示例#1
0
                              point=psf_cen,
                              direction=(0, 0, 1),
                              voxel_size=voxel_size)
linecuts_dict = OrderedDict([('width_z', width_z), ('width_y', width_y),
                             ('width_x', width_x), ('cut_z', cut_z),
                             ('cut_y', cut_y), ('cut_x', cut_x)])

# define the maximum identical length that can share the linecuts (we need to concatenate them)
width_length = min(width_z.size, width_y.size, width_x.size)
linecuts = np.empty(
    (6, width_length
     ))  # rows 0:3 for the widths, rows 3:6 for the corresponding cuts
idx = 0
for key in linecuts_dict.keys():  # order is maintained in OrderedDict
    linecuts[idx, :] = pu.crop_pad_1d(
        linecuts_dict[key],
        output_length=width_length)  # implicit crop from the center
    idx += 1

# create nb_fit sets of parameters, one per data set
fit_params = Parameters()
for idx in range(
        3):  # 3 linecuts in orthogonal directions to be fitted by a gaussian
    fit_params.add('amp_%i' % (idx + 1), value=1, min=0.1, max=100)
    fit_params.add('cen_%i' % (idx + 1),
                   value=linecuts[idx, :].mean(),
                   min=linecuts[idx, :].min(),
                   max=linecuts[idx, :].max())
    fit_params.add('sig_%i' % (idx + 1), value=5, min=0.1, max=100)

# run the global fit to all the data sets
示例#2
0
################################
# optionally load the q values #
################################
if load_qvalues:
    file_path = filedialog.askopenfilename(initialdir=datadir, title="Select the q values",
                                           filetypes=[("NPZ", "*.npz")])
    q_values = np.load(file_path)
    qx = q_values['qx']
    qz = q_values['qz']
    qy = q_values['qy']
    print('Loaded: qx shape:', qx.shape, 'qz shape:', qz.shape, 'qy shape:', qy.shape)
    assert (*qx.shape, *qz.shape, *qy.shape) == data.shape, 'q values and data shape are incompatible'

    # crop the q values to the region of interest used in plots
    qx = pu.crop_pad_1d(array=qx, output_length=plot_range[0] + plot_range[1], crop_center=zcom)
    qz = pu.crop_pad_1d(array=qz, output_length=plot_range[2] + plot_range[3], crop_center=ycom)
    qy = pu.crop_pad_1d(array=qy, output_length=plot_range[4] + plot_range[5], crop_center=xcom)
    print('Cropped: qx shape:', qx.shape, 'qz shape:', qz.shape, 'qy shape:', qy.shape)

    q_range = (qx.min(), qx.max(), qz.min(), qz.max(), qy.min(), qy.max())
else:
    # crop the q values to the region of interest used in plots
    q_range = (0, plot_range[0] + plot_range[1], 0, plot_range[2] + plot_range[3], 0, plot_range[4] + plot_range[5])

print('q range:', [f'{val:.4f}' for val in q_range])

#############################################################
# define the positions of the axes ticks and colorbar ticks #
#############################################################
# use 5 ticks by default if tick_spacing is None for the axis
示例#3
0
            initialdir=root_folder,
            title="Select original q values",
            filetypes=[("NPZ", "*.npz")])
        q_values = np.load(file_path)
        qx = q_values['qx']  # 1D array
        qy = q_values['qy']  # 1D array
        qz = q_values['qz']  # 1D array
        # crop q to accomodate a shape change of the original array (e.g. cropping to fit FFT shape requirement)
        if qvalues_binned:
            assert len(qx) >= pynx_shape[
                0], 'qx declared binned, its length should be >= pynx_shape[0]'
            assert len(qy) >= pynx_shape[
                2], 'qy declared binned, its length should be >= pynx_shape[2]'
            assert len(qz) >= pynx_shape[
                1], 'qz declared binned, its length should be >= pynx_shape[1]'
            qx = pu.crop_pad_1d(qx, pynx_shape[0])  # qx along z
            qy = pu.crop_pad_1d(qy, pynx_shape[2])  # qy along x
            qz = pu.crop_pad_1d(qz, pynx_shape[1])  # qz along y
        else:
            assert len(qx) >= unbinned_shape[
                0], 'qx declared unbinned, its length should be >= unbinned_shape[0]'
            assert len(qy) >= unbinned_shape[
                2], 'qy declared unbinned, its length should be >= unbinned_shape[2]'
            assert len(qz) >= unbinned_shape[
                1], 'qz declared unbinned, its length should be >= unbinned_shape[1]'
            qx = pu.crop_pad_1d(qx, unbinned_shape[0])  # qx along z
            qy = pu.crop_pad_1d(qy, unbinned_shape[2])  # qy along x
            qz = pu.crop_pad_1d(qz, unbinned_shape[1])  # qz along y

        print('Length(q_original)=', len(qx), len(qz), len(qy), '(qx, qz, qy)')
        voxelsize_z = 2 * np.pi / (qx.max() - qx.min())  # qx along z