示例#1
0
def test_predict_test():
    np.random.seed(42)
    dim_X = 2
    num_X = 5
    num_X_test = 20
    X = np.random.randn(num_X, dim_X)
    Y = np.random.randn(num_X, 1)
    X_test = np.random.randn(num_X_test, dim_X)
    prior_mu = None
    cov_X_X, inv_cov_X_X, hyps = gp.get_optimized_kernel(X, Y, prior_mu, 'se')
    
    with pytest.raises(AssertionError) as error:
        gp.predict_test(X, Y, X_test, hyps, str_cov='se', prior_mu='abc')
    with pytest.raises(AssertionError) as error:
        gp.predict_test(X, Y, X_test, hyps, str_cov=1, prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(X, Y, X_test, 1, str_cov='se', prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(X, Y, 1, hyps, str_cov='se', prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(X, 1, X_test, hyps, str_cov='se', prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(1, Y, X_test, hyps, str_cov='se', prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(np.random.randn(num_X, 1), Y, X_test, hyps, str_cov='se', prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(np.random.randn(10, dim_X), Y, X_test, hyps, str_cov='se', prior_mu=prior_mu)
    with pytest.raises(AssertionError) as error:
        gp.predict_test(X, np.random.randn(10, 1), X_test, hyps, str_cov='se', prior_mu=prior_mu)
    
    mu_Xs, sigma_Xs = gp.predict_test(X, Y, X_test, hyps, str_cov='se', prior_mu=prior_mu)
    print(mu_Xs)
    print(sigma_Xs)
示例#2
0
    def optimize(
            self,
            X_train,
            Y_train,
            str_initial_method=constants.STR_AO_INITIALIZATION,
            int_samples=constants.NUM_ACQ_SAMPLES,
            is_normalized=constants.IS_NORMALIZED_RESPONSE,
            str_mlm_method=constants.STR_MLM_METHOD,
            str_modelselection_method=constants.STR_MODELSELECTION_METHOD):
        # TODO: is_normalized cases
        assert isinstance(X_train, np.ndarray)
        assert isinstance(Y_train, np.ndarray)
        assert isinstance(str_initial_method, str)
        assert isinstance(int_samples, int)
        assert isinstance(is_normalized, bool)
        assert isinstance(str_mlm_method, str)
        assert isinstance(str_modelselection_method, str)
        assert len(X_train.shape) == 2
        assert len(Y_train.shape) == 2
        assert Y_train.shape[1] == 1
        assert X_train.shape[0] == Y_train.shape[0]
        assert X_train.shape[1] == self.num_dim
        assert int_samples > 0
        assert str_initial_method in constants.ALLOWED_INITIALIZATIONS_AO
        assert str_mlm_method in constants.ALLOWED_MLM_METHOD
        assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD

        time_start = time.time()

        if is_normalized:
            Y_train = (Y_train - np.min(Y_train)) / (
                np.max(Y_train) -
                np.min(Y_train)) * constants.MULTIPLIER_RESPONSE

        if str_mlm_method == 'regular':
            cov_X_X, inv_cov_X_X, hyps = gp.get_optimized_kernel(
                X_train,
                Y_train,
                self.prior_mu,
                self.str_cov,
                str_optimizer_method=self.str_optimizer_method_gp,
                str_modelselection_method=str_modelselection_method,
                debug=self.debug)
        elif str_mlm_method == 'converged':
            if self.is_optimize_hyps:
                cov_X_X, inv_cov_X_X, hyps = gp.get_optimized_kernel(
                    X_train,
                    Y_train,
                    self.prior_mu,
                    self.str_cov,
                    str_optimizer_method=self.str_optimizer_method_gp,
                    str_modelselection_method=str_modelselection_method,
                    debug=self.debug)
                self.is_optimize_hyps = not _check_hyps_convergence(
                    self.historical_hyps, hyps, self.str_cov,
                    constants.IS_FIXED_GP_NOISE)
            # TODO: Can we test this else statement?
            else:  # pragma: no cover
                print('[DEBUG] optimize in bo.py: hyps are converged.')
                hyps = self.historical_hyps[-1]
                cov_X_X, inv_cov_X_X = gp.get_kernel_inverse(X_train,
                                                             hyps,
                                                             self.str_cov,
                                                             debug=self.debug)
        elif str_mlm_method == 'probabilistic':  # pragma: no cover
            raise NotImplementedError('optimize: it will be added.')
        else:  # pragma: no cover
            raise ValueError('optimize: missing condition for str_mlm_method.')

        self.historical_hyps.append(hyps)

        fun_acquisition = _choose_fun_acquisition(self.str_acq, hyps)

        fun_negative_acquisition = lambda X_test: -1.0 * constants.MULTIPLIER_ACQ * self._optimize_objective(
            fun_acquisition, X_train, Y_train, X_test, cov_X_X, inv_cov_X_X,
            hyps)
        next_point, next_points = self._optimize(
            fun_negative_acquisition,
            str_initial_method=str_initial_method,
            int_samples=int_samples)
        acquisitions = fun_negative_acquisition(next_points)

        time_end = time.time()

        if self.debug:
            print('[DEBUG] optimize in bo.py: time consumed',
                  time_end - time_start, 'sec.')
        return next_point, next_points, acquisitions, cov_X_X, inv_cov_X_X, hyps
示例#3
0
文件: run_bo.py 项目: juho-lee/bnp
def oracle(args, model):
    seed = 42
    num_all = 100
    num_iter = 50
    num_init = args.bo_num_init
    str_cov = 'se'

    list_dict = []

    if args.bo_kernel == 'rbf':
        kernel = RBFKernel()
    elif args.bo_kernel == 'matern':
        kernel = Matern52Kernel()
    elif args.bo_kernel == 'periodic':
        kernel = PeriodicKernel()
    else:
        raise ValueError(f'Invalid kernel {args.bo_kernel}')

    for ind_seed in range(1, num_all + 1):
        seed_ = seed * ind_seed

        if seed_ is not None:
            torch.manual_seed(seed_)
            torch.cuda.manual_seed(seed_)

        if os.path.exists(
                get_str_file('./results',
                             args.bo_kernel,
                             'oracle',
                             args.t_noise,
                             seed=ind_seed)):
            dict_exp = np.load(get_str_file('./results',
                                            args.bo_kernel,
                                            'oracle',
                                            args.t_noise,
                                            seed=ind_seed),
                               allow_pickle=True)
            dict_exp = dict_exp[()]
            list_dict.append(dict_exp)

            print(dict_exp)
            print(dict_exp['global'])
            print(np.array2string(dict_exp['minima'], separator=','))
            print(np.array2string(dict_exp['regrets'], separator=','))

            continue

        sampler = GPPriorSampler(kernel, t_noise=args.t_noise)

        xp = torch.linspace(-2, 2, 1000).cuda()
        xp_ = xp.unsqueeze(0).unsqueeze(2)

        yp = sampler.sample(xp_)
        min_yp = yp.min()
        print(min_yp.cpu().numpy())

        model.eval()

        batch = AttrDict()
        indices_permuted = torch.randperm(yp.shape[1])

        batch.x = xp_[:, indices_permuted[:2 * num_init], :]
        batch.y = yp[:, indices_permuted[:2 * num_init], :]

        batch.xc = xp_[:, indices_permuted[:num_init], :]
        batch.yc = yp[:, indices_permuted[:num_init], :]

        batch.xt = xp_[:, indices_permuted[num_init:2 * num_init], :]
        batch.yt = yp[:, indices_permuted[num_init:2 * num_init], :]

        X_train = batch.xc.squeeze(0).cpu().numpy()
        Y_train = batch.yc.squeeze(0).cpu().numpy()
        X_test = xp_.squeeze(0).cpu().numpy()

        list_min = []
        list_min.append(batch.yc.min().cpu().numpy())

        for ind_iter in range(0, num_iter):
            print('ind_seed {} seed {} iter {}'.format(ind_seed, seed_,
                                                       ind_iter + 1))

            cov_X_X, inv_cov_X_X, hyps = bayesogp.get_optimized_kernel(
                X_train,
                Y_train,
                None,
                str_cov,
                is_fixed_noise=False,
                debug=False)

            prior_mu_train = bayesogp.get_prior_mu(None, X_train)
            prior_mu_test = bayesogp.get_prior_mu(None, X_test)
            cov_X_Xs = covariance.cov_main(str_cov, X_train, X_test, hyps,
                                           False)
            cov_Xs_Xs = covariance.cov_main(str_cov, X_test, X_test, hyps,
                                            True)
            cov_Xs_Xs = (cov_Xs_Xs + cov_Xs_Xs.T) / 2.0

            mu_ = np.dot(np.dot(cov_X_Xs.T, inv_cov_X_X),
                         Y_train - prior_mu_train) + prior_mu_test
            Sigma_ = cov_Xs_Xs - np.dot(np.dot(cov_X_Xs.T, inv_cov_X_X),
                                        cov_X_Xs)
            sigma_ = np.expand_dims(np.sqrt(np.maximum(np.diag(Sigma_), 0.0)),
                                    axis=1)

            acq_vals = -1.0 * acquisition.ei(np.ravel(mu_), np.ravel(sigma_),
                                             Y_train)
            ind_ = np.argmin(acq_vals)

            x_new = xp[ind_, None, None, None]
            y_new = yp[:, ind_, None, :]

            batch.x = torch.cat([batch.x, x_new], axis=1)
            batch.y = torch.cat([batch.y, y_new], axis=1)

            batch.xc = torch.cat([batch.xc, x_new], axis=1)
            batch.yc = torch.cat([batch.yc, y_new], axis=1)

            X_train = batch.xc.squeeze(0).cpu().numpy()
            Y_train = batch.yc.squeeze(0).cpu().numpy()

            min_cur = batch.yc.min()
            list_min.append(min_cur.cpu().numpy())

        print(min_yp.cpu().numpy())
        print(np.array2string(np.array(list_min), separator=','))
        print(
            np.array2string(np.array(list_min) - min_yp.cpu().numpy(),
                            separator=','))

        dict_exp = {
            'seed': seed_,
            'str_cov': str_cov,
            'global': min_yp.cpu().numpy(),
            'minima': np.array(list_min),
            'regrets': np.array(list_min) - min_yp.cpu().numpy(),
            'xc': X_train,
            'yc': Y_train,
            'model': 'oracle',
        }

        np.save(
            get_str_file('./results',
                         args.bo_kernel,
                         'oracle',
                         args.t_noise,
                         seed=ind_seed), dict_exp)
        list_dict.append(dict_exp)

    np.save(
        get_str_file('./figures/results', args.bo_kernel, 'oracle',
                     args.t_noise), list_dict)
示例#4
0
    def optimize(
        self,
        X_train,
        Y_train,
        str_initial_method_ao=constants.STR_AO_INITIALIZATION,
        int_samples=constants.NUM_ACQ_SAMPLES,
        str_mlm_method=constants.STR_MLM_METHOD,
    ):
        """
        It computes acquired example, candidates of acquired examples, acquisition function values for the candidates, covariance matrix, inverse matrix of the covariance matrix, hyperparameters optimized, and execution times.

        :param X_train: inputs. Shape: (n, d) or (n, m, d).
        :type X_train: numpy.ndarray
        :param Y_train: outputs. Shape: (n, 1).
        :type Y_train: numpy.ndarray
        :param str_initial_method_ao: the name of initialization method for acquisition function optimization.
        :type str_initial_method_ao: str., optional
        :param int_samples: the number of samples.
        :type int_samples: int., optional
        :param str_mlm_method: the name of marginal likelihood maximization method for Gaussian process regression.
        :type str_mlm_method: str., optional

        :returns: acquired example, candidates of acquired examples, acquisition function values over the candidates, covariance matrix by `hyps`, inverse matrix of the covariance matrix, hyperparameters optimized, and execution times. Shape: ((d, ), (`int_samples`, d), (`int_samples`, ), (n, n), (n, n), dict., dict.).
        :rtype: (numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, dict., dict.)

        :raises: AssertionError

        """

        assert isinstance(X_train, np.ndarray)
        assert isinstance(Y_train, np.ndarray)
        assert isinstance(str_initial_method_ao, str)
        assert isinstance(int_samples, int)
        assert isinstance(str_mlm_method, str)
        assert len(X_train.shape) == 2
        assert len(Y_train.shape) == 2
        assert Y_train.shape[1] == 1
        assert X_train.shape[0] == Y_train.shape[0]
        assert X_train.shape[1] == self.num_dim
        assert int_samples > 0
        assert str_initial_method_ao in constants.ALLOWED_INITIALIZATIONS_AO
        assert str_mlm_method in constants.ALLOWED_MLM_METHOD

        time_start = time.time()

        if self.is_normalized:
            Y_train = (Y_train - np.min(Y_train)) / (
                np.max(Y_train) -
                np.min(Y_train)) * constants.MULTIPLIER_RESPONSE

        time_start_gp = time.time()
        if str_mlm_method == 'regular':
            cov_X_X, inv_cov_X_X, hyps = gp.get_optimized_kernel(
                X_train,
                Y_train,
                self.prior_mu,
                self.str_cov,
                str_optimizer_method=self.str_optimizer_method_gp,
                str_modelselection_method=self.str_modelselection_method,
                debug=self.debug)
        elif str_mlm_method == 'converged':
            is_fixed_noise = constants.IS_FIXED_GP_NOISE

            if self.is_optimize_hyps:
                cov_X_X, inv_cov_X_X, hyps = gp.get_optimized_kernel(
                    X_train,
                    Y_train,
                    self.prior_mu,
                    self.str_cov,
                    str_optimizer_method=self.str_optimizer_method_gp,
                    str_modelselection_method=self.str_modelselection_method,
                    debug=self.debug)
                self.is_optimize_hyps = not _check_hyps_convergence(
                    self.historical_hyps, hyps, self.str_cov, is_fixed_noise)
            else:  # pragma: no cover
                print('[DEBUG] optimize in bo.py: hyps are converged.')
                hyps = self.historical_hyps[-1]
                cov_X_X, inv_cov_X_X, _ = gp.get_kernel_inverse(
                    X_train,
                    hyps,
                    self.str_cov,
                    is_fixed_noise=is_fixed_noise,
                    debug=self.debug)
        elif str_mlm_method == 'probabilistic':  # pragma: no cover
            raise NotImplementedError('optimize: it will be added.')
        else:  # pragma: no cover
            raise ValueError('optimize: missing condition for str_mlm_method.')
        time_end_gp = time.time()

        self.historical_hyps.append(hyps)

        fun_acquisition = _choose_fun_acquisition(self.str_acq, hyps)

        time_start_acq = time.time()
        fun_negative_acquisition = lambda X_test: -1.0 * constants.MULTIPLIER_ACQ * self._optimize_objective(
            fun_acquisition, X_train, Y_train, X_test, cov_X_X, inv_cov_X_X,
            hyps)
        next_point, next_points = self._optimize(
            fun_negative_acquisition,
            str_initial_method=str_initial_method_ao,
            int_samples=int_samples)
        time_end_acq = time.time()

        acquisitions = fun_negative_acquisition(next_points)

        time_end = time.time()

        times = {
            'overall': time_end - time_start,
            'gp': time_end_gp - time_start_gp,
            'acq': time_end_acq - time_start_acq,
        }

        if self.debug:
            print('[DEBUG] optimize in bo.py: time consumed',
                  time_end - time_start, 'sec.')

        return next_point, next_points, acquisitions, cov_X_X, inv_cov_X_X, hyps, times
示例#5
0
def test_get_optimized_kernel():
    np.random.seed(42)
    dim_X = 3
    num_X = 10
    num_instances = 5
    X = np.random.randn(num_X, dim_X)
    X_set = np.random.randn(num_X, num_instances, dim_X)
    Y = np.random.randn(num_X, 1)
    prior_mu = None

    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 1)
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, 1, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, 1, prior_mu, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(1, Y, prior_mu, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(np.ones(num_X), Y, prior_mu, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, np.ones(num_X), prior_mu, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(np.ones((50, 3)), Y, prior_mu, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, np.ones((50, 1)), prior_mu, 'se')
    with pytest.raises(ValueError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 'abc')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 'se', str_optimizer_method=1)
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 'se', str_modelselection_method=1)
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 'se', is_fixed_noise=1)
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 'se', debug=1)

    # INFO: tests for set inputs
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X_set, Y, prior_mu, 'se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X, Y, prior_mu, 'set_se')
    with pytest.raises(AssertionError) as error:
        gp.get_optimized_kernel(X_set, Y, prior_mu, 'set_se', debug=1)

    gp.get_optimized_kernel(X, Y, prior_mu, 'se')
    gp.get_optimized_kernel(X, Y, prior_mu, 'se', str_optimizer_method='L-BFGS-B')
    gp.get_optimized_kernel(X, Y, prior_mu, 'se', str_modelselection_method='loocv')
    gp.get_optimized_kernel(X_set, Y, prior_mu, 'set_se')
    gp.get_optimized_kernel(X_set, Y, prior_mu, 'set_se', str_optimizer_method='L-BFGS-B')
    gp.get_optimized_kernel(X_set, Y, prior_mu, 'set_se', str_modelselection_method='loocv')