{ 'name': 'x27', 'type': 'continuous', 'domain': (1, 4), 'dimensionality': 1 }, { 'name': 'x28', 'type': 'continuous', 'domain': (1, 4), 'dimensionality': 1 }, { 'name': 'x29', 'type': 'continuous', 'domain': (1, 4), 'dimensionality': 1 }, ] dim = len(domain) fill_in_strategy = 'random' f = GaussianMixtureFunction(dim=dim, mean_1=2, mean_2=3) X = np.array([np.full(dim, 1)]) method = Dropout(f=f, domain=domain, subspace_dim_size=5, fill_in_strategy=fill_in_strategy, maximize=True) method.run_optimization(max_iter=200)
from bayopt.methods.dropout import Dropout from bayopt.objective_examples.experiments import SchwefelsFunction import numpy as np domain = [{'name': 'x0', 'type': 'continuous', 'domain': (-1, 1), 'dimensionality': 1}, {'name': 'x1', 'type': 'continuous', 'domain': (-1, 1), 'dimensionality': 1}, {'name': 'x2', 'type': 'continuous', 'domain': (-1, 1), 'dimensionality': 1}, {'name': 'x3', 'type': 'continuous', 'domain': (-1, 1), 'dimensionality': 1}, {'name': 'x4', 'type': 'continuous', 'domain': (-1, 1), 'dimensionality': 1}, ] dim = len(domain) fill_in_strategy = 'random' f = SchwefelsFunction() X = np.array([np.full(dim, 1)]) method = Dropout(f=f, domain=domain, subspace_dim_size=2, fill_in_strategy=fill_in_strategy, maximize=False, X=X) method.run_optimization(max_iter=300, eps=-1)
'type': 'continuous', 'domain': (-1, 1), 'dimensionality': 1 }, ] for i in range(5): fill_in_strategy = 'random' f = SchwefelsFunction() method = Dropout(f=f, domain=domain, subspace_dim_size=5, fill_in_strategy=fill_in_strategy, maximize=False) method.run_optimization(max_iter=500, eps=0) fill_in_strategy = 'copy' f = SchwefelsFunction() method = Dropout( f=f, domain=domain, subspace_dim_size=1, fill_in_strategy=fill_in_strategy, maximize=False, ) method.run_optimization(max_iter=500, eps=0) fill_in_strategy = 'mix' f = SchwefelsFunction() method = Dropout(f=f,