def test_intersect2(self): bflt = bbox.BBox(0.96, 0.49, 1.2, 0.64) bflt.intersect(bbox.BBox(0.0, 0.0, 1.0, 1.0)) self.assertAlmostEqual(bflt.xmin, 0.96, places=5) self.assertAlmostEqual(bflt.ymin, 0.49, places=5) self.assertAlmostEqual(bflt.xmax, 1.0, places=5) self.assertAlmostEqual(bflt.ymax, 0.64, places=5)
def test_normalize_to_outer_box(self): # test bflt self.bflt.normalize_to_outer_box(bbox.BBox(0, 0, 3.0, 2.0)) self.assertAlmostEqual(self.bflt.xmin, 0.2/3.0, places=5) self.assertAlmostEqual(self.bflt.ymin, 0.3/2.0, places=5) self.assertAlmostEqual(self.bflt.xmax, 0.5/3.0, places=5) self.assertAlmostEqual(self.bflt.ymax, 0.6/2.0, places=5) # test bint self.bint.normalize_to_outer_box(bbox.BBox(50, 10, 80, 60)) self.assertAlmostEqual(self.bint.xmin, 10.0/30.0, places=5) self.assertAlmostEqual(self.bint.ymin, 20.0/50.0, places=5) self.assertAlmostEqual(self.bint.xmax, 50.0/30.0, places=5) self.assertAlmostEqual(self.bint.ymax, 40.0/50.0, places=5)
def detect_objects(img_read): ''' returns list of classes detected and corresponding bounding boxes ''' image = cv2.imread(img_read) Width = image.shape[1] Height = image.shape[0] scale = 0.00392 classes = None with open(classes_dir, 'r') as f: classes = [line.strip() for line in f.readlines()] COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) net = cv2.dnn.readNet(weights, config) blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(get_output_layers(net)) class_ids = [] confidences = [] boxes = [] conf_threshold = 0.5 nms_threshold = 0.4 for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * Width) center_y = int(detection[1] * Height) w = int(detection[2] * Width) h = int(detection[3] * Height) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, w, h]) class_list = [] bbox_list = [] for class_indx in class_ids: class_list.append(str(classes[class_indx])) for box in boxes: bbox_list.append(bbox.BBox(box[0], box[1], box[2], box[3])) return class_list, confidences, bbox_list
def test_non_maxima_suppression(self): # empty case bb = bbox.BBox.non_maxima_suppression([], 0.5) self.assertEqual(bb, []) # None case bb = bbox.BBox.non_maxima_suppression(None, 0.5) self.assertEqual(bb, []) # 1-bbox case bboxes = [bbox.BBox(0.6, 0.8, 0.7, 0.9, confidence=0.5)] bb = bbox.BBox.non_maxima_suppression(bboxes, 0.5) self.assertEqual(len(bb), 1) self.assertEqual(bb[0].xmin, 0.6) self.assertEqual(bb[0].ymin, 0.8) self.assertEqual(bb[0].xmax, 0.7) self.assertEqual(bb[0].ymax, 0.9) self.assertEqual(bb[0].confidence, 0.5) # 3-bboxes example bboxes = [bbox.BBox(0.6, 0.8, 0.7, 0.9, confidence=0.5), \ bbox.BBox(0.6, 0.8, 0.7, 0.95, confidence=0.1), \ bbox.BBox(0.6, 0.8, 0.75, 0.9, confidence=0.7), \ bbox.BBox(0.1, 0.2, 0.4, 0.9, confidence=0.8) ] # threshold 0.3 bb = bbox.BBox.non_maxima_suppression(bboxes, 0.3) self.assertEqual(len(bboxes), 4) self.assertEqual(bboxes[0].confidence, 0.5) self.assertEqual(bboxes[1].confidence, 0.1) self.assertEqual(bboxes[2].confidence, 0.7) self.assertEqual(bboxes[3].confidence, 0.8) self.assertEqual(len(bb), 2) self.assertEqual(bb[0].confidence, 0.8) self.assertEqual(bb[0].xmax, 0.4) self.assertEqual(bb[1].confidence, 0.7) self.assertEqual(bb[1].xmax, 0.75) # threshold 1.0 (i.e. there is no NMS at all) bb = bbox.BBox.non_maxima_suppression(bboxes, 1.0) self.assertEqual(len(bboxes), 4) self.assertEqual(bboxes[0].confidence, 0.5) self.assertEqual(bboxes[1].confidence, 0.1) self.assertEqual(bboxes[2].confidence, 0.7) self.assertEqual(bboxes[3].confidence, 0.8) self.assertEqual(len(bb), 4) self.assertEqual(bb[0].confidence, 0.8) self.assertEqual(bb[1].confidence, 0.7) self.assertEqual(bb[2].confidence, 0.5) self.assertEqual(bb[3].confidence, 0.1)
def test_intersect(self): # test bflt self.bflt.intersect(bbox.BBox(0.15, 0.4, 0.35, 0.7)) self.assertAlmostEqual(self.bflt.xmin, 0.2, places=5) self.assertAlmostEqual(self.bflt.ymin, 0.4, places=5) self.assertAlmostEqual(self.bflt.xmax, 0.35, places=5) self.assertAlmostEqual(self.bflt.ymax, 0.6, places=5) # test bint self.bint.intersect(bbox.BBox(50, 10, 80, 60)) self.assertAlmostEqual(self.bint.xmin, 60, places=5) self.assertAlmostEqual(self.bint.ymin, 30, places=5) self.assertAlmostEqual(self.bint.xmax, 80, places=5) self.assertAlmostEqual(self.bint.ymax, 50, places=5) # intersect 2 bbox (that do not have intesection) self.bflt.intersect(bbox.BBox(0.6, 0.8, 0.7, 0.9)) self.assertAlmostEqual(self.bflt.xmin, 0.0, places=5) self.assertAlmostEqual(self.bflt.ymin, 0.0, places=5) self.assertAlmostEqual(self.bflt.xmax, 0.0, places=5) self.assertAlmostEqual(self.bflt.ymax, 0.0, places=5)
def test_jaccard_similarity(self): s = self.bint.jaccard_similarity(bbox.BBox(70, 40, 120, 65)) self.assertEqual(s, 300 / float(40*20 + 50*25 - 300)) s = self.bflt.jaccard_similarity(bbox.BBox(0.6, 0.8, 0.7, 0.9)) self.assertEqual(s, 0.0)
def setUp(self): self.bflt = bbox.BBox(0.2, 0.3, 0.5, 0.6, 0.1) self.bint = bbox.BBox(60, 30, 100, 50)
plane.pitch(radians(-90)) plane.setEffect("colored -d gray") # Create first light light1 = Light.create() light1.setColor(Color(1, 0.8, 0.8, 1)) light1.setPosition(Vector3(0, 0, -4)) light1.setEnabled(True) # Create second light light2 = Light.create() light2.setColor(Color(0.8, 0.8, 0.1, 1)) light2.setPosition(Vector3(0, 4, -4)) light2.setLightType(LightType.Spot) light2.setLightDirection(Vector3(0, -1, 0)) light2.setSpotCutoff(30) light2.setSpotExponent(20) light2.setEnabled(True) # Spin the box! def onUpdate(frame, t, dt): torus.pitch(dt) torus.yaw(dt / 3) setUpdateFunction(onUpdate) import bbox bbox.BBox(torus)