def do_inference(hostport, work_dir, concurrency, num_tests): """Tests PredictionService with concurrent requests. Args: hostport: Host:port address of the PredictionService. work_dir: The full path of working directory for test data set. concurrency: Maximum number of concurrent requests. num_tests: Number of test images to use. Returns: The classification error rate. Raises: IOError: An error occurred processing test data set. """ test_data_set = mnist_input_data.read_data_sets(work_dir).test channel = grpc.insecure_channel(hostport) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) result_counter = _ResultCounter(num_tests, concurrency) for _ in range(num_tests): request = predict_pb2.PredictRequest() request.model_spec.name = 'mnist' request.model_spec.signature_name = 'predict_images' image, label = test_data_set.next_batch(1) request.inputs['images'].CopyFrom( tf.contrib.util.make_tensor_proto(image[0], shape=[1, image[0].size])) result_counter.throttle() result_future = stub.Predict.future(request, 5.0) # 5 seconds result_future.add_done_callback( _create_rpc_callback(label[0], result_counter)) return result_counter.get_error_rate()
def main(_): # 参数校验 # if len(sys.argv) < 2 or sys.argv[-1].startswith('-'): # print('Usage: mnist_saved_model.py [--training_iteration=x] ' # '[--model_version=y] export_dir') # sys.exit(-1) # if FLAGS.training_iteration <= 0: # print('Please specify a positive value for training iteration.') # sys.exit(-1) # if FLAGS.model_version <= 0: # print('Please specify a positive value for version number.') # sys.exit(-1) # Train model print('Training model...') mnist = mnist_input_data.read_data_sets(FLAGS.work_dir, one_hot=True) sess = tf.InteractiveSession() serialized_tf_example = tf.placeholder(tf.string, name='tf_example') feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), } tf_example = tf.parse_example(serialized_tf_example, feature_configs) x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name y_ = tf.placeholder('float', shape=[None, 10]) w = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.nn.softmax(tf.matmul(x, w) + b, name='y') cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) values, indices = tf.nn.top_k(y, 10) table = tf.contrib.lookup.index_to_string_table_from_tensor( tf.constant([str(i) for i in range(10)])) prediction_classes = table.lookup(tf.to_int64(indices)) for _ in range(FLAGS.training_iteration): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) print('training accuracy %g' % sess.run( accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels })) print('Done training!') # Export model # WARNING(break-tutorial-inline-code): The following code snippet is # in-lined in tutorials, please update tutorial documents accordingly # whenever code changes. # export_path_base = sys.argv[-1] export_path_base = "/Users/xingoo/PycharmProjects/ml-in-action/实践-tensorflow/01-官方文档-学习和使用ML/save_model" export_path = os.path.join(tf.compat.as_bytes(export_path_base), tf.compat.as_bytes(str(FLAGS.model_version))) print('Exporting trained model to', export_path) # 配置导出地址,创建SaveModel builder = tf.saved_model.builder.SavedModelBuilder(export_path) # Build the signature_def_map. # 创建TensorInfo,包含type,shape,name classification_inputs = tf.saved_model.utils.build_tensor_info(serialized_tf_example) classification_outputs_classes = tf.saved_model.utils.build_tensor_info(prediction_classes) classification_outputs_scores = tf.saved_model.utils.build_tensor_info(values) # 分类签名:算法类型+输入+输出(概率和名字) classification_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={ tf.saved_model.signature_constants.CLASSIFY_INPUTS: classification_inputs }, outputs={ tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES: classification_outputs_classes, tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES: classification_outputs_scores }, method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME)) tensor_info_x = tf.saved_model.utils.build_tensor_info(x) tensor_info_y = tf.saved_model.utils.build_tensor_info(y) # 预测签名:输入的x和输出的y prediction_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={'images': tensor_info_x}, outputs={'scores': tensor_info_y}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) # 构建图和变量的信息: """ sess 会话 tags 标签,默认提供serving、train、eval、gpu、tpu signature_def_map 签名 main_op 初始化? strip_default_attrs strp? """ # TODO predict_images和serving_default的区别 builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ 'predict_images': prediction_signature, tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: classification_signature, }, main_op=tf.tables_initializer(), strip_default_attrs=True) # 保存 builder.save() print('Done exporting!')
import numpy as np import sys import threading from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc tf.app.flags.DEFINE_integer('concurrency', 1, 'maximum number of concurrent inference requests') tf.app.flags.DEFINE_integer('num_tests', 100, 'Number of test images') tf.app.flags.DEFINE_string('server', 'localhost:8500', 'PredictionService host:port') tf.app.flags.DEFINE_string('work_dir', './tmp', 'Working directory. ') FLAGS = tf.app.flags.FLAGS test_data_set = mnist_input_data.read_data_sets(FLAGS.work_dir).test channel = grpc.insecure_channel(FLAGS.server) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) class _ResultCounter(object): """Counter for the prediction results.""" def __init__(self, num_tests, concurrency): self._num_tests = num_tests self._concurrency = concurrency self._error = 0 self._done = 0 self._active = 0 self._condition = threading.Condition() def inc_error(self):
import requests import tensorflow as tf import basic.mnist_input_data as mnist_input_data headers = {"content-type": "application/json"} # json_response = requests.post('http://localhost:8501/v1/models/half_plus_two:predict', # data='{"instances": [1.0, 2.0, 5.0]}', # headers=headers) # print(json_response.text) url = 'http://localhost:8501/v1/models/mnist:predict' # json_response = requests.post(url, # data='{"instances": [1.0, 2.0, 5.0]}', # headers=headers) # print(json_response.text) test_data_set = mnist_input_data.read_data_sets('./tmp').test print(type(test_data_set)) for _ in range(10): image, label = test_data_set.next_batch(1) print(tf.contrib.util.make_tensor_proto(image[0], shape=[1, image[0].size])) json_response = requests.post(url, data='{"inputs": [image[0]]}', headers=headers) print(json_response.text) # channel = grpc.insecure_channel(hostport) # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) # result_counter = _ResultCounter(num_tests, concurrency)