示例#1
0
def main(collect):
    collect = misc.update_arguments(collect=collect)[0]
    dataset_dir, env_name, episodes = collect_dataset(collect)
    print(
        colored('Dataset successfully written to {}'.format(dataset_dir),
                'green'))
    print(
        colored('{} episodes collected from {}'.format(episodes, env_name),
                'green'))
示例#2
0
def main(model, dataset):
    model, dataset = misc.update_arguments(model=model, dataset=dataset)
    train_loader, eval_loader, env_name, statistics = utils.make_loader(
        model=model, dataset=dataset)
    net, optimizer, starting_epoch, net_path = utils.make_net(
        model=model, dataset=dataset, env_name=env_name, statistics=statistics)
    utils.write_info(model, dataset)
    log.init_writers(net_path)
    train(train_loader, eval_loader, net_path, net, optimizer, starting_epoch)
示例#3
0
def main(model, collect):
    t0 = time.time()

    print('Collecting demos in folder {} with parameters:\n collect {}\n model {}'.format(
        collect['folder'], collect, model))
    model, collect = misc.update_arguments(model=model, collect=collect)
    collector, seed_epoch, report, report_path, data_dir = make_collector(model, collect)
    results = run_parallel(collector, seed_epoch, collect)
    episodes, failed_episodes, tot_steps, max_steps = process_results(
        results, report, report_path, collect)

    print(colored('Dataset successfully written to {}'.format(data_dir), 'green'))
    print(colored('Total {} steps in {} trajectories'.format(tot_steps, episodes), 'green'))
    print(colored('Maximum {} steps in one trajectory'.format(max_steps), 'green'))
    print(colored('Data collection took {} seconds'.format(time.time() - t0), 'green'))

    # if len(failed_episodes):
    #     print(colored('Failed {} trajectories: {}'.format(
    #         len(failed_episodes), sorted(failed_episodes)), 'red'))

    if report is not None:
        print_report(report)
示例#4
0
文件: train.py 项目: wx-b/rlbc
def main(sim2real, train, dataset, model):
    model, dataset, sim2real = misc.update_arguments(model=model,
                                                     dataset=dataset,
                                                     sim2real=sim2real)
    utils.set_up_training(sim2real['mcts_dir'])
    train_mcts(train=train, dataset=dataset, model=model, **sim2real)