def main(argv=None): r"""Post-processing COCO data of a single algorithm. Provided with some data, this routine outputs figure and TeX files in a folder needed for the compilation of latex document :file:`template1XXX.tex` or :file:`noisytemplate1XXX.tex`, where :file:`XXX` is either :file:`ecj` or :file:`generic`. The template file needs to be edited so that the commands ``\bbobdatapath`` and ``\algfolder`` point to the output folder. These output files will contain performance tables, performance scaling figures and empirical cumulative distribution figures. On subsequent executions, new files will be added to the output folder, overwriting existing older files in the process. Keyword arguments: *argv* -- list of strings containing options and arguments. If not given, sys.argv is accessed. *argv* should list either names of :file:`info` files or folders containing :file:`info` files. argv can also contain post-processed :file:`pickle` files generated by this routine. Furthermore, *argv* can begin with, in any order, facultative option flags listed below. -h, --help displays this message. -v, --verbose verbose mode, prints out all operations. -p, --pickle generates pickle post processed data files. -o OUTPUTDIR, --output-dir=OUTPUTDIR changes the default output directory (:file:`ppdata`) to :file:`OUTPUTDIR`. --crafting-effort=VALUE sets the crafting effort to VALUE (float). Otherwise the default value of 0. will be used. --noise-free, --noisy processes only part of the data. --settings=SETTINGS changes the style of the output figures and tables. At the moment the only differences are in the colors of the output figures. SETTINGS can be either "grayscale", "color" or "black-white". The default setting is "color". --tab-only, --fig-only, --rld-only, --los-only these options can be used to output respectively the TeX tables, convergence and ERTs graphs figures, run length distribution figures, ERT loss ratio figures only. A combination of any two of these options results in no output. --conv if this option is chosen, additionally convergence plots for each function and algorithm are generated. --expensive runlength-based f-target values and fixed display limits, useful with comparatively small budgets. By default the setting is based on the budget used in the data. --not-expensive expensive setting off. --runlength-based runlength-based f-target values, such that the "level of difficulty" is similar for all functions. Exceptions raised: *Usage* -- Gives back a usage message. Examples: * Calling the rungeneric1.py interface from the command line:: $ python bbob_pproc/rungeneric1.py -v experiment1 will post-process the folder experiment1 and all its containing data, base on the .info files found in the folder. The result will appear in the default output folder. The -v option adds verbosity. :: $ python bbob_pproc/rungeneric1.py -o exp2 experiment2/*.info This will execute the post-processing on the info files found in :file:`experiment2`. The result will be located in the alternative location :file:`exp2`. * Loading this package and calling the main from the command line (requires that the path to this package is in python search path):: $ python -m bbob_pproc.rungeneric1 -h This will print out this help message. * From the python interpreter (requires that the path to this package is in python search path):: >> import bbob_pproc as bb >> bb.rungeneric1.main('-o outputfolder folder1'.split()) This will execute the post-processing on the index files found in :file:`folder1`. The ``-o`` option changes the output folder from the default to :file:`outputfolder`. """ if argv is None: argv = sys.argv[1:] # The zero-th input argument which is the name of the calling script is # disregarded. if 1 < 3: opts, args = getopt.getopt(argv, shortoptlist, longoptlist) if 11 < 3: try: opts, args = getopt.getopt(argv, shortoptlist, longoptlist) except getopt.error, msg: raise Usage(msg) if not (args) and not '--help' in argv and not 'h' in argv: print 'not enough input arguments given' print 'cave: the following options also need an argument:' print[o for o in longoptlist if o[-1] == '='] print 'options given:' print opts print 'try --help for help' sys.exit() inputCrE = 0. isfigure = True istab = True isrldistr = True islogloss = True isPostProcessed = False isPickled = False verbose = False outputdir = 'ppdata' isNoisy = False isNoiseFree = False inputsettings = 'color' isConv = False isRLbased = None # allows automatic choice isExpensive = None # Process options for o, a in opts: if o in ("-v", "--verbose"): verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-p", "--pickle"): isPickled = True elif o in ("-o", "--output-dir"): outputdir = a elif o == "--noisy": isNoisy = True elif o == "--noise-free": isNoiseFree = True # The next 4 are for testing purpose elif o == "--tab-only": isfigure = False isrldistr = False islogloss = False elif o == "--fig-only": istab = False isrldistr = False islogloss = False elif o == "--rld-only": istab = False isfigure = False islogloss = False elif o == "--los-only": istab = False isfigure = False isrldistr = False elif o == "--crafting-effort": try: inputCrE = float(a) except ValueError: raise Usage( 'Expect a valid float for flag crafting-effort.') elif o == "--settings": inputsettings = a elif o == "--conv": isConv = True elif o == "--runlength-based": isRLbased = True elif o == "--expensive": isExpensive = True # comprises runlength-based elif o == "--not-expensive": isExpensive = False else: assert False, "unhandled option" # from bbob_pproc import bbob2010 as inset # input settings if inputsettings == "color": from bbob_pproc import genericsettings as inset # input settings elif inputsettings == "grayscale": from bbob_pproc import grayscalesettings as inset # input settings elif inputsettings == "black-white": from bbob_pproc import bwsettings as inset # input settings else: txt = ('Settings: %s is not an appropriate ' % inputsettings + 'argument for input flag "--settings".') raise Usage(txt) if 11 < 3: from bbob_pproc import config # input settings config.config() import imp # import testbedsettings as testbedsettings # input settings try: fp, pathname, description = imp.find_module("testbedsettings") testbedsettings = imp.load_module("testbedsettings", fp, pathname, description) finally: fp.close() if (not verbose): warnings.simplefilter('module') # warnings.simplefilter('ignore') print("Post-processing (1): will generate output " + "data in folder %s" % outputdir) print " this might take several minutes." filelist = list() for i in args: i = i.strip() if os.path.isdir(i): filelist.extend(findfiles.main(i, verbose)) elif os.path.isfile(i): filelist.append(i) else: txt = 'Input file or folder %s could not be found.' % i print txt raise Usage(txt) dsList = DataSetList(filelist, verbose) if not dsList: raise Usage("Nothing to do: post-processing stopped.") if isNoisy and not isNoiseFree: dsList = dsList.dictByNoise().get('nzall', DataSetList()) if isNoiseFree and not isNoisy: dsList = dsList.dictByNoise().get('noiselessall', DataSetList()) # compute maxfuneval values dict_max_fun_evals = {} for ds in dsList: dict_max_fun_evals[ds.dim] = np.max( (dict_max_fun_evals.setdefault(ds.dim, 0), float(np.max(ds.maxevals)))) if isRLbased is not None: genericsettings.runlength_based_targets = isRLbased from bbob_pproc import config config.target_values(isExpensive, dict_max_fun_evals) config.config() if (verbose): for i in dsList: if (dict((j, i.instancenumbers.count(j)) for j in set(i.instancenumbers)) != inset.instancesOfInterest): warnings.warn('The data of %s do not list ' % (i) + 'the correct instances ' + 'of function F%d.' % (i.funcId)) dictAlg = dsList.dictByAlg() if len(dictAlg) > 1: warnings.warn('Data with multiple algId %s ' % (dictAlg) + 'will be processed together.') # TODO: in this case, all is well as long as for a given problem # (given dimension and function) there is a single instance of # DataSet associated. If there are more than one, the first one only # will be considered... which is probably not what one would expect. # TODO: put some errors where this case would be a problem. # raise Usage? if isfigure or istab or isrldistr or islogloss: if not os.path.exists(outputdir): os.makedirs(outputdir) if verbose: print 'Folder %s was created.' % (outputdir) if isPickled: dsList.pickle(verbose=verbose) if isConv: ppconverrorbars.main(dictAlg, outputdir, verbose) if isfigure: print "Scaling figures...", sys.stdout.flush() # ERT/dim vs dim. plt.rc("axes", **inset.rcaxeslarger) plt.rc("xtick", **inset.rcticklarger) plt.rc("ytick", **inset.rcticklarger) plt.rc("font", **inset.rcfontlarger) plt.rc("legend", **inset.rclegendlarger) ppfigdim.main(dsList, ppfigdim.values_of_interest, outputdir, verbose) plt.rcdefaults() print_done() plt.rc("axes", **inset.rcaxes) plt.rc("xtick", **inset.rctick) plt.rc("ytick", **inset.rctick) plt.rc("font", **inset.rcfont) plt.rc("legend", **inset.rclegend) if istab: print "TeX tables...", sys.stdout.flush() dictNoise = dsList.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pptable.main(sliceNoise, inset.tabDimsOfInterest, outputdir, noise, verbose) print_done() if isrldistr: print "ECDF graphs...", sys.stdout.flush() dictNoise = dsList.dictByNoise() if len(dictNoise) > 1: warnings.warn('Data for functions from both the noisy and ' 'non-noisy testbeds have been found. Their ' 'results will be mixed in the "all functions" ' 'ECDF figures.') dictDim = dsList.dictByDim() for dim in inset.rldDimsOfInterest: try: sliceDim = dictDim[dim] except KeyError: continue pprldistr.main(sliceDim, True, outputdir, 'all', verbose) dictNoise = sliceDim.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pprldistr.main(sliceNoise, True, outputdir, '%s' % noise, verbose) dictFG = sliceDim.dictByFuncGroup() for fGroup, sliceFuncGroup in dictFG.items(): pprldistr.main(sliceFuncGroup, True, outputdir, '%s' % fGroup, verbose) pprldistr.fmax = None # Resetting the max final value pprldistr.evalfmax = None # Resetting the max #fevalsfactor print_done() if islogloss: print "ERT loss ratio figures and tables...", sys.stdout.flush() for ng, sliceNoise in dsList.dictByNoise().iteritems(): if ng == 'noiselessall': testbed = 'noiseless' elif ng == 'nzall': testbed = 'noisy' txt = ("Please input crafting effort value " + "for %s testbed:\n CrE = " % testbed) CrE = inputCrE while CrE is None: try: CrE = float(raw_input(txt)) except (SyntaxError, NameError, ValueError): print "Float value required." dictDim = sliceNoise.dictByDim() for d in inset.rldDimsOfInterest: try: sliceDim = dictDim[d] except KeyError: continue info = '%s' % ng pplogloss.main(sliceDim, CrE, True, outputdir, info, verbose=verbose) pplogloss.generateTable(sliceDim, CrE, outputdir, info, verbose=verbose) for fGroup, sliceFuncGroup in sliceDim.dictByFuncGroup( ).iteritems(): info = '%s' % fGroup pplogloss.main(sliceFuncGroup, CrE, True, outputdir, info, verbose=verbose) pplogloss.evalfmax = None # Resetting the max #fevalsfactor print_done() latex_commands_file = os.path.join( outputdir.split(os.sep)[0], 'bbob_pproc_commands.tex') prepend_to_file(latex_commands_file, [ '\\providecommand{\\bbobloglosstablecaption}[1]{', pplogloss.table_caption, '}' ]) prepend_to_file(latex_commands_file, [ '\\providecommand{\\bbobloglossfigurecaption}[1]{', pplogloss.figure_caption, '}' ]) prepend_to_file( latex_commands_file, [ '\\providecommand{\\bbobpprldistrlegend}[1]{', pprldistr.caption_single( np.max([ val / dim for dim, val in dict_max_fun_evals.iteritems() ]) ), # depends on the config setting, should depend on maxfevals '}' ]) prepend_to_file(latex_commands_file, [ '\\providecommand{\\bbobppfigdimlegend}[1]{', ppfigdim.scaling_figure_caption(), '}' ]) prepend_to_file(latex_commands_file, [ '\\providecommand{\\bbobpptablecaption}[1]{', pptable.table_caption, '}' ]) prepend_to_file(latex_commands_file, ['\\providecommand{\\algfolder}{}' ]) # is overwritten in rungeneric.py prepend_to_file(latex_commands_file, [ '\\providecommand{\\algname}{' + (str_to_latex(strip_pathname(args[0])) if len(args) == 1 else str_to_latex(dsList[0].algId)) + '{}}' ]) if isfigure or istab or isrldistr or islogloss: print "Output data written to folder %s" % outputdir plt.rcdefaults()
def main(argv=None): """Generates from BBOB experiment data some outputs for a tex document. Provided with some index entries (found in files with the 'info' extension) this routine outputs figure and TeX files in the folder 'ppdata' needed for the compilation of latex document templateBBOBarticle.tex. These output files will contain performance tables, performance scaling figures and empirical cumulative distribution figures. On subsequent executions, new files will be added to the output directory, overwriting existing older files in the process. Keyword arguments: argv -- list of strings containing options and arguments. If not given, sys.argv is accessed. argv should list either names of info files or folders containing info files. argv can also contain post-processed pickle files generated by this routine. Furthermore, argv can begin with, in any order, facultative option flags listed below. -h, --help display this message -v, --verbose verbose mode, prints out operations. When not in verbose mode, no output is to be expected, except for errors. -p, --pickle generates pickle post processed data files. -o, --output-dir OUTPUTDIR change the default output directory ('ppdata') to OUTPUTDIR --crafting-effort=VALUE sets the crafting effort to VALUE. Otherwise the user will be prompted. This flag is useful when running this script in batch. -f, --final lengthens the bootstrapping process used as dispersion measure in the tables generation. This might at least double the time of the whole post-processing. Please use this option when generating your final paper. --tab-only, --fig-only, --rld-only, --los-only these options can be used to output respectively the tex tables, convergence and ENFEs graphs figures, run length distribution figures, ERT loss ratio figures only. A combination of any two of these options results in no output. Exceptions raised: Usage -- Gives back a usage message. Examples: * Calling the run.py interface from the command line: $ python bbob_pproc/run.py -v experiment1 will post-process the folder experiment1 and all its containing data, base on the found .info files in the folder. The result will appear in folder ppdata. The -v option adds verbosity. $ python bbob_pproc/run.py -o otherppdata experiment2/*.info This will execute the post-processing on the info files found in experiment2. The result will be located in the alternative location otherppdata. * Loading this package and calling the main from the command line (requires that the path to this package is in python search path): $ python -m bbob_pproc -h This will print out this help message. * From the python interactive shell (requires that the path to this package is in python search path): >>> import bbob_pproc >>> bbob_pproc.main('-o outputfolder folder1'.split()) This will execute the post-processing on the index files found in folder1. The -o option changes the output folder from the default ppdata to outputfolder. """ if argv is None: argv = sys.argv[1:] # The zero-th input argument which is the name of the calling script is # disregarded. try: try: opts, args = getopt.getopt(argv, "hvpfo:", [ "help", "output-dir=", "tab-only", "fig-only", "rld-only", "los-only", "crafting-effort=", "pickle", "verbose", "final" ]) except getopt.error, msg: raise Usage(msg) if not (args): usage() sys.exit() CrE = None isfigure = True istab = True isrldistr = True islogloss = True isPostProcessed = False isPickled = False isDraft = True verbose = False outputdir = 'ppdata' #Process options for o, a in opts: if o in ("-v", "--verbose"): verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-p", "--pickle"): isPickled = True elif o in ("-o", "--output-dir"): outputdir = a elif o in ("-f", "--final"): isDraft = False #The next 3 are for testing purpose elif o == "--tab-only": isfigure = False isrldistr = False islogloss = False elif o == "--fig-only": istab = False isrldistr = False islogloss = False elif o == "--rld-only": istab = False isfigure = False islogloss = False elif o == "--los-only": istab = False isfigure = False isrldistr = False elif o == "--crafting-effort": try: CrE = float(a) except ValueError: raise Usage( 'Expect a valid float for flag crafting-effort.') else: assert False, "unhandled option" if (not verbose): warnings.simplefilter('ignore') print("BBOB Post-processing: will generate post-processing " + "data in folder %s" % outputdir) print " this might take several minutes." filelist = list() for i in args: if os.path.isdir(i): filelist.extend(findfiles.main(i, verbose)) elif os.path.isfile(i): filelist.append(i) else: txt = 'Input file or folder %s could not be found.' raise Usage(txt) dsList = DataSetList(filelist, verbose) if not dsList: raise Usage("Nothing to do: post-processing stopped.") if (verbose): for i in dsList: if (dict((j, i.itrials.count(j)) for j in set(i.itrials)) != instancesOfInterest2010): warnings.warn('The data of %s do not list ' % (i) + 'the correct instances ' + 'of function F%d.' % (i.funcId)) # BBOB 2009 Checking #if ((dict((j, i.itrials.count(j)) for j in set(i.itrials)) != #instancesOfInterest) and #(dict((j, i.itrials.count(j)) for j in set(i.itrials)) != #instancesOfInterest2010)): #warnings.warn('The data of %s do not list ' %(i) + #'the correct instances ' + #'of function F%d or the ' %(i.funcId) + #'correct number of trials for each.') dictAlg = dsList.dictByAlg() if len(dictAlg) > 1: warnings.warn('Data with multiple algId %s ' % (dictAlg) + 'will be processed together.') #TODO: in this case, all is well as long as for a given problem #(given dimension and function) there is a single instance of #DataSet associated. If there are more than one, the first one only #will be considered... which is probably not what one would expect. #TODO: put some errors where this case would be a problem. if isfigure or istab or isrldistr or islogloss: if not os.path.exists(outputdir): os.mkdir(outputdir) if verbose: print 'Folder %s was created.' % (outputdir) if isPickled: dsList.pickle(verbose=verbose) if isfigure: ppfigdim.main(dsList, figValsOfInterest, outputdir, verbose) #ERT/dim vs dim. #ppfigdim.main2(dsList, figValsOfInterest, outputdir, #verbose) print "Scaling figures done." if istab: dictFunc = dsList.dictByFunc() for fun, sliceFun in dictFunc.items(): dictDim = sliceFun.dictByDim() tmp = [] for dim in tabDimsOfInterest: try: if len(dictDim[dim]) > 1: warnings.warn( 'Func: %d, DIM %d: ' % (fun, dim) + 'multiple index entries. Will only ' + 'process the first ' + '%s.' % dictDim[dim][0]) tmp.append(dictDim[dim][0]) except KeyError: pass if tmp: filename = os.path.join(outputdir, 'ppdata_f%d' % fun) pptex.main(tmp, tabValsOfInterest, filename, isDraft, verbose) print "TeX tables", if isDraft: print( "(draft) done. To get final version tables, please " "use the -f option with run.py") else: print "done." if isrldistr: dictNoise = dsList.dictByNoise() if len(dictNoise) > 1: warnings.warn('Data for functions from both the noisy and ' 'non-noisy testbeds have been found. Their ' 'results will be mixed in the "all functions" ' 'ECDF figures.') dictDim = dsList.dictByDim() for dim in rldDimsOfInterest: try: sliceDim = dictDim[dim] pprldistr.main(sliceDim, rldValsOfInterest, True, outputdir, 'dim%02dall' % dim, verbose) dictNoise = sliceDim.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pprldistr.main(sliceNoise, rldValsOfInterest, True, outputdir, 'dim%02d%s' % (dim, noise), verbose) dictFG = sliceDim.dictByFuncGroup() for fGroup, sliceFuncGroup in dictFG.items(): pprldistr.main(sliceFuncGroup, rldValsOfInterest, True, outputdir, 'dim%02d%s' % (dim, fGroup), verbose) pprldistr.fmax = None #Resetting the max final value pprldistr.evalfmax = None #Resetting the max #fevalsfactor except KeyError: pass print "ECDF graphs done." if islogloss: for ng, sliceNoise in dsList.dictByNoise().iteritems(): if ng == 'noiselessall': testbed = 'noiseless' elif ng == 'nzall': testbed = 'noisy' txt = ("Please input crafting effort value " + "for %s testbed:\n CrE = " % testbed) while CrE is None: try: CrE = float(input(txt)) except (SyntaxError, NameError, ValueError): print "Float value required." dictDim = sliceNoise.dictByDim() for d in rldDimsOfInterest: try: sliceDim = dictDim[d] except KeyError: continue info = 'dim%02d%s' % (d, ng) pplogloss.main(sliceDim, CrE, True, outputdir, info, verbose=verbose) pplogloss.generateTable(sliceDim, CrE, outputdir, info, verbose=verbose) for fGroup, sliceFuncGroup in sliceDim.dictByFuncGroup( ).iteritems(): info = 'dim%02d%s' % (d, fGroup) pplogloss.main(sliceFuncGroup, CrE, True, outputdir, info, verbose=verbose) pplogloss.evalfmax = None #Resetting the max #fevalsfactor print "ERT loss ratio figures and tables done." if isfigure or istab or isrldistr or islogloss: print "Output data written to folder %s." % outputdir
def main(argv=None): r"""Post-processing COCO data of a single algorithm. Provided with some data, this routine outputs figure and TeX files in a folder needed for the compilation of latex document :file:`template1XXX.tex` or :file:`noisytemplate1XXX.tex`, where :file:`XXX` is either :file:`ecj` or :file:`generic`. The template file needs to be edited so that the commands ``\bbobdatapath`` and ``\algfolder`` point to the output folder. These output files will contain performance tables, performance scaling figures and empirical cumulative distribution figures. On subsequent executions, new files will be added to the output folder, overwriting existing older files in the process. Keyword arguments: *argv* -- list of strings containing options and arguments. If not given, sys.argv is accessed. *argv* should list either names of :file:`info` files or folders containing :file:`info` files. argv can also contain post-processed :file:`pickle` files generated by this routine. Furthermore, *argv* can begin with, in any order, facultative option flags listed below. -h, --help displays this message. -v, --verbose verbose mode, prints out all operations. -p, --pickle generates pickle post processed data files. -o OUTPUTDIR, --output-dir=OUTPUTDIR changes the default output directory (:file:`ppdata`) to :file:`OUTPUTDIR`. --crafting-effort=VALUE sets the crafting effort to VALUE (float). Otherwise the default value of 0. will be used. --noise-free, --noisy processes only part of the data. --settings=SETTINGS changes the style of the output figures and tables. At the moment the only differences are in the colors of the output figures. SETTINGS can be either "grayscale", "color" or "black-white". The default setting is "color". --tab-only, --fig-only, --rld-only, --los-only these options can be used to output respectively the TeX tables, convergence and ERTs graphs figures, run length distribution figures, ERT loss ratio figures only. A combination of any two of these options results in no output. --conv if this option is chosen, additionally convergence plots for each function and algorithm are generated. --expensive runlength-based f-target values and fixed display limits, useful with comparatively small budgets. By default the setting is based on the budget used in the data. --not-expensive expensive setting off. --runlength-based runlength-based f-target values, such that the "level of difficulty" is similar for all functions. Exceptions raised: *Usage* -- Gives back a usage message. Examples: * Calling the rungeneric1.py interface from the command line:: $ python bbob_pproc/rungeneric1.py -v experiment1 will post-process the folder experiment1 and all its containing data, base on the .info files found in the folder. The result will appear in the default output folder. The -v option adds verbosity. :: $ python bbob_pproc/rungeneric1.py -o exp2 experiment2/*.info This will execute the post-processing on the info files found in :file:`experiment2`. The result will be located in the alternative location :file:`exp2`. * Loading this package and calling the main from the command line (requires that the path to this package is in python search path):: $ python -m bbob_pproc.rungeneric1 -h This will print out this help message. * From the python interpreter (requires that the path to this package is in python search path):: >> import bbob_pproc as bb >> bb.rungeneric1.main('-o outputfolder folder1'.split()) This will execute the post-processing on the index files found in :file:`folder1`. The ``-o`` option changes the output folder from the default to :file:`outputfolder`. """ if argv is None: argv = sys.argv[1:] # The zero-th input argument which is the name of the calling script is # disregarded. if 1 < 3: opts, args = getopt.getopt(argv, shortoptlist, longoptlist) if 11 < 3: try: opts, args = getopt.getopt(argv, shortoptlist, longoptlist) except getopt.error, msg: raise Usage(msg) if not (args) and not '--help' in argv and not 'h' in argv: print 'not enough input arguments given' print 'cave: the following options also need an argument:' print [o for o in longoptlist if o[-1] == '='] print 'options given:' print opts print 'try --help for help' sys.exit() inputCrE = 0. isfigure = True istab = True isrldistr = True islogloss = True isPostProcessed = False isPickled = False verbose = False outputdir = 'ppdata' isNoisy = False isNoiseFree = False inputsettings = 'color' isConv = False isRLbased = None # allows automatic choice isExpensive = None # Process options for o, a in opts: if o in ("-v", "--verbose"): verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-p", "--pickle"): isPickled = True elif o in ("-o", "--output-dir"): outputdir = a elif o == "--noisy": isNoisy = True elif o == "--noise-free": isNoiseFree = True # The next 4 are for testing purpose elif o == "--tab-only": isfigure = False isrldistr = False islogloss = False elif o == "--fig-only": istab = False isrldistr = False islogloss = False elif o == "--rld-only": istab = False isfigure = False islogloss = False elif o == "--los-only": istab = False isfigure = False isrldistr = False elif o == "--crafting-effort": try: inputCrE = float(a) except ValueError: raise Usage('Expect a valid float for flag crafting-effort.') elif o == "--settings": inputsettings = a elif o == "--conv": isConv = True elif o == "--runlength-based": isRLbased = True elif o == "--expensive": isExpensive = True # comprises runlength-based elif o == "--not-expensive": isExpensive = False else: assert False, "unhandled option" # from bbob_pproc import bbob2010 as inset # input settings if inputsettings == "color": from bbob_pproc import genericsettings as inset # input settings elif inputsettings == "grayscale": from bbob_pproc import grayscalesettings as inset # input settings elif inputsettings == "black-white": from bbob_pproc import bwsettings as inset # input settings else: txt = ('Settings: %s is not an appropriate ' % inputsettings + 'argument for input flag "--settings".') raise Usage(txt) if 11 < 3: from bbob_pproc import config # input settings config.config() import imp # import testbedsettings as testbedsettings # input settings try: fp, pathname, description = imp.find_module("testbedsettings") testbedsettings = imp.load_module("testbedsettings", fp, pathname, description) finally: fp.close() if (not verbose): warnings.simplefilter('module') # warnings.simplefilter('ignore') print ("Post-processing (1): will generate output " + "data in folder %s" % outputdir) print " this might take several minutes." filelist = list() for i in args: i = i.strip() if os.path.isdir(i): filelist.extend(findfiles.main(i, verbose)) elif os.path.isfile(i): filelist.append(i) else: txt = 'Input file or folder %s could not be found.' % i print txt raise Usage(txt) dsList = DataSetList(filelist, verbose) if not dsList: raise Usage("Nothing to do: post-processing stopped.") if isNoisy and not isNoiseFree: dsList = dsList.dictByNoise().get('nzall', DataSetList()) if isNoiseFree and not isNoisy: dsList = dsList.dictByNoise().get('noiselessall', DataSetList()) # compute maxfuneval values dict_max_fun_evals = {} for ds in dsList: dict_max_fun_evals[ds.dim] = np.max((dict_max_fun_evals.setdefault(ds.dim, 0), float(np.max(ds.maxevals)))) if isRLbased is not None: genericsettings.runlength_based_targets = isRLbased from bbob_pproc import config config.target_values(isExpensive, dict_max_fun_evals) config.config() if (verbose): for i in dsList: if (dict((j, i.instancenumbers.count(j)) for j in set(i.instancenumbers)) != inset.instancesOfInterest): warnings.warn('The data of %s do not list ' % (i) + 'the correct instances ' + 'of function F%d.' % (i.funcId)) dictAlg = dsList.dictByAlg() if len(dictAlg) > 1: warnings.warn('Data with multiple algId %s ' % (dictAlg) + 'will be processed together.') # TODO: in this case, all is well as long as for a given problem # (given dimension and function) there is a single instance of # DataSet associated. If there are more than one, the first one only # will be considered... which is probably not what one would expect. # TODO: put some errors where this case would be a problem. # raise Usage? if isfigure or istab or isrldistr or islogloss: if not os.path.exists(outputdir): os.makedirs(outputdir) if verbose: print 'Folder %s was created.' % (outputdir) if isPickled: dsList.pickle(verbose=verbose) if isConv: ppconverrorbars.main(dictAlg, outputdir, verbose) if isfigure: print "Scaling figures...", sys.stdout.flush() # ERT/dim vs dim. plt.rc("axes", **inset.rcaxeslarger) plt.rc("xtick", **inset.rcticklarger) plt.rc("ytick", **inset.rcticklarger) plt.rc("font", **inset.rcfontlarger) plt.rc("legend", **inset.rclegendlarger) ppfigdim.main(dsList, ppfigdim.values_of_interest, outputdir, verbose) plt.rcdefaults() print_done() plt.rc("axes", **inset.rcaxes) plt.rc("xtick", **inset.rctick) plt.rc("ytick", **inset.rctick) plt.rc("font", **inset.rcfont) plt.rc("legend", **inset.rclegend) if istab: print "TeX tables...", sys.stdout.flush() dictNoise = dsList.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pptable.main(sliceNoise, inset.tabDimsOfInterest, outputdir, noise, verbose) print_done() if isrldistr: print "ECDF graphs...", sys.stdout.flush() dictNoise = dsList.dictByNoise() if len(dictNoise) > 1: warnings.warn('Data for functions from both the noisy and ' 'non-noisy testbeds have been found. Their ' 'results will be mixed in the "all functions" ' 'ECDF figures.') dictDim = dsList.dictByDim() for dim in inset.rldDimsOfInterest: try: sliceDim = dictDim[dim] except KeyError: continue pprldistr.main(sliceDim, True, outputdir, 'all', verbose) dictNoise = sliceDim.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pprldistr.main(sliceNoise, True, outputdir, '%s' % noise, verbose) dictFG = sliceDim.dictByFuncGroup() for fGroup, sliceFuncGroup in dictFG.items(): pprldistr.main(sliceFuncGroup, True, outputdir, '%s' % fGroup, verbose) pprldistr.fmax = None # Resetting the max final value pprldistr.evalfmax = None # Resetting the max #fevalsfactor print_done() if islogloss: print "ERT loss ratio figures and tables...", sys.stdout.flush() for ng, sliceNoise in dsList.dictByNoise().iteritems(): if ng == 'noiselessall': testbed = 'noiseless' elif ng == 'nzall': testbed = 'noisy' txt = ("Please input crafting effort value " + "for %s testbed:\n CrE = " % testbed) CrE = inputCrE while CrE is None: try: CrE = float(raw_input(txt)) except (SyntaxError, NameError, ValueError): print "Float value required." dictDim = sliceNoise.dictByDim() for d in inset.rldDimsOfInterest: try: sliceDim = dictDim[d] except KeyError: continue info = '%s' % ng pplogloss.main(sliceDim, CrE, True, outputdir, info, verbose=verbose) pplogloss.generateTable(sliceDim, CrE, outputdir, info, verbose=verbose) for fGroup, sliceFuncGroup in sliceDim.dictByFuncGroup().iteritems(): info = '%s' % fGroup pplogloss.main(sliceFuncGroup, CrE, True, outputdir, info, verbose=verbose) pplogloss.evalfmax = None # Resetting the max #fevalsfactor print_done() latex_commands_file = os.path.join(outputdir.split(os.sep)[0], 'bbob_pproc_commands.tex') prepend_to_file(latex_commands_file, ['\\providecommand{\\bbobloglosstablecaption}[1]{', pplogloss.table_caption, '}']) prepend_to_file(latex_commands_file, ['\\providecommand{\\bbobloglossfigurecaption}[1]{', pplogloss.figure_caption, '}']) prepend_to_file(latex_commands_file, ['\\providecommand{\\bbobpprldistrlegend}[1]{', pprldistr.caption_single(np.max([ val / dim for dim, val in dict_max_fun_evals.iteritems()])), # depends on the config setting, should depend on maxfevals '}']) prepend_to_file(latex_commands_file, ['\\providecommand{\\bbobppfigdimlegend}[1]{', ppfigdim.scaling_figure_caption(), '}']) prepend_to_file(latex_commands_file, ['\\providecommand{\\bbobpptablecaption}[1]{', pptable.table_caption, '}']) prepend_to_file(latex_commands_file, ['\\providecommand{\\algfolder}{}']) # is overwritten in rungeneric.py prepend_to_file(latex_commands_file, ['\\providecommand{\\algname}{' + (str_to_latex(strip_pathname(args[0])) if len(args) == 1 else str_to_latex(dsList[0].algId)) + '{}}']) if isfigure or istab or isrldistr or islogloss: print "Output data written to folder %s" % outputdir plt.rcdefaults()
def main(argv=None): r"""Post-processing COCO data of a single algorithm. Provided with some data, this routine outputs figure and TeX files in a folder needed for the compilation of the provided LaTeX templates for one algorithm (``*article.tex`` or ``*1*.tex``). The used template file needs to be edited so that the commands ``\bbobdatapath`` and ``\algfolder`` point to the output folder created by this routine. These output files will contain performance tables, performance scaling figures and empirical cumulative distribution figures. On subsequent executions, new files will be added to the output folder, overwriting existing older files in the process. Keyword arguments: *argv* -- list of strings containing options and arguments. If not given, sys.argv is accessed. *argv* should list either names of :file:`info` files or folders containing :file:`info` files. argv can also contain post-processed :file:`pickle` files generated by this routine. Furthermore, *argv* can begin with, in any order, facultative option flags listed below. -h, --help displays this message. -v, --verbose verbose mode, prints out all operations. -p, --pickle generates pickle post processed data files. -o OUTPUTDIR, --output-dir=OUTPUTDIR changes the default output directory (:file:`ppdata`) to :file:`OUTPUTDIR`. --crafting-effort=VALUE sets the crafting effort to VALUE (float). Otherwise the default value of 0. will be used. --noise-free, --noisy processes only part of the data. --settings=SETTINGS changes the style of the output figures and tables. At the moment the only differences are in the colors of the output figures. SETTINGS can be either "grayscale", "color" or "black-white". The default setting is "color". --tab-only, --fig-only, --rld-only, --los-only these options can be used to output respectively the TeX tables, convergence and ERTs graphs figures, run length distribution figures, ERT loss ratio figures only. A combination of any two of these options results in no output. --conv if this option is chosen, additionally convergence plots for each function and algorithm are generated. --rld-single-fcts generate also runlength distribution figures for each single function. --expensive runlength-based f-target values and fixed display limits, useful with comparatively small budgets. By default the setting is based on the budget used in the data. --not-expensive expensive setting off. --svg generate also the svg figures which are used in html files --runlength-based runlength-based f-target values, such that the "level of difficulty" is similar for all functions. Exceptions raised: *Usage* -- Gives back a usage message. Examples: * Calling the rungeneric1.py interface from the command line:: $ python bbob_pproc/rungeneric1.py -v experiment1 will post-process the folder experiment1 and all its containing data, base on the .info files found in the folder. The result will appear in the default output folder. The -v option adds verbosity. :: $ python bbob_pproc/rungeneric1.py -o exp2 experiment2/*.info This will execute the post-processing on the info files found in :file:`experiment2`. The result will be located in the alternative location :file:`exp2`. * Loading this package and calling the main from the command line (requires that the path to this package is in python search path):: $ python -m bbob_pproc.rungeneric1 -h This will print out this help message. * From the python interpreter (requires that the path to this package is in python search path):: >> import bbob_pproc as bb >> bb.rungeneric1.main('-o outputfolder folder1'.split()) This will execute the post-processing on the index files found in :file:`folder1`. The ``-o`` option changes the output folder from the default to :file:`outputfolder`. """ if argv is None: argv = sys.argv[1:] # The zero-th input argument which is the name of the calling script is # disregarded. if 1 < 3: opts, args = getopt.getopt(argv, genericsettings.shortoptlist, genericsettings.longoptlist) if 11 < 3: try: opts, args = getopt.getopt(argv, genericsettings.shortoptlist, genericsettings.longoptlist) except getopt.error, msg: raise Usage(msg) if not (args) and not "--help" in argv and not "h" in argv: print "not enough input arguments given" print "cave: the following options also need an argument:" print [o for o in genericsettings.longoptlist if o[-1] == "="] print "options given:" print opts print "try --help for help" sys.exit() # Process options outputdir = genericsettings.outputdir for o, a in opts: if o in ("-v", "--verbose"): genericsettings.verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-p", "--pickle"): genericsettings.isPickled = True elif o in ("-o", "--output-dir"): outputdir = a elif o == "--noisy": genericsettings.isNoisy = True elif o == "--noise-free": genericsettings.isNoiseFree = True # The next 4 are for testing purpose elif o == "--tab-only": genericsettings.isFig = False genericsettings.isRLDistr = False genericsettings.isLogLoss = False elif o == "--fig-only": genericsettings.isTab = False genericsettings.isRLDistr = False genericsettings.isLogLoss = False elif o == "--rld-only": genericsettings.isTab = False genericsettings.isFig = False genericsettings.isLogLoss = False elif o == "--los-only": genericsettings.isTab = False genericsettings.isFig = False genericsettings.isRLDistr = False elif o == "--crafting-effort": try: genericsettings.inputCrE = float(a) except ValueError: raise Usage("Expect a valid float for flag crafting-effort.") elif o == "--settings": genericsettings.inputsettings = a elif o == "--conv": genericsettings.isConv = True elif o == "--rld-single-fcts": genericsettings.isRldOnSingleFcts = True elif o == "--runlength-based": genericsettings.runlength_based_targets = True elif o == "--expensive": genericsettings.isExpensive = True # comprises runlength-based elif o == "--not-expensive": genericsettings.isExpensive = False elif o == "--svg": genericsettings.generate_svg_files = True elif o == "--sca-only": warnings.warn("option --sca-only will have no effect with rungeneric1.py") else: assert False, "unhandled option" # from bbob_pproc import bbob2010 as inset # input settings if genericsettings.inputsettings == "color": from bbob_pproc import genericsettings as inset # input settings elif genericsettings.inputsettings == "grayscale": from bbob_pproc import grayscalesettings as inset # input settings elif genericsettings.inputsettings == "black-white": from bbob_pproc import bwsettings as inset # input settings else: txt = ( "Settings: %s is not an appropriate " % genericsettings.inputsettings + 'argument for input flag "--settings".' ) raise Usage(txt) if 11 < 3: from bbob_pproc import config # input settings config.config(False) import imp # import testbedsettings as testbedsettings # input settings try: fp, pathname, description = imp.find_module("testbedsettings") testbedsettings = imp.load_module("testbedsettings", fp, pathname, description) finally: fp.close() if not genericsettings.verbose: warnings.simplefilter("module") # warnings.simplefilter('ignore') # get directory name if outputdir is a archive file algfolder = findfiles.get_output_directory_subfolder(args[0]) outputdir = os.path.join(outputdir, algfolder) print ("Post-processing (1): will generate output " + "data in folder %s" % outputdir) print " this might take several minutes." filelist = list() for i in args: i = i.strip() if os.path.isdir(i): filelist.extend(findfiles.main(i, genericsettings.verbose)) elif os.path.isfile(i): filelist.append(i) else: txt = "Input file or folder %s could not be found." % i print txt raise Usage(txt) dsList = DataSetList(filelist, genericsettings.verbose) if not dsList: raise Usage("Nothing to do: post-processing stopped.") if genericsettings.isNoisy and not genericsettings.isNoiseFree: dsList = dsList.dictByNoise().get("nzall", DataSetList()) if genericsettings.isNoiseFree and not genericsettings.isNoisy: dsList = dsList.dictByNoise().get("noiselessall", DataSetList()) # compute maxfuneval values dict_max_fun_evals = {} for ds in dsList: dict_max_fun_evals[ds.dim] = np.max((dict_max_fun_evals.setdefault(ds.dim, 0), float(np.max(ds.maxevals)))) from bbob_pproc import config config.target_values(genericsettings.isExpensive, dict_max_fun_evals) config.config(dsList.isBiobjective()) if genericsettings.verbose: for i in dsList: if dict((j, i.instancenumbers.count(j)) for j in set(i.instancenumbers)) != inset.instancesOfInterest: warnings.warn( "The data of %s do not list " % (i) + "the correct instances " + "of function F%d." % (i.funcId) ) dictAlg = dsList.dictByAlg() if len(dictAlg) > 1: warnings.warn("Data with multiple algId %s " % str(dictAlg.keys()) + "will be processed together.") # TODO: in this case, all is well as long as for a given problem # (given dimension and function) there is a single instance of # DataSet associated. If there are more than one, the first one only # will be considered... which is probably not what one would expect. # TODO: put some errors where this case would be a problem. # raise Usage? if genericsettings.isFig or genericsettings.isTab or genericsettings.isRLDistr or genericsettings.isLogLoss: if not os.path.exists(outputdir): os.makedirs(outputdir) if genericsettings.verbose: print "Folder %s was created." % (outputdir) if genericsettings.isPickled: dsList.pickle(verbose=genericsettings.verbose) if genericsettings.isConv: ppconverrorbars.main(dictAlg, outputdir, genericsettings.verbose) if genericsettings.isFig: print "Scaling figures...", sys.stdout.flush() # ERT/dim vs dim. plt.rc("axes", **inset.rcaxeslarger) plt.rc("xtick", **inset.rcticklarger) plt.rc("ytick", **inset.rcticklarger) plt.rc("font", **inset.rcfontlarger) plt.rc("legend", **inset.rclegendlarger) plt.rc("pdf", fonttype=42) ppfigdim.main(dsList, ppfigdim.values_of_interest, outputdir, genericsettings.verbose) plt.rcdefaults() print_done() plt.rc("axes", **inset.rcaxes) plt.rc("xtick", **inset.rctick) plt.rc("ytick", **inset.rctick) plt.rc("font", **inset.rcfont) plt.rc("legend", **inset.rclegend) plt.rc("pdf", fonttype=42) if genericsettings.isTab: print "TeX tables...", sys.stdout.flush() dictNoise = dsList.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pptable.main(sliceNoise, inset.tabDimsOfInterest, outputdir, noise, genericsettings.verbose) print_done() if genericsettings.isRLDistr: print "ECDF graphs...", sys.stdout.flush() dictNoise = dsList.dictByNoise() if len(dictNoise) > 1: warnings.warn( "Data for functions from both the noisy and " "non-noisy testbeds have been found. Their " 'results will be mixed in the "all functions" ' "ECDF figures." ) dictDim = dsList.dictByDim() for dim in inset.rldDimsOfInterest: try: sliceDim = dictDim[dim] except KeyError: continue pprldistr.main(sliceDim, True, outputdir, "all", genericsettings.verbose) dictNoise = sliceDim.dictByNoise() for noise, sliceNoise in dictNoise.iteritems(): pprldistr.main(sliceNoise, True, outputdir, "%s" % noise, genericsettings.verbose) dictFG = sliceDim.dictByFuncGroup() for fGroup, sliceFuncGroup in dictFG.items(): pprldistr.main(sliceFuncGroup, True, outputdir, "%s" % fGroup, genericsettings.verbose) pprldistr.fmax = None # Resetting the max final value pprldistr.evalfmax = None # Resetting the max #fevalsfactor if ( genericsettings.isRldOnSingleFcts ): # copy-paste from above, here for each function instead of function groups # ECDFs for each function pprldmany.all_single_functions(dictAlg, None, outputdir, genericsettings.verbose) print_done() if genericsettings.isLogLoss: print "ERT loss ratio figures and tables...", sys.stdout.flush() for ng, sliceNoise in dsList.dictByNoise().iteritems(): if ng == "noiselessall": testbed = "noiseless" elif ng == "nzall": testbed = "noisy" txt = "Please input crafting effort value " + "for %s testbed:\n CrE = " % testbed CrE = genericsettings.inputCrE while CrE is None: try: CrE = float(raw_input(txt)) except (SyntaxError, NameError, ValueError): print "Float value required." dictDim = sliceNoise.dictByDim() for d in inset.rldDimsOfInterest: try: sliceDim = dictDim[d] except KeyError: continue info = "%s" % ng pplogloss.main(sliceDim, CrE, True, outputdir, info, verbose=genericsettings.verbose) pplogloss.generateTable(sliceDim, CrE, outputdir, info, verbose=genericsettings.verbose) for fGroup, sliceFuncGroup in sliceDim.dictByFuncGroup().iteritems(): info = "%s" % fGroup pplogloss.main(sliceFuncGroup, CrE, True, outputdir, info, verbose=genericsettings.verbose) pplogloss.evalfmax = None # Resetting the max #fevalsfactor print_done() latex_commands_file = os.path.join(outputdir.split(os.sep)[0], "bbob_pproc_commands.tex") html_file = os.path.join(outputdir, genericsettings.single_algorithm_file_name + ".html") prepend_to_file( latex_commands_file, ["\\providecommand{\\bbobloglosstablecaption}[1]{", pplogloss.table_caption, "}"] ) prepend_to_file( latex_commands_file, ["\\providecommand{\\bbobloglossfigurecaption}[1]{", pplogloss.figure_caption, "}"] ) prepend_to_file( latex_commands_file, [ "\\providecommand{\\bbobpprldistrlegend}[1]{", pprldistr.caption_single( np.max([val / dim for dim, val in dict_max_fun_evals.iteritems()]) ), # depends on the config setting, should depend on maxfevals "}", ], ) replace_in_file( html_file, r"TOBEREPLACED", "D, ".join([str(i) for i in pprldistr.single_runlength_factors[:6]]) + "D,…", ) prepend_to_file( latex_commands_file, ["\\providecommand{\\bbobppfigdimlegend}[1]{", ppfigdim.scaling_figure_caption(), "}"] ) prepend_to_file(latex_commands_file, ["\\providecommand{\\bbobpptablecaption}[1]{", pptable.table_caption, "}"]) prepend_to_file(latex_commands_file, ["\\providecommand{\\algfolder}{" + algfolder + "/}"]) prepend_to_file( latex_commands_file, [ "\\providecommand{\\algname}{" + (str_to_latex(strip_pathname1(args[0])) if len(args) == 1 else str_to_latex(dsList[0].algId)) + "{}}" ], ) if genericsettings.isFig or genericsettings.isTab or genericsettings.isRLDistr or genericsettings.isLogLoss: print "Output data written to folder %s" % outputdir plt.rcdefaults()