例#25
0
def train(env,
          nb_epochs,
          nb_epoch_cycles,
          render_eval,
          reward_scale,
          render,
          param_noise,
          actor,
          critic,
          normalize_returns,
          normalize_observations,
          critic_l2_reg,
          actor_lr,
          critic_lr,
          action_noise,
          popart,
          gamma,
          clip_norm,
          nb_train_steps,
          nb_rollout_steps,
          nb_eval_steps,
          batch_size,
          memory,
          tau=0.01,
          eval_env=None,
          param_noise_adaption_interval=50,
          perform=False,
          expert=None,
          save_networks=False,
          supervise=False,
          pre_epoch=60,
          actor_only=False,
          critic_only=False,
          both_ours_sup=False,
          gail=False,
          pofd=False):
    rank = MPI.COMM_WORLD.Get_rank()

    assert (np.abs(env.action_space.low) == env.action_space.high
            ).all()  # we assume symmetric actions.
    max_action = env.action_space.high
    logger.info(
        'scaling actions by {} before executing in env'.format(max_action))
    agent = DDPG(actor,
                 critic,
                 memory,
                 env.observation_space.shape,
                 env.action_space.shape,
                 gamma=gamma,
                 tau=tau,
                 normalize_returns=normalize_returns,
                 normalize_observations=normalize_observations,
                 batch_size=batch_size,
                 action_noise=action_noise,
                 param_noise=param_noise,
                 critic_l2_reg=critic_l2_reg,
                 actor_lr=actor_lr,
                 critic_lr=critic_lr,
                 enable_popart=popart,
                 clip_norm=clip_norm,
                 reward_scale=reward_scale,
                 expert=expert,
                 save_networks=save_networks,
                 supervise=supervise,
                 actor_only=actor_only,
                 critic_only=critic_only,
                 both_ours_sup=both_ours_sup,
                 gail=gail,
                 pofd=pofd)
    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    # Set up logging stuff only for a single worker.
    if rank == 0:
        saver = tf.train.Saver()
    else:
        saver = None

    step = 0
    episode = 0
    eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)
    with U.single_threaded_session() as sess:
        # Prepare everything.
        network_saving_dir = os.path.join('./saved_networks',
                                          env.env.spec.id) + '/'
        if not os.path.exists(network_saving_dir):
            os.makedirs(network_saving_dir)
        agent.initialize(sess, saver, network_saving_dir, 10000, 30000)
        sess.graph.finalize()

        agent.reset()
        obs = env.reset()
        if eval_env is not None:
            eval_obs = eval_env.reset()
        if expert is None:
            pretrain = False
        else:
            pretrain = True
        done = False
        episode_reward = 0.
        episode_step = 0
        episodes = 0
        t = 0

        epoch = 0
        start_time = time.time()

        epoch_episode_rewards = []
        epoch_episode_steps = []
        epoch_episode_eval_rewards = []
        epoch_episode_eval_steps = []
        epoch_start_time = time.time()
        epoch_actions = []
        epoch_qs = []
        epoch_episodes = 0
        small_buffer = []
        big_buffer = []
        for epoch in range(nb_epochs):
            if epoch >= pre_epoch and pretrain:
                pretrain = False
                logger.info('Stoped pretrain at epoch {}'.format(epoch))
            for cycle in range(nb_epoch_cycles):
                if not perform:
                    # Perform rollouts.
                    for t_rollout in range(nb_rollout_steps):
                        # Predict next action.
                        action, q = agent.pi(obs,
                                             apply_noise=True,
                                             compute_Q=True)
                        assert action.shape == env.action_space.shape

                        # Execute next action.
                        if rank == 0 and render:
                            env.render()
                        assert max_action.shape == action.shape
                        new_obs, r, done, info = env.step(
                            max_action * action
                        )  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])

                        t += 1
                        if rank == 0 and render:
                            env.render()
                        episode_reward += r
                        episode_step += 1

                        # Book-keeping.
                        epoch_actions.append(action)
                        epoch_qs.append(q)
                        agent.store_transition(obs, action, r, new_obs, done)
                        obs = new_obs

                        if done:
                            # Episode done.
                            epoch_episode_rewards.append(episode_reward)
                            episode_rewards_history.append(episode_reward)
                            epoch_episode_steps.append(episode_step)
                            episode_reward = 0.
                            episode_step = 0
                            epoch_episodes += 1
                            episodes += 1

                            agent.reset()
                            obs = env.reset()

                    # Train.
                    epoch_actor_losses = []
                    epoch_critic_losses = []
                    epoch_adaptive_distances = []
                    for t_train in range(nb_train_steps):
                        # Adapt param noise, if necessary.
                        if memory.nb_entries >= batch_size and t % param_noise_adaption_interval == 0:
                            distance = agent.adapt_param_noise()
                            epoch_adaptive_distances.append(distance)

                        cl, al = agent.train(pretrain)
                        epoch_critic_losses.append(cl)
                        epoch_actor_losses.append(al)
                        agent.update_target_net()

                # Evaluate.
                eval_episode_rewards = []
                eval_qs = []
                if eval_env is not None:
                    eval_episode_reward = 0.
                    for t_rollout in range(nb_eval_steps):
                        old_eval_obs = eval_obs
                        eval_action, eval_q = agent.pi(eval_obs,
                                                       apply_noise=False,
                                                       compute_Q=True)
                        eval_obs, eval_r, eval_done, eval_info = eval_env.step(
                            max_action * eval_action
                        )  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])

                        if perform:
                            small_buffer.append([
                                old_eval_obs, eval_action, eval_r, eval_obs,
                                eval_done
                            ])

                        if render_eval:
                            eval_env.render()
                        eval_episode_reward += eval_r

                        eval_qs.append(eval_q)
                        if eval_done:
                            eval_obs = eval_env.reset()
                            eval_episode_rewards.append(eval_episode_reward)
                            eval_episode_rewards_history.append(
                                eval_episode_reward)
                            eval_episode_reward = 0.

                            if perform and len(small_buffer) > 0:
                                big_buffer.append(small_buffer)
                                small_buffer = []
                                if len(big_buffer
                                       ) > 0 and len(big_buffer) % 1000 == 0:
                                    expert_dir = os.path.join(
                                        './expert', env.env.spec.id) + '/'
                                    if not os.path.exists(expert_dir):
                                        os.makedirs(expert_dir)
                                    pwritefile = open(
                                        os.path.join(expert_dir, 'expert.pkl'),
                                        'wb')
                                    pickle.dump(big_buffer, pwritefile, -1)
                                    pwritefile.close()
                                    logger.info('Expert data saved!')
                                    return

            # Log stats.
            epoch_train_duration = time.time() - epoch_start_time
            duration = time.time() - start_time
            combined_stats = {}
            if not perform:
                stats = agent.get_stats()
                for key in sorted(stats.keys()):
                    combined_stats[key] = mpi_mean(stats[key])

            # Rollout statistics.
            if not perform:
                combined_stats['rollout/return'] = mpi_mean(
                    epoch_episode_rewards)
                combined_stats['rollout/return_history'] = mpi_mean(
                    np.mean(episode_rewards_history))
                combined_stats['rollout/episode_steps'] = mpi_mean(
                    epoch_episode_steps)
                combined_stats['rollout/episodes'] = mpi_sum(epoch_episodes)
                combined_stats['rollout/actions_mean'] = mpi_mean(
                    epoch_actions)
                combined_stats['rollout/actions_std'] = mpi_std(epoch_actions)
                combined_stats['rollout/Q_mean'] = mpi_mean(epoch_qs)

                # Train statistics.
                combined_stats['train/loss_actor'] = mpi_mean(
                    epoch_actor_losses)
                combined_stats['train/loss_critic'] = mpi_mean(
                    epoch_critic_losses)
                combined_stats['train/param_noise_distance'] = mpi_mean(
                    epoch_adaptive_distances)

            # Evaluation statistics.
            if eval_env is not None:
                combined_stats['eval/return'] = mpi_mean(eval_episode_rewards)
                combined_stats['eval/return_history'] = mpi_mean(
                    np.mean(eval_episode_rewards_history))
                combined_stats['eval/Q'] = mpi_mean(eval_qs)
                combined_stats['eval/episodes'] = mpi_mean(
                    len(eval_episode_rewards))
            if not perform:
                # Total statistics.
                combined_stats['total/duration'] = mpi_mean(duration)
                combined_stats['total/steps_per_second'] = mpi_mean(
                    float(t) / float(duration))
                combined_stats['total/episodes'] = mpi_mean(episodes)
                combined_stats['total/epochs'] = epoch + 1
                combined_stats['total/steps'] = t

            for key in sorted(combined_stats.keys()):
                logger.record_tabular(key, combined_stats[key])
            logger.dump_tabular()
            logger.info('')
            logdir = logger.get_dir()
            if rank == 0 and logdir:
                if hasattr(env, 'get_state'):
                    with open(os.path.join(logdir, 'env_state.pkl'),
                              'wb') as f:
                        pickle.dump(env.get_state(), f)
                if eval_env and hasattr(eval_env, 'get_state'):
                    with open(os.path.join(logdir, 'eval_env_state.pkl'),
                              'wb') as f:
                        pickle.dump(eval_env.get_state(), f)
示例#26
0
def learn(env, policy, vf, gamma, lam, timesteps_per_batch, num_timesteps,
    animate=False, callback=None, desired_kl=0.002, fname='./training.ckpt'):

    obfilter = ZFilter(env.observation_space.shape)

    max_pathlength = env.spec.timestep_limit
    stepsize = tf.Variable(initial_value=np.float32(np.array(0.03)), name='stepsize')
    inputs, loss, loss_sampled = policy.update_info
    optim = kfac.KfacOptimizer(learning_rate=stepsize, cold_lr=stepsize*(1-0.9), momentum=0.9, kfac_update=2,\
                                epsilon=1e-2, stats_decay=0.99, async=1, cold_iter=1,
                                weight_decay_dict=policy.wd_dict, max_grad_norm=None)
    pi_var_list = []
    for var in tf.trainable_variables():
        if "pi" in var.name:
            pi_var_list.append(var)

    update_op, q_runner = optim.minimize(loss, loss_sampled, var_list=pi_var_list)
    do_update = U.function(inputs, update_op)
    U.initialize()

    #changes
    if fname != None and tf.train.checkpoint_exists(fname):
        saver = tf.train.Saver()
        saver.restore(tf.get_default_session(), fname)
        logger.log("Model loaded from file {}".format(fname))
        
    # start queue runners
    enqueue_threads = []
    coord = tf.train.Coordinator()
    for qr in [q_runner, vf.q_runner]:
        assert (qr != None)
        enqueue_threads.extend(qr.create_threads(tf.get_default_session(), coord=coord, start=True))

    i = 0
    timesteps_so_far = 0
    while True:
        if timesteps_so_far > num_timesteps:
            break
        logger.log("********** Iteration %i ************"%i)

        #Save model every 100 iterations
        if fname != None and (i % 10 == 9):
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)
            logger.log("Model saved to file {}".format(fname))
            env.seed()
            
        # Collect paths until we have enough timesteps
        timesteps_this_batch = 0
        paths = []
        while True:
            path = rollout(env, policy, max_pathlength, animate=(len(paths)==0 and (i % 10 == 0) and animate), obfilter=obfilter)
            paths.append(path)
            n = pathlength(path)
            timesteps_this_batch += n
            timesteps_so_far += n
            if timesteps_this_batch > timesteps_per_batch:
                break

        # Estimate advantage function
        vtargs = []
        advs = []
        for path in paths:
            rew_t = path["reward"]
            return_t = common.discount(rew_t, gamma)
            vtargs.append(return_t)
            vpred_t = vf.predict(path)
            vpred_t = np.append(vpred_t, 0.0 if path["terminated"] else vpred_t[-1])
            delta_t = rew_t + gamma*vpred_t[1:] - vpred_t[:-1]
            adv_t = common.discount(delta_t, gamma * lam)
            advs.append(adv_t)
        # Update value function
        vf.fit(paths, vtargs)

        # Build arrays for policy update
        ob_no = np.concatenate([path["observation"] for path in paths])
        action_na = np.concatenate([path["action"] for path in paths])
        oldac_dist = np.concatenate([path["action_dist"] for path in paths])
        adv_n = np.concatenate(advs)
        standardized_adv_n = (adv_n - adv_n.mean()) / (adv_n.std() + 1e-8)

        # Policy update
        do_update(ob_no, action_na, standardized_adv_n)

        min_stepsize = np.float32(1e-8)
        max_stepsize = np.float32(1e0)
        # Adjust stepsize
        kl = policy.compute_kl(ob_no, oldac_dist)
        if kl > desired_kl * 2:
            logger.log("kl too high")
            tf.assign(stepsize, tf.maximum(min_stepsize, stepsize / 1.5)).eval()
        elif kl < desired_kl / 2:
            logger.log("kl too low")
            tf.assign(stepsize, tf.minimum(max_stepsize, stepsize * 1.5)).eval()
        else:
            logger.log("kl just right!")

        logger.record_tabular("EpRewMean", np.mean([path["reward"].sum() for path in paths]))
        logger.record_tabular("EpRewSEM", np.std([path["reward"].sum()/np.sqrt(len(paths)) for path in paths]))
        logger.record_tabular("EpLenMean", np.mean([pathlength(path) for path in paths]))
        logger.record_tabular("KL", kl)
        if callback:
            callback()
        logger.dump_tabular()
        i += 1

    if fname != None:
        os.makedirs(os.path.dirname(fname), exist_ok=True)
        saver = tf.train.Saver()
        saver.save(tf.get_default_session(), fname)
        logger.log("Model saved to file {}".format(fname))
        env.seed()
    coord.request_stop()
    coord.join(enqueue_threads)
示例#27
0
def learn(
        env,
        q_func,  # input obs,num od actions etc and obtain q value for each action
        num_actions=16,  # available actions: up down left right
        lr=5e-4,
        max_timesteps=100000,
        buffer_size=50000,  # size of the replay buffer
        exploration_fraction=0.1,  # during the first 10% training period, exploration rate is decreased from 1 to 0.02
        exploration_final_eps=0.02,  # final value of random action probability
        train_freq=1,  # update the model every `train_freq` steps.
        batch_size=32,  # size of a batched sampled from replay buffer for training
        print_freq=1,
        checkpoint_freq=10000,
        learning_starts=1000,  # time for the model to collect transitions before learning starts
        gamma=1.0,
        target_network_update_freq=500,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,  # beta keeps to be beta0
        prioritized_replay_eps=1e-6,
        num_cpu=16,  # number of cpus to use for training
        param_noise=False,  # whether or not to use parameter space noise
        param_noise_threshold=0.05,
        callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(
        name
    ):  # Creates a placeholder for a batch of tensors of a given shape and dtype
        return U_b.BatchInput((16, 16), name=name)

    act_x, train_x, update_target_x, debug_x = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,  #   clip gradient norms to this value
        scope="deepq_x")

    act_y, train_y, update_target_y, debug_y = deepq.build_train(  #because there are two players in the game
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_y")

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_x = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        replay_buffer_y = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule_x = LinearSchedule(
            prioritized_replay_beta_iters,
            initial_p=prioritized_replay_beta0,  # 0.4->1
            final_p=1.0)

        beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)
    else:
        replay_buffer_x = ReplayBuffer(buffer_size)
        replay_buffer_y = ReplayBuffer(buffer_size)

        beta_schedule_x = None
        beta_schedule_y = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.  ---环境初始化
    U.initialize()
    update_target_x()
    update_target_y()
    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()  # start a new episode

    # Select all marines first      ---选择所有个体,获得新的观察
    obs = env.step(actions=[
        sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
    ])  # Apply actions, step the world forward, and return observations.

    # 查看返回的字典中屏幕中的目标关系分布图:1表示着地图中个体的位置,3表示着矿物的位置,就是终端的矩阵图
    player_relative = obs[0].observation["feature_screen"][
        _PLAYER_RELATIVE]  #obs is a 'TimeStep' whose type is tuple of ['step_type', 'reward', 'discount', 'observation'];step_type.first or mid or last
    # 矿的位置 0,1矩阵分布
    screen = (player_relative == _PLAYER_NEUTRAL).astype(
        int
    )  #+ path_memory   screen=1 or 0  to indicate the location of mineral
    # 队友的位置,给出行列信息
    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero(
    )  #the location of team member: row, col <-> y,x

    # print(player_relative)
    # print('*************')
    # print(screen)
    # print(_PLAYER_FRIENDLY)
    #
    # print(player_x)
    # print(player_y)
    # print('ssss)

    # if (len(player_x) == 0):
    #   player_x = np.array([0])
    #   # print('player_x from null to 0')
    #   # print(player_x)
    # if (len(player_y) == 0):
    #   player_y = np.array([0])
    #   # print('player_y from null to 0')
    #   # print(player_y)

    player = [int(player_x.mean()), int(player_y.mean())]

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join("model/", "mineral_shards")  #给了一个模型保存路径
        print(model_file)

        for t in range(max_timesteps):
            # print('timestep=',t)
            if callback is not None:
                if callback(locals(), globals()):
                    break

            # Take action and update exploration to the newest value--更新探索并采取动作
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)  # 输出一个1->0.02之间的值
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            # actions obtained after exploration
            action_x = act_x(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
            # print('action_x is ',action_x)

            action_y = act_y(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
            # print('action_y is ',action_y)
            reset = False

            # coord = [player[0], player[1]]
            rew = 0  #reward

            coord = [action_x, action_y]

            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
            # obs = env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # else:
            #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

            obs = env.step(actions=new_action)

            player_relative = obs[0].observation["feature_screen"][
                _PLAYER_RELATIVE]
            # print(player_relative)
            new_screen = (player_relative == _PLAYER_NEUTRAL).astype(int)

            # print(_PLAYER_FRIENDLY)

            # print(player_x)
            # print(player_y)
            # print('ssssss2')

            # if (len(player_x) == 0):
            #   player_x = np.array([0])
            #   # print('player_x from null to 0')
            #   # print(player_x)
            # if (len(player_y) == 0):
            #   player_y = np.array([0])
            #   # print('player_y from null to 0')
            #   # print(player_y)

            # player = [int(player_x.mean()), int(player_y.mean())]

            rew = obs[0].reward

            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer_x.add(screen, action_x, rew, new_screen, float(done))
            replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

            screen = new_screen

            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                # player_relative = obs[0].observation["feature_screen"][_PLAYER_RELATIVE]
                # screent = (player_relative == _PLAYER_NEUTRAL).astype(int)
                #
                # player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
                # player = [int(player_x.mean()), int(player_y.mean())]

                # Select all marines first
                env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
                episode_rewards.append(0.0)
                # print("episode_rewards is ", episode_rewards)
                print('num_episodes is', len(episode_rewards))

                #episode_minerals.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:  #train_freq=1: update the model every `train_freq` steps
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:

                    experience_x = replay_buffer_x.sample(
                        batch_size, beta=beta_schedule_x.value(t))
                    (obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x,
                     weights_x, batch_idxes_x) = experience_x

                    experience_y = replay_buffer_y.sample(
                        batch_size, beta=beta_schedule_y.value(t))
                    (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y,
                     weights_y, batch_idxes_y) = experience_y
                else:

                    obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x = replay_buffer_x.sample(
                        batch_size)
                    weights_x, batch_idxes_x = np.ones_like(
                        rewards_x
                    ), None  # weights_x is an array padded with 1 which has the same shape as rewards_x

                    obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(
                        batch_size)
                    weights_y, batch_idxes_y = np.ones_like(rewards_y), None

                td_errors_x = train_x(obses_t_x, actions_x, rewards_x,
                                      obses_tp1_x, dones_x, weights_x)

                td_errors_y = train_y(obses_t_y, actions_y, rewards_y,
                                      obses_tp1_y, dones_y, weights_y)

                if prioritized_replay:
                    new_priorities_x = np.abs(
                        td_errors_x) + prioritized_replay_eps
                    new_priorities_y = np.abs(
                        td_errors_y) + prioritized_replay_eps
                    replay_buffer_x.update_priorities(batch_idxes_x,
                                                      new_priorities_x)
                    replay_buffer_y.update_priorities(batch_idxes_y,
                                                      new_priorities_y)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target_x()
                update_target_y()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]),
                                      1)  # round: sishewuru value
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act_x), ActWrapper(act_y)
示例#28
0
def learn(
        env,
        policy_fn,
        *,
        batch_size,  # what to train on
        task_horizon,
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    timesteps_per_batch = batch_size * task_horizon
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space)
    oldpi = policy_fn("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     batch_size,
                                     task_horizon,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            print('DOT: %s' % np.dot(stepdir, g))
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ob"], seg["ac"],
                   seg["rew"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, states, actions, rewards = map(flatten_lists,
                                                   zip(*listoflrpairs))
        #lenbuffer.extend(lens)
        #rewbuffer.extend(rews)

        #Use this to print policy params:
        #print(pi.eval_param())

        #J_hat
        '''
        J_hat, var_J = pi.eval_performance(states,
                                    actions,
                                    rewards,
                                    lens,
                                    behavioral=oldpi,
                                    per_decision=False,
                                    gamma=gamma,
                                    get_var=True)
        logger.record_tabular("J_hat", J_hat)
        logger.record_tabular("var_J", var_J)
        '''
        logger.record_tabular("EpLenMean", np.mean(lens))
        logger.record_tabular("EpRewMean", np.mean(rews))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
示例#29
0
    def train(self):
        num_steps = self.nb_epochs * self.nb_epoch_cycles * self.nb_rollout_steps
        rws = []
        # Use a single rollout worker for now
        for i in range(1):
            rw = RolloutWorker(self.env_id, self.agent, num_steps,self.run_name, LinearSchedule(2e5, initial_p=self.reset_to_demo_rate, final_p=0.1), i, self.demo_terminality)
            thread = Thread(target=rw.exec_rollouts, daemon=True)
            thread.start()
            rws.append(rw)
        eval_episodes = 1
        final_evals = []
        iteration = self.num_pretrain_steps
        for epoch in range(self.nb_epochs):
            for cycle in range(self.nb_epoch_cycles):
                print ("Cycle: {}/{}".format(cycle, self.nb_epoch_cycles) +
                       "["+ "-" * cycle + " " * (self.nb_epoch_cycles - cycle) + "]"
                 , end="\r")
                self.agent.memory.grow_limit(self.nb_rollout_steps)
                for t_train in range(self.nb_train_steps):
                    cl, al = self.agent.train(iteration)
                    iteration += 1
                    if iteration % self.policy_and_target_update_period == 0:
                        self.agent.update_target_net()
            logger.record_tabular("epoch", epoch)
            logger.record_tabular("total transitions", self.agent.memory.total_transitions)
            logger.record_tabular("run_name", self.run_name)
            all_rewards = list(itertools.chain(*[rw.epoch_rewards for rw in rws]))
            all_qs = list(itertools.chain(*[rw.epoch_qs for rw in rws]))
            logger.record_tabular("rollout_rewards", np.mean(all_rewards) if all_rewards else "none")
            logger.record_tabular("rollout_qs", np.mean(all_qs) if all_qs else "none")
            for rw in rws:
                rw.advance_epoch()
            ### Evaluate #####
            print ("Executed epoch cycles, starting the evaluation.")
            eval_obs0, aux0, state0 = self.eval_env.reset(), self.eval_env.get_aux(), self.eval_env.get_state()
            eval_episode_reward = 0.
            eval_episode_rewards = []
            eval_qs = []
            if self.render_eval:
                renderer = Renderer("eval", self.run_name, epoch)
            for eval_episode in range(self.nb_eval_steps):

                eval_done = False
                print ("Evaluation {}/{}".format(eval_episode, self.nb_eval_steps), end="\r")
                while not eval_done:
                    eval_action, eval_q, object_conf, gripper, target = self.agent.pi(eval_obs0, aux0, state0, apply_noise=False, compute_Q=True)
                    eval_obs0, eval_r, eval_done, eval_info = self.eval_env.step( eval_action)
                    aux0, state0 = self.eval_env.get_aux(), self.eval_env.get_state()
                    eval_qs.append(eval_q)

                    if self.render_eval:
                        frame = self.eval_env.render(mode="rgb_array")
                        renderer.record_frame(frame, eval_r, eval_action, eval_q)
                    eval_episode_reward += eval_r

                    actual_object_conf = state0[8:11]
                    actual_grip = state0[0:3]
                    actual_target = state0[3:6]

                    diff_object_conf, diff_grip, diff_target = np.linalg.norm(actual_object_conf - object_conf), np.linalg.norm(actual_grip - gripper), np.linalg.norm(actual_target - target)
                    self.agent.save_aux_prediction(diff_object_conf, diff_grip, diff_target)
                eval_obs0, aux0, state0 = self.eval_env.reset(), self.eval_env.get_aux(), self.eval_env.get_state()
                eval_episode_rewards.append(eval_episode_reward)
                self.agent.save_eval_reward(eval_episode_reward, eval_episodes)
                eval_episodes += 1
                eval_episode_reward = 0.

            if self.render_eval:
                renderer.finalize_and_upload()
            if eval_episode_rewards and epoch > self.nb_epochs - 5:
                final_evals.append(np.mean(eval_episode_rewards))
            if  epoch % 5  == 0 and self.save_folder:
                path = self.save_folder + "/" +self.run_name + "epoch{}.ckpt".format(epoch)
                print("Saving model to " + path)
                save_path = self.saver.save(self.sess, path)

            logger.record_tabular("eval_rewards", np.mean(eval_episode_rewards) if eval_episode_rewards else "none")
            logger.record_tabular("eval_qs", np.mean(eval_qs) if eval_qs else "none")
            logger.dump_tabular()
            logger.info('')
        return - np.mean(final_evals)
def Test(env,
         nb_epochs,
         nb_epoch_cycles,
         render_eval,
         reward_scale,
         render,
         param_noise,
         actor,
         critic,
         normalize_returns,
         normalize_observations,
         critic_l2_reg,
         actor_lr,
         critic_lr,
         action_noise,
         popart,
         gamma,
         clip_norm,
         nb_train_steps,
         nb_rollout_steps,
         nb_eval_steps,
         batch_size,
         memory,
         tau=0.01,
         eval_env=None,
         param_noise_adaption_interval=50,
         restore=False):

    rank = MPI.COMM_WORLD.Get_rank()
    max_action = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.2])

    logger.info(
        'scaling actions by {} before executing in env'.format(max_action))
    model_directory = '/home/rvsa/RL_project/Peg_in_Hole/1-baselines/baselines/ddpg/result/'

    agent = DDPG(actor,
                 critic,
                 memory,
                 env.state_dim,
                 env.action_dim,
                 gamma=gamma,
                 tau=tau,
                 normalize_returns=normalize_returns,
                 normalize_observations=normalize_observations,
                 batch_size=batch_size,
                 action_noise=None,
                 param_noise=None,
                 critic_l2_reg=critic_l2_reg,
                 actor_lr=actor_lr,
                 critic_lr=critic_lr,
                 enable_popart=popart,
                 clip_norm=clip_norm,
                 reward_scale=reward_scale)

    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))
    """Set up logging stuff only for a single worker"""
    saver = tf.train.Saver()

    # if rank == 0:
    #     saver = tf.train.Saver()
    # else:
    #     saver = None
    # eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)

    with U.single_threaded_session() as sess:
        """Prepare everything"""
        if restore:
            saver = tf.train.import_meta_graph(model_directory +
                                               'model_fuzzy_new_3.meta')
            agent.restore_model(model_directory, saver, sess)
        else:
            agent.initialize(sess)
            sess.graph.finalize()
        """Agent Reset"""
        agent.reset()
        """Force calibration"""
        # env.robot_control.CalibFCforce()

        learning_epochs = 15
        delay_rate = np.power(10, 1 / learning_epochs)
        """Revise the last epochs"""
        # last_epochs = 0
        # actor_lr = actor_lr/np.power(delay_rate, last_epochs)
        # critic_lr = critic_lr/np.power(delay_rate, last_epochs)

        start_time = time.time()
        epoch_episode_rewards = []
        epoch_episode_steps = []
        mean_rollout_time = []
        mean_epoch_rewards = []
        mean_epoch_steps = []
        mean_epoch_time = []
        epoch_adaptive_distances = []

        epoch_actions = []
        epoch_qs = []

        epoch_episodes = 0
        total_episodes = 0
        successful_rate = []
        Force_moments = np.zeros((1, 6))
        for epoch in range(nb_epochs):
            """Show the result for cycle 20 times and Save the model"""
            # epoch_actor_losses = []
            # epoch_critic_losses = []
            """Delay the learning rate"""
            # epoch_actor_lr = actor_lr/delay_rate
            # epoch_critic_lr = critic_lr/delay_rate
            epoch_start_time = time.time()

            force_array = np.zeros((150, 6))
            for cycle in range(nb_epoch_cycles):
                """environment reset """
                agent.reset()
                obs = env.reset()
                episode_reward = 0.
                done = False
                rollout_start_time = time.time()
                forcemoments = []
                for t_rollout in range(nb_rollout_steps):
                    """Predict next action"""
                    action, q = agent.pi(obs,
                                         apply_noise=False,
                                         compute_Q=True)
                    assert action.shape[0] == env.action_dim
                    """scale for execution in env"""
                    new_obs, r, done, info = env.step(action, t_rollout)
                    logger.info("The maximum force:" +
                                str(max(abs(new_obs[0:3]))) +
                                " The maximum moments:" +
                                str(max(abs(new_obs[3:6]))))
                    episode_reward += r

                    force_array[t_rollout, :] = new_obs[0:6]
                    """Plot the force and moments"""
                    if render:
                        forcemoments.append(new_obs[0:6])
                        Force_moments.append(new_obs[0:6])
                        env.plot_force(forcemoments, t_rollout + 1)

                    epoch_actions.append(action)
                    epoch_qs.append(q)
                    agent.store_transition(obs, action, r, new_obs, done)
                    obs = new_obs
                    """Episode done and start pull the pegs step by step"""
                    if done:
                        logger.info('Peg-in-hole assembly done!!!')
                        epoch_episode_rewards.append(episode_reward)
                        episode_rewards_history.append(episode_reward)
                        epoch_episode_steps.append(t_rollout)
                        epoch_episodes += 1
                        pull_done = False
                        pull_safe = True
                        while pull_done is False and pull_safe:

                            pull_done, pull_safe = env.pull_up()  # True env

                        # if pull_safe is False:
                        #     logger.info('###############################################')
                        #     logger.info('Pull up the pegs failed for the exceed force!!!')
                        #     exit()
                        break
                    """Episode failed and start pull the pegs step by step"""
                    if info is False:
                        logger.info(
                            'Peg-in-hole assembly failed for the exceed force!!!'
                        )
                        pull_done = False
                        pull_safe = True
                        while pull_done is False and pull_safe:

                            pull_done, pull_safe = env.pull_up()  # True env

                        # if pull_safe is False:
                        #     logger.info('###############################################')
                        #     logger.info('Peg-in-hole assembly failed for the exceed force!!!')
                        #     exit()
                        break

                total_episodes += 1
                roluout_time = time.time() - rollout_start_time
                mean_rollout_time.append(roluout_time)

                Force_moments = np.concatenate((Force_moments, force_array),
                                               axis=0)

                if t_rollout == nb_rollout_steps - 1:
                    logger.info(
                        'Peg-in-hole assembly failed for exceed steps!!!')
                    logger.info('The deepest position'.format(obs[8]))
                """train model for nb_train_steps times"""
                # for t_train in range(nb_train_steps):
                #     cl, al = agent.train(epoch_actor_lr, epoch_critic_lr)
                #     epoch_critic_losses.append(cl)
                #     epoch_actor_losses.append(al)
                #     agent.update_target_net()
                """Save the force figure"""
                env.save_figure(model_directory + str(cycle) +
                                'Force_figure.eps')
            """Save the memory data"""
            # agent.save_data()
            """Adapt param noise, if necessary"""
            # if memory.nb_entries >= batch_size and param_noise is not None:
            #     distance = agent.adapt_param_noise()
            #     epoch_adaptive_distances.append(distance)
            """write the result into the summary"""
            # agent.log_scalar("actor_loss", mpi_mean(epoch_actor_losses), epoch_episodes)
            # agent.log_scalar("critic_loss", mpi_mean(epoch_critic_losses), epoch_episodes)
            # agent.log_scalar("episode_score", mpi_mean(epoch_episode_rewards), epoch_episodes)
            # agent.log_scalar("episode_steps", mpi_mean(epoch_episode_steps), epoch_episodes)
            """Log stats."""
            epoch_train_duration = time.time() - epoch_start_time
            mean_epoch_time.append(epoch_train_duration)
            """Successful rate"""
            successful_rate.append(epoch_episodes / total_episodes)
            stats = agent.get_stats()
            combined_stats = {}

            for key in sorted(stats.keys()):
                combined_stats[key] = mpi_mean(stats[key])
            """Rollout statistics. compute the mean of the total nb_epoch_cycles"""
            combined_stats['rollout/rewards'] = mpi_mean(epoch_episode_rewards)
            mean_epoch_rewards.append(mpi_mean(epoch_episode_rewards))
            combined_stats['rollout/episode_steps'] = mpi_mean(
                epoch_episode_steps)
            mean_epoch_steps.append(mpi_mean(epoch_episode_steps))
            # combined_stats['rollout/episodes'] = mpi_sum(epoch_episodes)
            combined_stats['rollout/actions_mean'] = mpi_mean(epoch_actions)
            combined_stats['rollout/actions_std'] = mpi_std(epoch_actions)
            combined_stats['rollout/Q_mean'] = mpi_mean(epoch_qs)
            """Train statistics"""
            # combined_stats['train/loss_actor'] = mpi_mean(epoch_actor_losses)
            # combined_stats['train/loss_critic'] = mpi_mean(epoch_critic_losses)
            # combined_stats['train/param_noise_distance'] = mpi_mean(epoch_adaptive_distances)
            """Total statistics"""
            combined_stats['total/episodes'] = mpi_sum(epoch_episodes)
            combined_stats['total/epochs'] = epoch + 1
            """Plot reward and steps"""
            # env.plot_rewards(epoch_episode_rewards, epoch_episodes)
            # env.plot_steps(epoch_episode_steps, epoch_episodes)
            """save the model and the result"""
            # saver.save(sess, model_directory + 'model_truth_general')
            """Save data"""
            pd_epoch_train_duration = pd.DataFrame(mean_epoch_time)
            pd_epoch_train_duration.to_csv(
                'data/large_duration_evaluation_before',
                sep=',',
                header=False,
                index=False)

            pd_rollout_time = pd.DataFrame(mean_rollout_time)
            pd_rollout_time.to_csv('data/large_rollout_time_evaluation_before',
                                   sep=',',
                                   header=False,
                                   index=False)

            # pd_successful_rate = pd.DataFrame(successful_rate)
            # pd_successful_rate.to_csv('data/successful_rate_evaluation_fail_1', sep=',', header=False, index=False)

            pd_Force_and_moments = pd.DataFrame(Force_moments)
            pd_Force_and_moments.to_csv(
                "data/large_force_moments_evaluation_before",
                sep=',',
                header=False,
                index=False)

            re_rewards = pd.DataFrame(epoch_episode_rewards)
            re_rewards.to_csv("data/large_re_true_rewards_evaluation_before",
                              sep=',',
                              header=False,
                              index=False)

            re_steps = pd.DataFrame(epoch_episode_steps)
            re_steps.to_csv("data/large_re_true_steps_evaluation_before",
                            sep=',',
                            header=False,
                            index=False)

            for key in sorted(combined_stats.keys()):
                logger.record_tabular(key, combined_stats[key])

            logger.dump_tabular()
            logger.info('')
            logdir = logger.get_dir()
            if rank == 0 and logdir:
                if hasattr(env, 'get_state'):
                    with open(os.path.join(logdir, 'env_state.pkl'),
                              'wb') as f:
                        pickle.dump(env.get_state(), f)
                if eval_env and hasattr(eval_env, 'get_state'):
                    with open(os.path.join(logdir, 'eval_env_state.pkl'),
                              'wb') as f:
                        pickle.dump(eval_env.get_state(), f)
示例#31
0
文件: ddpg.py 项目: LanxinL/baselines
def learn(
        network,
        env,
        seed=None,
        total_timesteps=None,
        nb_epochs=None,  # with default settings, perform 1M steps total
        nb_epoch_cycles=20,
        nb_rollout_steps=100,
        reward_scale=1.0,
        render=False,
        render_eval=False,
        noise_type='adaptive-param_0.2',
        normalize_returns=False,
        normalize_observations=True,
        critic_l2_reg=1e-2,
        actor_lr=1e-4,
        critic_lr=1e-3,
        popart=False,
        gamma=0.99,
        clip_norm=None,
        nb_train_steps=50,  # per epoch cycle and MPI worker,
        nb_eval_steps=100,
        batch_size=64,  # per MPI worker
        tau=0.01,
        eval_env=None,
        param_noise_adaption_interval=50,
        **network_kwargs):

    set_global_seeds(seed)

    if total_timesteps is not None:
        assert nb_epochs is None
        nb_epochs = int(total_timesteps) // (nb_epoch_cycles *
                                             nb_rollout_steps)
    else:
        nb_epochs = 500

    if MPI is not None:
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        rank = 0

    nb_actions = env.action_space.shape[-1]
    assert (np.abs(env.action_space.low) == env.action_space.high
            ).all()  # we assume symmetric actions.

    memory = Memory(limit=int(1e6),
                    action_shape=env.action_space.shape,
                    observation_shape=env.observation_space.shape)
    critic = Critic(network=network, **network_kwargs)
    actor = Actor(nb_actions, network=network, **network_kwargs)

    action_noise = None
    param_noise = None
    if noise_type is not None:
        for current_noise_type in noise_type.split(','):
            current_noise_type = current_noise_type.strip()
            if current_noise_type == 'none':
                pass
            elif 'adaptive-param' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                param_noise = AdaptiveParamNoiseSpec(
                    initial_stddev=float(stddev),
                    desired_action_stddev=float(stddev))
            elif 'normal' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = NormalActionNoise(mu=np.zeros(nb_actions),
                                                 sigma=float(stddev) *
                                                 np.ones(nb_actions))
            elif 'ou' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = OrnsteinUhlenbeckActionNoise(
                    mu=np.zeros(nb_actions),
                    sigma=float(stddev) * np.ones(nb_actions))
            else:
                raise RuntimeError(
                    'unknown noise type "{}"'.format(current_noise_type))

    max_action = env.action_space.high
    logger.info(
        'scaling actions by {} before executing in env'.format(max_action))

    agent = DDPG(actor,
                 critic,
                 memory,
                 env.observation_space.shape,
                 env.action_space.shape,
                 gamma=gamma,
                 tau=tau,
                 normalize_returns=normalize_returns,
                 normalize_observations=normalize_observations,
                 batch_size=batch_size,
                 action_noise=action_noise,
                 param_noise=param_noise,
                 critic_l2_reg=critic_l2_reg,
                 actor_lr=actor_lr,
                 critic_lr=critic_lr,
                 enable_popart=popart,
                 clip_norm=clip_norm,
                 reward_scale=reward_scale)
    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)
    sess = U.get_session()
    # Prepare everything.
    agent.initialize(sess)
    sess.graph.finalize()

    agent.reset()

    obs = env.reset()
    if eval_env is not None:
        eval_obs = eval_env.reset()
    nenvs = obs.shape[0]

    episode_reward = np.zeros(nenvs, dtype=np.float32)  #vector
    episode_step = np.zeros(nenvs, dtype=int)  # vector
    episodes = 0  #scalar
    t = 0  # scalar

    epoch = 0

    if os.path.exists(os.getenv("LOCK_FILE")):
        os.remove(os.getenv("LOCK_FILE"))
        logger.log("===== unlock ====")
    else:
        logger.log("===== no lock file, please check sh ====")

    start_time = time.time()

    epoch_actions = []
    epoch_qs = []
    epoch_episodes = 0
    epinfobuf = deque(maxlen=100)
    if eval_env is not None:
        eval_epinfobuf = deque(maxlen=100)
    for epoch in range(nb_epochs):
        epinfos, eval_epinfos = [], []
        for cycle in range(nb_epoch_cycles):
            # Perform rollouts.
            if nenvs > 1:
                # if simulating multiple envs in parallel, impossible to reset agent at the end of the episode in each
                # of the environments, so resetting here instead
                agent.reset()
            for t_rollout in range(nb_rollout_steps):
                # Predict next action.
                action, q, _, _ = agent.step(obs,
                                             apply_noise=True,
                                             compute_Q=True)

                # Execute next action.
                if rank == 0 and render:
                    env.render()

                # max_action is of dimension A, whereas action is dimension (nenvs, A) - the multiplication gets broadcasted to the batch
                new_obs, r, done, infos = env.step(
                    max_action * action
                )  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                # note these outputs are batched from vecenv

                for info in infos:
                    maybeepinfo = info.get('episode')
                    if maybeepinfo: epinfos.append(maybeepinfo)

                t += 1
                if rank == 0 and render:
                    env.render()

                # Book-keeping.
                epoch_actions.append(action)
                epoch_qs.append(q)
                agent.store_transition(
                    obs, action, r, new_obs, done
                )  #the batched data will be unrolled in memory.py's append.

                obs = new_obs

            # Train.
            epoch_actor_losses = []
            epoch_critic_losses = []
            epoch_adaptive_distances = []
            for t_train in range(nb_train_steps):
                # Adapt param noise, if necessary.
                if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0:
                    distance = agent.adapt_param_noise()
                    epoch_adaptive_distances.append(distance)

                cl, al = agent.train()
                epoch_critic_losses.append(cl)
                epoch_actor_losses.append(al)
                agent.update_target_net()

            # Evaluate.
            eval_episode_rewards = []
            eval_qs = []
            if eval_env is not None:
                nenvs_eval = eval_obs.shape[0]
                eval_episode_reward = np.zeros(nenvs_eval, dtype=np.float32)
                for t_rollout in range(nb_eval_steps):
                    eval_action, eval_q, _, _ = agent.step(eval_obs,
                                                           apply_noise=False,
                                                           compute_Q=True)
                    eval_obs, eval_r, eval_done, eval_infos = eval_env.step(
                        max_action * eval_action
                    )  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])

                    for eval_info in eval_info:
                        maybeepinfo = eval_info.get('episode')
                        if maybeepinfo: eval_epinfos.append(maybeepinfo)

                    if render_eval:
                        eval_env.render()
                    eval_episode_reward += eval_r

                    eval_qs.append(eval_q)
                    for d in range(len(eval_done)):
                        if eval_done[d]:
                            eval_episode_rewards.append(eval_episode_reward[d])
                            eval_episode_rewards_history.append(
                                eval_episode_reward[d])
                            eval_episode_reward[d] = 0.0

        epinfobuf.extend(epinfos)
        if eval_env is not None:
            eval_epinfobuf.extend(eval_epinfos)

        if MPI is not None:
            mpi_size = MPI.COMM_WORLD.Get_size()
        else:
            mpi_size = 1

        # Log stats.
        # XXX shouldn't call np.mean on variable length lists
        duration = time.time() - start_time
        stats = agent.get_stats()
        combined_stats = stats.copy()
        combined_stats['rollout/return'] = safemean(
            [epinfo['r'] for epinfo in epinfobuf])
        combined_stats['rollout/episode_steps'] = safemean(
            [epinfo['l'] for epinfo in epinfobuf])
        combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
        combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
        combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses)
        combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses)
        combined_stats['train/param_noise_distance'] = np.mean(
            epoch_adaptive_distances)
        combined_stats['total/duration'] = duration
        combined_stats['total/steps_per_second'] = float(t) / float(duration)
        combined_stats['total/episodes'] = episodes
        combined_stats['rollout/episodes'] = epoch_episodes
        combined_stats['rollout/actions_std'] = np.std(epoch_actions)
        # Evaluation statistics.
        if eval_env is not None:
            combined_stats['eval/return'] = safemean(
                [epinfo['r'] for epinfo in eval_epinfobuf])
            combined_stats['eval/Q'] = eval_qs

        def as_scalar(x):
            if isinstance(x, np.ndarray):
                assert x.size == 1
                return x[0]
            elif np.isscalar(x):
                return x
            else:
                raise ValueError('expected scalar, got %s' % x)

        combined_stats_sums = np.array(
            [np.array(x).flatten()[0] for x in combined_stats.values()])
        if MPI is not None:
            combined_stats_sums = MPI.COMM_WORLD.allreduce(combined_stats_sums)

        combined_stats = {
            k: v / mpi_size
            for (k, v) in zip(combined_stats.keys(), combined_stats_sums)
        }

        # Total statistics.
        combined_stats['total/epochs'] = epoch + 1
        combined_stats['total/steps'] = t

        for key in sorted(combined_stats.keys()):
            logger.record_tabular(key, combined_stats[key])

        if rank == 0:
            logger.dump_tabular()
        logger.info('')
        logdir = logger.get_dir()
        if rank == 0 and logdir:
            if hasattr(env, 'get_state'):
                with open(os.path.join(logdir, 'env_state.pkl'), 'wb') as f:
                    pickle.dump(env.get_state(), f)
            if eval_env and hasattr(eval_env, 'get_state'):
                with open(os.path.join(logdir, 'eval_env_state.pkl'),
                          'wb') as f:
                    pickle.dump(eval_env.get_state(), f)

    return agent
示例#32
0
def learn(policy,
          env,
          seed,
          total_timesteps=int(40e6),
          gamma=0.99,
          log_interval=1,
          nprocs=24,
          nscripts=12,
          nsteps=20,
          nstack=4,
          ent_coef=0.01,
          vf_coef=0.5,
          vf_fisher_coef=1.0,
          lr=0.25,
          max_grad_norm=0.01,
          kfac_clip=0.001,
          save_interval=None,
          lrschedule='linear',
          callback=None):
  tf.reset_default_graph()
  set_global_seeds(seed)

  nenvs = nprocs
  ob_space = (32, 32, 3)  # env.observation_space
  ac_space = (32, 32)
  make_model = lambda : Model(policy, ob_space, ac_space, nenvs,
                              total_timesteps,
                              nprocs=nprocs,
                              nscripts=nscripts,
                              nsteps=nsteps,
                              nstack=nstack,
                              ent_coef=ent_coef,
                              vf_coef=vf_coef,
                              vf_fisher_coef=vf_fisher_coef,
                              lr=lr,
                              max_grad_norm=max_grad_norm,
                              kfac_clip=kfac_clip,
                              lrschedule=lrschedule)

  if save_interval and logger.get_dir():
    import cloudpickle
    with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
      fh.write(cloudpickle.dumps(make_model))
  model = make_model()
  print("make_model complete!")
  runner = Runner(
    env,
    model,
    nsteps=nsteps,
    nscripts=nscripts,
    nstack=nstack,
    gamma=gamma,
    callback=callback)
  nbatch = nenvs * nsteps
  tstart = time.time()
  #enqueue_threads = model.q_runner.create_threads(model.sess, coord=tf.train.Coordinator(), start=True)
  for update in range(1, total_timesteps // nbatch + 1):
    obs, states, rewards, masks, actions, xy0, xy1, values = runner.run()
    policy_loss, value_loss, policy_entropy, \
    policy_loss_xy0, policy_entropy_xy0, \
    policy_loss_xy1, policy_entropy_xy1, \
      = model.train(obs, states, rewards,
                    masks, actions,
                    xy0, xy1, values)

    model.old_obs = obs
    nseconds = time.time() - tstart
    fps = int((update * nbatch) / nseconds)
    if update % log_interval == 0 or update == 1:
      ev = explained_variance(values, rewards)
      logger.record_tabular("nupdates", update)
      logger.record_tabular("total_timesteps", update * nbatch)
      logger.record_tabular("fps", fps)
      logger.record_tabular("policy_entropy", float(policy_entropy))
      logger.record_tabular("policy_loss", float(policy_loss))

      logger.record_tabular("policy_loss_xy0", float(policy_loss_xy0))
      logger.record_tabular("policy_entropy_xy0",
                            float(policy_entropy_xy0))
      logger.record_tabular("policy_loss_xy1", float(policy_loss_xy1))
      logger.record_tabular("policy_entropy_xy1",
                            float(policy_entropy_xy1))
      # logger.record_tabular("policy_loss_y0", float(policy_loss_y0))
      # logger.record_tabular("policy_entropy_y0", float(policy_entropy_y0))

      logger.record_tabular("value_loss", float(value_loss))
      logger.record_tabular("explained_variance", float(ev))
      logger.dump_tabular()

    if save_interval and (update % save_interval == 0
                          or update == 1) and logger.get_dir():
      savepath = osp.join(logger.get_dir(), 'checkpoint%.5i' % update)
      print('Saving to', savepath)
      model.save(savepath)

  env.close()
示例#33
0
def learn(env_maker,
          pol_maker,
          sampler,
          gamma,
          n_episodes,
          horizon,
          max_iters,
          feature_fun=None,
          iw_norm='sn',
          bound='max-d2',
          max_offline_iters=10,
          max_search_ite=30,
          verbose=True,
          save_weights=True,
          delta=0.4,
          center_return=False,
          line_search_type='parabola'):

    #Initialization
    env = env_maker()
    pol = pol_maker('pol', env.observation_space, env.action_space)
    print(pol.draw_actor_params())
    newpol = pol_maker('newpol', env.observation_space, env.action_space)
    newpol.set_params(pol.eval_params())
    batch_size = n_episodes
    normalize = True if iw_norm in ('sn', 'rows', 'all') else False
    episodes_so_far = 0
    timesteps_so_far = 0
    tstart = time.time()

    if bound == 'std-d2':
        use_rmax = False
        use_renyi = True
    elif bound == 'max-d2':
        use_rmax = True
        use_renyi = True
    elif bound == 'max-ess':
        use_rmax = True
        use_renyi = False
    elif bound == 'std-ess':
        use_rmax = False
        use_renyi = False
    else:
        raise NotImplementedError

    if line_search_type == 'parabola':
        use_parabola = True
    elif line_search_type == 'binary':
        use_parabola = False
    else:
        raise NotImplementedError

    #Learning
    for it in range(max_iters):
        logger.log('\n********** Iteration %i ************' % it)
        rho = pol.eval_params()  #Higher-order-policy parameters
        if verbose > 1:
            logger.log('Higher-order parameters: ', rho)
        if save_weights:
            w_to_save = rho

        #Sampling (fixed batchsize)
        with timed('Sampling', verbose):
            if sampler:
                seg = sampler.collect(rho)
                lens, rets, disc_rets, actor_params = seg['lens'], seg[
                    'rets'], seg['disc_rets'], seg['actor_params']
            else:
                frozen_pol = pol.freeze()
                actor_params, rets, disc_rets, lens = [], [], [], []
                for ep in range(n_episodes):
                    theta = frozen_pol.resample()
                    actor_params.append(theta)
                    ret, disc_ret, ep_len = eval_trajectory(
                        env, frozen_pol, gamma, horizon, feature_fun)
                    rets.append(ret)
                    disc_rets.append(disc_ret)
                    lens.append(ep_len)

        #Normalize reward
        norm_disc_rets = np.array(disc_rets)
        if center_return:
            norm_disc_rets = norm_disc_rets - np.mean(norm_disc_rets)
        rmax = np.max(abs(norm_disc_rets))
        #Estimate online performance
        episodes_so_far += n_episodes
        timesteps_so_far += sum(lens)

        with timed('summaries before'):
            logger.log("Performance (plain, undiscounted): ",
                       np.mean(rets[-n_episodes:]))
            #Data regarding the episodes collected in this iteration
            logger.record_tabular("Iteration", it)
            logger.record_tabular(
                "InitialBound",
                newpol.eval_bound(actor_params, norm_disc_rets, pol, rmax,
                                  normalize, use_rmax, use_renyi, delta))
            logger.record_tabular("EpLenMean", np.mean(lens[-n_episodes:]))
            logger.record_tabular("EpRewMean",
                                  np.mean(norm_disc_rets[-n_episodes:]))
            logger.record_tabular("UndEpRewMean",
                                  np.mean(norm_disc_rets[-n_episodes:]))
            logger.record_tabular("EpThisIter", n_episodes)
            logger.record_tabular("EpisodesSoFar", episodes_so_far)
            logger.record_tabular("TimestepsSoFar", timesteps_so_far)
            logger.record_tabular("BatchSize", batch_size)
            logger.record_tabular("TimeElapsed", time.time() - tstart)

        #Optimization
        iter_type = 1
        with timed('offline optimization', verbose):
            rho, improvement = optimize_offline(
                pol,
                newpol,
                actor_params,
                norm_disc_rets,
                normalize=normalize,
                use_rmax=use_rmax,
                use_renyi=use_renyi,
                max_offline_ite=max_offline_iters,
                max_search_ite=max_search_ite,
                rmax=rmax,
                delta=delta,
                use_parabola=use_parabola,
                verbose=verbose)
            newpol.set_params(rho)

        #Save data
        if save_weights:
            logger.record_tabular('Weights', str(w_to_save))

        with timed('summaries after'):
            unn_iws = newpol.eval_iws(actor_params,
                                      behavioral=pol,
                                      normalize=False)
            iws = unn_iws / np.sum(unn_iws)
            ess = np.linalg.norm(unn_iws, 1)**2 / np.linalg.norm(unn_iws, 2)**2
            J, varJ = newpol.eval_performance(actor_params,
                                              norm_disc_rets,
                                              behavioral=pol)
            renyi = newpol.eval_renyi(pol)
            bound = newpol.eval_bound(actor_params, norm_disc_rets, pol, rmax,
                                      normalize, use_rmax, use_renyi, delta)

            #Data regarding the whole batch
            logger.record_tabular('BatchSize', batch_size)
            logger.record_tabular('IterType', iter_type)
            logger.record_tabular('Bound', bound)
            #Discounted, [centered]
            logger.record_tabular('InitialReturnMean', np.mean(norm_disc_rets))
            logger.record_tabular('InitialReturnMax', np.max(norm_disc_rets))
            logger.record_tabular('InitialReturnMin', np.min(norm_disc_rets))
            logger.record_tabular('InitialReturnStd', np.std(norm_disc_rets))
            logger.record_tabular('InitialReturnMin', np.min(norm_disc_rets))
            #Discounted, uncentered
            logger.record_tabular('UncReturnMean', np.mean(disc_rets))
            logger.record_tabular('UncReturnMax', np.max(disc_rets))
            logger.record_tabular('UncReturnMin', np.min(disc_rets))
            logger.record_tabular('UncReturnStd', np.std(disc_rets))
            logger.record_tabular('UncReturnMin', np.min(disc_rets))
            #Undiscounted, uncentered
            logger.record_tabular('PlainReturnMean', np.mean(rets))
            logger.record_tabular('PlainReturnMax', np.max(rets))
            logger.record_tabular('PlainReturnMin', np.min(rets))
            logger.record_tabular('PlainReturnStd', np.std(rets))
            logger.record_tabular('PlainReturnMin', np.min(rets))
            #Iws
            logger.record_tabular('D2', renyi)
            logger.record_tabular('ReturnMeanIw', J)
            logger.record_tabular('MaxIWNorm', np.max(iws))
            logger.record_tabular('MinIWNorm', np.min(iws))
            logger.record_tabular('MeanIWNorm', np.mean(iws))
            logger.record_tabular('StdIWNorm', np.std(iws))
            logger.record_tabular('MaxIW', np.max(unn_iws))
            logger.record_tabular('MinIW', np.min(unn_iws))
            logger.record_tabular('MeanIW', np.mean(unn_iws))
            logger.record_tabular('StdIW', np.std(unn_iws))
            logger.record_tabular('ESSClassic', ess)
            logger.record_tabular('ESSRenyi', batch_size / np.exp(renyi))

            logger.record_tabular("NBehaviorals", 1)  #dummy

        logger.dump_tabular()

        #Update behavioral
        pol.set_params(newpol.eval_params())
示例#34
0
def train(rollout_worker, evaluator, n_epochs, n_test_rollouts, n_episodes,
          n_train_batches, policy_save_interval, save_policies, **kwargs):
    global num_cpu
    rank = MPI.COMM_WORLD.Get_rank()
    latest_policy_path = os.path.join(logger.get_dir(), 'policy_latest.pkl')
    best_policy_path = os.path.join(logger.get_dir(), 'policy_best.pkl')
    periodic_policy_path = os.path.join(logger.get_dir(), 'policy_{}.pkl')

    best_success_rate = -np.inf
    best_early_stop_val = -np.inf
    success_rates = []
    # if the std dev of the success rate of the last epochs is larger than X do early stopping.
    n_epochs_avg_for_early_stop = 4
    early_stop_vals = deque(maxlen=n_epochs_avg_for_early_stop)

    done_training = False
    for epoch in range(n_epochs):
        # train
        logger.info("Training epoch {}".format(epoch))
        rollout_worker.clear_history()
        policy, time_durations = rollout_worker.generate_rollouts_update(
            n_episodes, n_train_batches)
        logger.info(
            'Time for epoch {}: {:.2f}. Rollout time: {:.2f}, Training time: {:.2f}'
            .format(epoch, time_durations[0], time_durations[1],
                    time_durations[2]))

        # eval
        logger.info("Evaluating epoch {}".format(epoch))
        evaluator.clear_history()

        for _ in range(n_test_rollouts):
            evaluator.generate_rollouts()

        # record logs
        logger.record_tabular('epoch', epoch)
        for key, val in evaluator.logs('test'):
            logger.record_tabular(key, mpi_average(val))
        for key, val in rollout_worker.logs('train'):
            logger.record_tabular(key, mpi_average(val))
        for key, val in policy.logs('policy'):
            logger.record_tabular(key, mpi_average(val))

        success_rate = mpi_average(evaluator.current_success_rate())
        success_rates.append(success_rate)

        early_stop_current_val = logger.getkvs()[
            kwargs['early_stop_data_column']]
        # print("Rank {} esv: {}".format(rank, early_stop_current_val))
        early_stop_vals.append(early_stop_current_val)

        if rank == 0:
            try:
                rollout_worker.policy.draw_hists(img_dir=logger.get_dir())
            except Exception as e:
                pass

            logger.info("Data_dir: {}".format(logger.get_dir()))
            logger.dump_tabular()

            # save latest policy
            evaluator.save_policy(latest_policy_path)

            if policy_save_interval > 0 and epoch % policy_save_interval == 0 and save_policies:
                policy_path = periodic_policy_path.format(epoch)
                logger.info(
                    'Saving periodic policy to {} ...'.format(policy_path))
                evaluator.save_policy(policy_path)

            # save the policy if it's better than the previous ones
            if kwargs['early_stop_data_column'] is None:
                if success_rate >= best_success_rate and save_policies:
                    best_success_rate = success_rate
                    logger.info(
                        'New best success rate: {}. Saving policy to {} ...'.
                        format(best_success_rate, best_policy_path))
                    evaluator.save_policy(best_policy_path)
            else:
                assert early_stop_current_val is not None, "Early stopping value should not be none."
                if early_stop_current_val >= best_early_stop_val and save_policies:
                    best_early_stop_val = early_stop_current_val
                    logger.info(
                        'New best value for {}: {}. Saving policy to {} ...'.
                        format(kwargs['early_stop_data_column'],
                               early_stop_current_val, best_policy_path))
                    evaluator.save_policy(best_policy_path)

        if len(early_stop_vals) >= n_epochs_avg_for_early_stop:
            avg = np.mean(early_stop_vals)
            logger.info('Mean of {} of last {} epochs: {}'.format(
                kwargs['early_stop_data_column'], n_epochs_avg_for_early_stop,
                avg))

            if avg >= kwargs['early_stop_threshold'] and avg >= kwargs[
                    'early_stop_threshold'] != 0:
                logger.info('Policy is good enough now, early stopping')
                done_training = True
                # break

        # make sure that different threads have different seeds
        local_uniform = np.random.uniform(size=(1, ))
        root_uniform = local_uniform.copy()
        MPI.COMM_WORLD.Bcast(root_uniform, root=0)
        if rank != 0:
            assert local_uniform[0] != root_uniform[0]
        if (epoch + 1) == n_epochs:
            logger.info('All epochs are finished. Stopping the training now.')
            done_training = True
        if done_training:
            break
示例#35
0
def learn(network,
          env,
          seed=None,
          nsteps=5,
          noptions=64,
          top_n_options=8,
          replay_buffer_size=1000,
          total_timesteps=int(80e6),
          start_op_at=0.8,
          options_update_iter=10,
          vf_coef=0.5,
          ent_coef=0.01,
          max_grad_norm=0.5,
          lr=7e-4,
          lrschedule='linear',
          epsilon=1e-5,
          diverse_r_coef=0.1,
          alpha=0.99,
          gamma=0.99,
          log_interval=100,
          load_path=None,
          **network_kwargs):
    '''
    Main entrypoint for VFO algorithm. Train a policy with given network architecture on a given environment using vfo algorithm.

    Parameters:
    -----------

    network:            policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
                        specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
                        tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
                        neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
                        See baselines.common/policies.py/lstm for more details on using recurrent nets in policies


    env:                RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py)


    seed:               seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible)

    nsteps:             int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
                        nenv is number of environment copies simulated in parallel)

    noptions:           int, number of options for VFO, i.e. channels of last Conv layer

    top_n_options:      int, number of top possible options to for selective option step

    replay_buffer_size  int, size of replay buffer which is used to train options

    total_timesteps:    int, total number of timesteps to train on (default: 80M)

    start_op_at:        float, after trainign mf policy for `start_op_at * total_timesteps` steps, begin to train options policy

    options_update_iter: int, number of call for train_options per sample

    vf_coef:            float, coefficient in front of value function loss in the total loss function (default: 0.5)

    ent_coef:           float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01)

    max_gradient_norm:  float, gradient is clipped to have global L2 norm no more than this value (default: 0.5)

    lr:                 float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4)

    lrschedule:         schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and
                        returns fraction of the learning rate (specified as lr) as output

    epsilon:            float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5)

    diverse_r_coef:     float, scaling factor for diversity reward when training option policy

    alpha:              float, RMSProp decay parameter (default: 0.99)

    gamma:              float, reward discounting parameter (default: 0.99)

    log_interval:       int, specifies how frequently the logs are printed out (default: 100)

    **network_kwargs:   keyword arguments to the policy / network builder. See baselines.vfo/policies.py/build_policy and arguments to a particular type of network
    '''
    set_global_seeds(seed)

    nenvs = env.num_envs
    policy = build_policy(env, network, noptions, **network_kwargs)
    assert replay_buffer_size > 100, 'Replay buffer is too small'
    replay_buffer = Buffer(env, nsteps, size=replay_buffer_size)

    model = Model(policy=policy,
                  env=env,
                  nsteps=nsteps,
                  ent_coef=ent_coef,
                  vf_coef=vf_coef,
                  max_grad_norm=max_grad_norm,
                  lr=lr,
                  alpha=alpha,
                  epsilon=epsilon,
                  diverse_r_coef=diverse_r_coef,
                  gamma=gamma,
                  total_timesteps=total_timesteps,
                  lrschedule=lrschedule)
    if load_path is not None:
        model.load(load_path)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    options_runner = OptionsRunner(env,
                                   model,
                                   noptions,
                                   nsteps=nsteps,
                                   gamma=gamma,
                                   use_selective_option=True,
                                   top_n_options=top_n_options)

    nbatch = nenvs * nsteps
    tstart = time.time()
    to_train_options, init_replay_buffer_done = False, False
    total_updates = total_timesteps // nbatch + 1
    for update in range(1, total_updates):
        if update % 300 == 0:
            model.save(os.path.join(logger.get_dir(), "snapshot"))
        if not to_train_options:
            obs, states, rewards, masks, actions, values = runner.run()
            policy_loss, value_loss, policy_entropy = model.train(
                obs, states, rewards, masks, actions, values)
            nseconds = time.time() - tstart
            fps = int((update * nbatch) / nseconds)
            if update % log_interval == 0 or update == 1:
                ev = explained_variance(values, rewards)
                logger.record_tabular("nupdates", update)
                logger.record_tabular("total_timesteps", update * nbatch)
                logger.record_tabular("fps", fps)
                logger.record_tabular("policy_entropy", float(policy_entropy))
                logger.record_tabular("value_loss", float(value_loss))
                logger.record_tabular("policy_loss", float(policy_loss))
                logger.record_tabular("explained_variance", float(ev))
                logger.dump_tabular()

            if update > total_updates * start_op_at:
                to_train_options = True
        else:
            obs, next_obs, states, next_states, masks, next_masks, actions, \
                actions_full, rewards, values, dones, options_z = \
                options_runner.run()
            replay_buffer.put(obs, next_obs, states, next_states, masks,
                              next_masks, actions, actions_full, dones,
                              options_z)

            options_runner.sample_option_z(prior=model.prior_op_z)

            if replay_buffer.num_in_buffer > 100:
                init_replay_buffer_done = True

            if not init_replay_buffer_done:
                logger.info('Sample data using option policy...')
                continue

            policy_loss, value_loss, policy_entropy = model.train(
                obs, states, rewards, masks, actions, values)

            for _ in range(options_update_iter):
                obs, next_obs, states, next_states, masks, next_masks, \
                    actions, actions_full, dones, options_z = \
                    replay_buffer.get()
                distillation_loss_value = model.distill_mf_to_options(
                    obs, states, masks)
                record_loss_values = model.train_options(
                    obs, next_obs, states, next_states, masks, next_masks,
                    actions, actions_full, dones, options_z)
                record_loss_values.append(
                    ('distillation_loss', distillation_loss_value))

            nseconds = time.time() - tstart
            fps = int((update * nbatch) / nseconds)
            if update % log_interval == 0 or update == 1:
                ev = explained_variance(values, rewards)
                logger.record_tabular("nupdates", update)
                logger.record_tabular("total_timesteps", update * nbatch)
                logger.record_tabular("fps", fps)
                logger.record_tabular("policy_entropy", float(policy_entropy))
                logger.record_tabular("value_loss", float(value_loss))
                logger.record_tabular("policy_loss", float(policy_loss))
                logger.record_tabular("explained_variance", float(ev))
                for loss_name, loss_value in record_loss_values:
                    logger.record_tabular(loss_name, loss_value)
                logger.dump_tabular()

    env.close()
    return model
示例#36
0
def learn(env, policy_fn, *,
        timesteps_per_actorbatch, # timesteps per actor per update
        clip_param, entcoeff, # clipping parameter epsilon, entropy coeff
        optim_epochs, optim_stepsize, optim_batchsize,# optimization hypers
        gamma, lam, # advantage estimation
        max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0,  # time constraint
        callback=None, # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant' # annealing for stepsize parameters (epsilon and adam)
        ):
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space) # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space) # Network for old policy
    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold
    surr1 = ratio * atarg # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg #
    pol_surr = - tf.reduce_mean(tf.minimum(surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_actorbatch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0, max_seconds>0])==1, "Only one time constraint permitted"

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult =  max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************"%iters_so_far)

        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        assign_old_eq_new() # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [] # list of tuples, each of which gives the loss for a minibatch
            for batch in d.iterate_once(optim_batchsize):
                *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
                adam.update(g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))

        logger.log("Evaluating losses...")
        losses = []
        for batch in d.iterate_once(optim_batchsize):
            newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
            losses.append(newlosses)
        meanlosses,_,_ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_"+name, lossval)
        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank()==0:
            logger.dump_tabular()
示例#37
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=5,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the trained model from. (default: None)(used in test stage)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.

    """

    # Create all the functions necessary to train the model
    sess = get_session()
    set_global_seeds(seed)
    med_libs = MedLibs()
    '''Define Q network 
    inputs: observation place holder(make_obs_ph), num_actions, scope, reuse
    outputs(tensor of shape batch_size*num_actions): values of each action, Q(s,a_{i})
    '''
    q_func = build_q_func(network, **network_kwargs)
    '''  To put observations into a placeholder  '''
    # TODO: Can only deal with Discrete and Box observation spaces for now
    # observation_space = env.observation_space (default)
    # Use sub_obs_space instead

    observation_space = med_libs.subobs_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    '''  Customize action  '''
    # TODO: subset of action space.
    action_dim = med_libs.sub_act_dim
    ''' 
    Returns: deepq.build_train()
        act: (tf.Variable, bool, float) -> tf.Variable
            function to select and action given observation.
            act is computed by [build_act] or [build_act_with_param_noise]
        train: (object, np.array, np.array, object, np.array, np.array) -> np.array
            optimize the error in Bellman's equation.
        update_target: () -> ()
            copy the parameters from optimized Q function to the target Q function. 
        debug: {str: function}
            a bunch of functions to print debug data like q_values.
    '''

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=action_dim,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        double_q=True,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': action_dim,
    }
    '''Contruct an act object using ActWrapper'''
    act = ActWrapper(act, act_params)
    ''' Create the replay buffer'''
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    '''Create the schedule for exploration starting from 1.'''
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)
    '''
    Initialize all the uninitialized variables in the global scope and copy them to the target network.
    '''
    U.initialize()
    update_target()
    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    sub_obs = med_libs.custom_obs(obs)  # TODO: customize observations
    pre_obs = obs
    reset = True
    mydict = med_libs.action_dict
    already_starts = False

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td
        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True

        elif load_path is not None:
            # load_path: a trained model/policy
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
        ''' Training loop starts'''
        t = 0
        while t < total_timesteps:
            if callback is not None:
                if callback(locals(), globals()):
                    break
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            ''' Choose action: take action and update exploration to the newest value
            '''
            # TODO: Mixed action strategy
            # Normal status, action is easily determined by rules, use [obs]
            action = med_libs.simple_case_action(obs)
            # Distraction status, action is determined by Q, with [sub_obs]
            if action == -10:
                action = act(np.array(sub_obs)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
                action = med_libs.action_Q_env(
                    action
                )  # TODO:action_Q_env, from Q_action(0~2) to env_action(2~4)

            reset = False
            ''' Step action '''
            new_obs, rew, done, d_info = env.step(action)
            d_att_last = int(pre_obs[0][0])
            d_att_now = int(obs[0][0])
            d_att_next = int(new_obs[0][0])
            #TODO: you can customize reward here.
            ''' Store transition in the replay buffer.'''
            pre_obs = obs
            obs = new_obs
            sub_new_obs = med_libs.custom_obs(new_obs)

            if (d_att_last == 0 and d_att_now == 1) and not already_starts:
                already_starts = True

            if already_starts and d_att_now == 1:
                replay_buffer.add(sub_obs, action, rew, sub_new_obs,
                                  float(done))
                episode_rewards[-1] += rew  # Sum of rewards
                t = t + 1
                print(
                    '>> Iteration:{}, State[d_att,cd_activate,L4_available,ssl4_activate,f_dc]:{}'
                    .format(t, sub_obs))
                print(
                    'Dis_Last:{}, Dis_Now:{}, Dis_Next:{},Reward+Cost:{}, Action:{}'
                    .format(
                        d_att_last, d_att_now, d_att_next, rew,
                        list(mydict.keys())[list(
                            mydict.values()).index(action)]))

            # update sub_obs
            sub_obs = sub_new_obs

            # Done and Reset
            if done:
                print('Done infos: ', d_info)
                print('======= end =======')
                obs = env.reset()
                sub_obs = med_libs.custom_obs(obs)  # TODO: custom obs
                pre_obs = obs  # TODO: save obs at t-1
                already_starts = False
                episode_rewards.append(0.0)
                reset = True

            # Update the Q network parameters
            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # Calculate td-errors
                actions = med_libs.action_env_Q(
                    actions
                )  # TODO:action_env_Q, from env_action(2~4) to Q_action(0~2)
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)

                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically, copy weights of Q to target Q
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
示例#38
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    #print('env is:', env)
    #object_methods = [method_name for method_name in dir(env)]
    #print(object_methods)
    obs = env.reset()
    obs_arr = np.array(obs)
    print('Initial obs is:', obs_arr.shape)
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            if 10 == t:
                print(new_obs)
                save_obs(np.array(new_obs))

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                print('Game is done.')
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
示例#39
0
def learn(*,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024, # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0, # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_episodes=0, max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs
        ):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(config=tf.ConfigProto(
            allow_soft_placement=True,
            inter_op_parallelism_threads=cpus_per_worker,
            intra_op_parallelism_threads=cpus_per_worker
    ))


    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()

    return pi
def learn(policy,
            env,
            nsteps,
            total_timesteps,
            gamma,
            lam,
            vf_coef,
            ent_coef,
            lr,
            cliprange,
            max_grad_norm,
            log_interval):

    noptepochs = 4
    nminibatches = 8

    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)

    # Get the nb of env
    nenvs = env.num_envs

    # Get state_space and action_space
    ob_space = env.observation_space
    ac_space = env.action_space

    # Calculate the batch_size
    batch_size = nenvs * nsteps # For instance if we take 5 steps and we have 5 environments batch_size = 25

    batch_train_size = batch_size // nminibatches

    assert batch_size % nminibatches == 0

    # Instantiate the model object (that creates step_model and train_model)
    model = Model(policy=policy,
                ob_space=ob_space,
                action_space=ac_space,
                nenvs=nenvs,
                nsteps=nsteps,
                ent_coef=ent_coef,
                vf_coef=vf_coef,
                max_grad_norm=max_grad_norm)

    # Load the model
    # If you want to continue training
    # load_path = "./models/40/model.ckpt"
    # model.load(load_path)

    # Instantiate the runner object
    runner = Runner(env, model, nsteps=nsteps, total_timesteps=total_timesteps, gamma=gamma, lam=lam)

    # Start total timer
    tfirststart = time.time()

    nupdates = total_timesteps//batch_size+1

    for update in range(1, nupdates+1):
        # Start timer
        tstart = time.time()

        frac = 1.0 - (update - 1.0) / nupdates

        # Calculate the learning rate
        lrnow = lr(frac)

        # Calculate the cliprange
        cliprangenow = cliprange(frac)

        # Get minibatch
        obs, actions, returns, values, neglogpacs = runner.run()

        # Here what we're going to do is for each minibatch calculate the loss and append it.
        mb_losses = []
        total_batches_train = 0

        # Index of each element of batch_size
        # Create the indices array
        indices = np.arange(batch_size)

        for _ in range(noptepochs):
            # Randomize the indexes
            np.random.shuffle(indices)

            # 0 to batch_size with batch_train_size step
            for start in range(0, batch_size, batch_train_size):
                end = start + batch_train_size
                mbinds = indices[start:end]
                slices = (arr[mbinds] for arr in (obs, actions, returns, values, neglogpacs))
                mb_losses.append(model.train(*slices, lrnow, cliprangenow))
            

        # Feedforward --> get losses --> update
        lossvalues = np.mean(mb_losses, axis=0)

        # End timer
        tnow = time.time()

        # Calculate the fps (frame per second)
        fps = int(batch_size / (tnow - tstart))

        if update % log_interval == 0 or update == 1:
            """
            Computes fraction of variance that ypred explains about y.
            Returns 1 - Var[y-ypred] / Var[y]
            interpretation:
            ev=0  =>  might as well have predicted zero
            ev=1  =>  perfect prediction
            ev<0  =>  worse than just predicting zero
            """
            ev = explained_variance(values, returns)
            logger.record_tabular("serial_timesteps", update*nsteps)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*batch_size)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_loss", float(lossvalues[0]))
            logger.record_tabular("policy_entropy", float(lossvalues[2]))
            logger.record_tabular("value_loss", float(lossvalues[1]))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("time elapsed", float(tnow - tfirststart))
            
            savepath = "./models/" + str(update) + "/model.ckpt"
            model.save(savepath)
            print('Saving to', savepath)

            # Test our agent with 3 trials and mean the score
            # This will be useful to see if our agent is improving
            test_score = testing(model)

            logger.record_tabular("Mean score test level", test_score)
            logger.dump_tabular()
            
    env.close()
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None,
          demo_replay=[]
          ):
  """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((64, 64), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10
  )
  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                               initial_p=1.0,
                               final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = player_relative

  obs = common.init(env, player_relative, obs)

  group_id = 0
  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join(td, "model")

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs['update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      # custom process for DefeatZerglingsAndBanelings

      obs, screen, player = common.select_marine(env, obs)

      action = act(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
      reset = False
      rew = 0

      new_action = None

      obs, new_action = common.marine_action(env, obs, player, action)
      army_count = env._obs.observation.player_common.army_count

      try:
        if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
          obs = env.step(actions=new_action)
        else:
          new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
          obs = env.step(actions=new_action)
      except Exception as e:
        #print(e)
        1 # Do nothing

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = player_relative

      rew += obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      selected = obs[0].observation["screen"][_SELECTED]
      player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()

      if(len(player_y)>0):
        player = [int(player_x.mean()), int(player_y.mean())]

      if(len(player) == 2):

        if(player[0]>32):
          new_screen = common.shift(LEFT, player[0]-32, new_screen)
        elif(player[0]<32):
          new_screen = common.shift(RIGHT, 32 - player[0], new_screen)

        if(player[1]>32):
          new_screen = common.shift(UP, player[1]-32, new_screen)
        elif(player[1]<32):
          new_screen = common.shift(DOWN, 32 - player[1], new_screen)

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      screen = new_screen

      episode_rewards[-1] += rew

      if done:
        print("Episode Reward : %s" % episode_rewards[-1])
        obs = env.reset()
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

        screen = player_relative

        group_list = common.init(env, player_relative, obs)

        # Select all marines first
        #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
        episode_rewards.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
          experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
        else:
          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
          weights, batch_idxes = np.ones_like(rewards), None
        td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
        logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts and
              num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log("Saving model due to mean reward increase: {} -> {}".format(
              saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
  """Train a deepq model.

Parameters
-------
env: pysc2.env.SC2Env
    environment to train on
q_func: (tf.Variable, int, str, bool) -> tf.Variable
    the model that takes the following inputs:
        observation_in: object
            the output of observation placeholder
        num_actions: int
            number of actions
        scope: str
        reuse: bool
            should be passed to outer variable scope
    and returns a tensor of shape (batch_size, num_actions) with values of every action.
lr: float
    learning rate for adam optimizer
max_timesteps: int
    number of env steps to optimizer for
buffer_size: int
    size of the replay buffer
exploration_fraction: float
    fraction of entire training period over which the exploration rate is annealed
exploration_final_eps: float
    final value of random action probability
train_freq: int
    update the model every `train_freq` steps.
    set to None to disable printing
batch_size: int
    size of a batched sampled from replay buffer for training
print_freq: int
    how often to print out training progress
    set to None to disable printing
checkpoint_freq: int
    how often to save the model. This is so that the best version is restored
    at the end of the training. If you do not wish to restore the best version at
    the end of the training set this variable to None.
learning_starts: int
    how many steps of the model to collect transitions for before learning starts
gamma: float
    discount factor
target_network_update_freq: int
    update the target network every `target_network_update_freq` steps.
prioritized_replay: True
    if True prioritized replay buffer will be used.
prioritized_replay_alpha: float
    alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
    initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
    number of iterations over which beta will be annealed from initial value
    to 1.0. If set to None equals to max_timesteps.
prioritized_replay_eps: float
    epsilon to add to the TD errors when updating priorities.
num_cpu: int
    number of cpus to use for training
callback: (locals, globals) -> None
    function called at every steps with state of the algorithm.
    If callback returns true training stops.

Returns
-------
act: ActWrapper
    Wrapper over act function. Adds ability to save it and load it.
    See header of baselines/deepq/categorical.py for details on the act function.
"""
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((32, 32), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10,
    scope="deepq")
  #
  # act_y, train_y, update_target_y, debug_y = deepq.build_train(
  #   make_obs_ph=make_obs_ph,
  #   q_func=q_func,
  #   num_actions=num_actions,
  #   optimizer=tf.train.AdamOptimizer(learning_rate=lr),
  #   gamma=gamma,
  #   grad_norm_clipping=10,
  #   scope="deepq_y"
  # )

  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(
      buffer_size, alpha=prioritized_replay_alpha)
    # replay_buffer_y = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)

    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(
      prioritized_replay_beta_iters,
      initial_p=prioritized_replay_beta0,
      final_p=1.0)

    # beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
    #                                  initial_p=prioritized_replay_beta0,
    #                                  final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    # replay_buffer_y = ReplayBuffer(buffer_size)

    beta_schedule = None
    # beta_schedule_y = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(
    schedule_timesteps=int(exploration_fraction * max_timesteps),
    initial_p=1.0,
    final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()
  # update_target_y()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first
  obs = env.step(
    actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

  player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
  player = [int(player_x.mean()), int(player_y.mean())]

  if (player[0] > 16):
    screen = shift(LEFT, player[0] - 16, screen)
  elif (player[0] < 16):
    screen = shift(RIGHT, 16 - player[0], screen)

  if (player[1] > 16):
    screen = shift(UP, player[1] - 16, screen)
  elif (player[1] < 16):
    screen = shift(DOWN, 16 - player[1], screen)

  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join("model/", "mineral_shards")
    print(model_file)

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(
            1. - exploration.value(t) +
            exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs[
          'update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      action = act(
        np.array(screen)[None], update_eps=update_eps, **kwargs)[0]

      # action_y = act_y(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]

      reset = False

      coord = [player[0], player[1]]
      rew = 0

      if (action == 0):  #UP

        if (player[1] >= 8):
          coord = [player[0], player[1] - 8]
          #path_memory_[player[1] - 16 : player[1], player[0]] = -1
        elif (player[1] > 0):
          coord = [player[0], 0]
          #path_memory_[0 : player[1], player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 1):  #DOWN

        if (player[1] <= 23):
          coord = [player[0], player[1] + 8]
          #path_memory_[player[1] : player[1] + 16, player[0]] = -1
        elif (player[1] > 23):
          coord = [player[0], 31]
          #path_memory_[player[1] : 63, player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 2):  #LEFT

        if (player[0] >= 8):
          coord = [player[0] - 8, player[1]]
          #path_memory_[player[1], player[0] - 16 : player[0]] = -1
        elif (player[0] < 8):
          coord = [0, player[1]]
          #path_memory_[player[1], 0 : player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 3):  #RIGHT

        if (player[0] <= 23):
          coord = [player[0] + 8, player[1]]
          #path_memory_[player[1], player[0] : player[0] + 16] = -1
        elif (player[0] > 23):
          coord = [31, player[1]]
          #path_memory_[player[1], player[0] : 63] = -1

      if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
        obs = env.step(actions=[
          sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
        ])

      new_action = [
        sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
      ]

      # else:
      #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

      obs = env.step(actions=new_action)

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = (player_relative == _PLAYER_NEUTRAL).astype(
        int)  #+ path_memory

      player_y, player_x = (
        player_relative == _PLAYER_FRIENDLY).nonzero()
      player = [int(player_x.mean()), int(player_y.mean())]

      if (player[0] > 16):
        new_screen = shift(LEFT, player[0] - 16, new_screen)
      elif (player[0] < 16):
        new_screen = shift(RIGHT, 16 - player[0], new_screen)

      if (player[1] > 16):
        new_screen = shift(UP, player[1] - 16, new_screen)
      elif (player[1] < 16):
        new_screen = shift(DOWN, 16 - player[1], new_screen)

      rew = obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      # replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

      screen = new_screen

      episode_rewards[-1] += rew
      reward = episode_rewards[-1]

      if done:
        obs = env.reset()
        player_relative = obs[0].observation["screen"][
          _PLAYER_RELATIVE]

        screen = (player_relative == _PLAYER_NEUTRAL).astype(
          int)  #+ path_memory

        player_y, player_x = (
          player_relative == _PLAYER_FRIENDLY).nonzero()
        player = [int(player_x.mean()), int(player_y.mean())]

        # Select all marines first
        env.step(actions=[
          sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
        ])
        episode_rewards.append(0.0)
        #episode_minerals.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:

          experience = replay_buffer.sample(
            batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights,
           batch_idxes) = experience

          # experience_y = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          # (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y, batch_idxes_y) = experience_y
        else:

          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
            batch_size)
          weights, batch_idxes = np.ones_like(rewards), None

          # obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(batch_size)
          # weights_y, batch_idxes_y = np.ones_like(rewards_y), None

        td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                          weights)

        # td_errors_y = train_x(obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y)

        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          # new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes,
                                          new_priorities)
          # replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()
        # update_target_y()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(
          episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("reward", reward)
        logger.record_tabular("mean 100 episode reward",
                              mean_100ep_reward)
        logger.record_tabular("% time spent exploring",
                              int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts
          and num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log(
              "Saving model due to mean reward increase: {} -> {}".
                format(saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(
          saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
示例#43
0
def render_evaluate(
        env,
        policy_func,
        *,
        timesteps_per_batch,  # what to train on
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n(
        [U.sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    # set up saver
    sess = tf.get_default_session()
    saver = tf.train.Saver()

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    print("loading pretrained model")
    saver.restore(sess, callback.model_dir)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    if True:
        for _ in range(50):
            done = False
            ob = env.reset()
            env.render()
            stochastic = 1
            while not done:
                ac, vpred = pi.act(stochastic, ob)
                ob, rew, done, _ = env.step(ac)
                env.render()

        if rank == 0:
            logger.dump_tabular()

            if callback is not None:
                callback(locals(), globals())
示例#44
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act
示例#45
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=3000,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=3000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):


    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)


    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        # gamma=gamma,
        # grad_norm_clipping=10,
        # param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(100000),
                                 initial_p=1.0,
                                 final_p=0.02)

    # Initialize the paramete    print(type(act))rs and copy them to the target network.
    U.initialize()
    update_target()





    old_state = None





    formula_LTLf_1 = "!F(die)"
    monitoring_RightToLeft = MonitoringSpecification(
        ltlf_formula=formula_LTLf_1,
        r=1,
        c=-10,
        s=1,
        f=-10
    )



    monitoring_specifications = [monitoring_RightToLeft]

    stepCounter = 0
    done = False

    def RightToLeftConversion(observation) -> TraceStep:

        print(stepCounter)


        if(done and not(stepCounter>=199)):
            die=True
        else:
            die=False


        dictionary={'die': die}
        print(dictionary)
        return dictionary

    multi_monitor = MultiRewardMonitor(
        monitoring_specifications=monitoring_specifications,
        obs_to_trace_step=RightToLeftConversion
    )













    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True


    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        episodeCounter=0
        num_episodes=0

        for t in itertools.count():
            
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            #print(action)
            new_obs, rew, done, _ = env.step(action)
            stepCounter+=1

            rew, is_perm = multi_monitor(new_obs)
            old_state=new_obs




            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew


            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if episodeCounter % 100 == 0 or episodeCounter<1:
                # Show off the result
                #print("coming here Again and Again")
                env.render()


            if done:
                episodeCounter+=1
                num_episodes+=1
                obs = env.reset()
                episode_rewards.append(0)
                multi_monitor.reset()
                stepCounter=0
            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(32)
                    train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards))

                # Update target network periodically.
                if t % 1000 == 0:
                    update_target()
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            if done and len(episode_rewards) % 10 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("mean 100 episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 500 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    act.save_act()
                    #save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        # if model_saved:
        #     if print_freq is not None:
        #         logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
        #     load_variables(model_file)

    return act
示例#46
0
文件: a2c.py 项目: MrGoogol/baselines
def learn(
    network,
    env,
    seed=None,
    nsteps=5,
    total_timesteps=int(80e6),
    vf_coef=0.5,
    ent_coef=0.01,
    max_grad_norm=0.5,
    lr=7e-4,
    lrschedule='linear',
    epsilon=1e-5,
    alpha=0.99,
    gamma=0.99,
    log_interval=100,
    load_path=None,
    **network_kwargs):

    '''
    Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm.

    Parameters:
    -----------

    network:            policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
                        specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
                        tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
                        neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
                        See baselines.common/policies.py/lstm for more details on using recurrent nets in policies


    env:                RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py)


    seed:               seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible)

    nsteps:             int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
                        nenv is number of environment copies simulated in parallel)

    total_timesteps:    int, total number of timesteps to train on (default: 80M)

    vf_coef:            float, coefficient in front of value function loss in the total loss function (default: 0.5)

    ent_coef:           float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01)

    max_gradient_norm:  float, gradient is clipped to have global L2 norm no more than this value (default: 0.5)

    lr:                 float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4)

    lrschedule:         schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and
                        returns fraction of the learning rate (specified as lr) as output

    epsilon:            float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5)

    alpha:              float, RMSProp decay parameter (default: 0.99)

    gamma:              float, reward discounting parameter (default: 0.99)

    log_interval:       int, specifies how frequently the logs are printed out (default: 100)

    **network_kwargs:   keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
                        For instance, 'mlp' network architecture has arguments num_hidden and num_layers.

    '''



    set_global_seeds(seed)

    # Get the nb of env
    nenvs = env.num_envs
    policy = build_policy(env, network, **network_kwargs)

    # Instantiate the model object (that creates step_model and train_model)
    model = Model(policy=policy, env=env, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    if load_path is not None:
        model.load(load_path)

    # Instantiate the runner object
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    epinfobuf = deque(maxlen=100)

    # Calculate the batch_size
    nbatch = nenvs*nsteps

    # Start total timer
    tstart = time.time()

    for update in range(1, total_timesteps//nbatch+1):
        # Get mini batch of experiences
        obs, states, rewards, masks, actions, values, epinfos = runner.run()
        epinfobuf.extend(epinfos)

        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart

        # Calculate the fps (frame per second)
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            # Calculates if value function is a good predicator of the returns (ev > 1)
            # or if it's just worse than predicting nothing (ev =< 0)
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.dump_tabular()
    return model
def learn(env, estimator_policy, estimator_value,
            max_timesteps=1000,
            discount_factor=1.0,
            print_freq=100,
            outdir="/tmp/experiments/continuous/VPG/"):
    """
    Vanilla Policy Gradient (VPG) extended using basic Actor-Critic techniques to reduce the variance.
    This method optimizes the value function approximator using policy gradient.

    Parameters
    ----------
    env: object
        OpenAI environment.
    estimator_policy: object
        Policy Function to be optimized
    estimator_value: object
        Value function approximator, used as a critic
    max_timesteps: int
        Number of steps to run for
    discount_factor: float
        Time-discount factor (gamma)
    print_freq: int
        Period (in episodes) to log results
    outdir: string
        Directory where to store tensorboard results

    Returns
    -------
    An EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards.
    """
    # tensorboard logging
    summary_writer = tf.summary.FileWriter(outdir, graph=tf.get_default_graph())
    # Keeps track of useful statistics
    # stats = plotting.EpisodeStats(
    #     episode_lengths=np.zeros(num_episodes),
    #     episode_rewards=np.zeros(num_episodes))

    # # Variable to represent the number of steps executed
    # Transition = collections.namedtuple("Transition", ["state", "action", "reward", "next_state", "done"])

    # Record number of episodes
    num_episodes = 0
    # Reset the environment and get firs state
    state = env.reset()
    # each episode's reward
    episode_reward = 0
    for timestep in range(max_timesteps):
        # episode = []
        # One step in the environment
        # for t in itertools.count():

        # env.render()
        action = estimator_policy.predict(state)
        next_state, reward, done, _ = env.step(action)

        # # Keep track of the transition
        # episode.append(Transition(
        #   state=state, action=action, reward=reward, next_state=next_state, done=done))

        # Update statistics
        # stats.episode_rewards[num_episodes] += reward
        episode_reward += reward
        # stats.episode_lengths[num_episodes] = timestep

        # Calculate TD Target
        #   More about TD-learning at:
            # http://www.scholarpedia.org/article/Reinforcement_learning
            # http://www.scholarpedia.org/article/TD-learning
        value_next = estimator_value.predict(next_state)
        td_target = reward + discount_factor * value_next
        td_error = td_target - estimator_value.predict(state)
        # Update the value estimator
        estimator_value.update(state, td_target)
        # Update the policy estimator
        # using the td error as our advantage estimate
        estimator_policy.update(state, td_error, action)

        # # Print out which step we're on, useful for debugging.
        # print("\rStep {} @ Episode {} ({})".format(
        #         timestep + 1, num_episodes, episode_reward), end="")

        if done:
            # Log the episode reward
            # episode_total_rew = stats.episode_rewards[num_episodes]
            summary = tf.Summary(value=[tf.Summary.Value(tag="Episode reward",
                simple_value = episode_reward)])
            summary_writer.add_summary(summary, timestep)
            summary_writer.flush()

            # Reset the environment and get firs state
            state = env.reset()

            if print_freq is not None and num_episodes % print_freq == 0:
                logger.record_tabular("steps", timestep)
                logger.record_tabular("episode", num_episodes)
                logger.record_tabular("reward", episode_reward)
                # logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            # Iterate episodes
            num_episodes +=1

            # Reset the episode reward
            episode_reward = 0
        else:
            state = next_state

    return estimator_policy