示例#1
0
def fill_histos_data(tree_name, mode="nue"):
    f_data = ROOT.TFile("root_files_sys/%s_%s_file.root" %
                        (tree_name, variation))
    t_data = f_data.Get("%s_tree" % tree_name)

    ROOT.TMVA.Tools.Instance()
    reader = ROOT.TMVA.Reader(":".join(["!V", "!Silent", "Color"]))

    variables_dict = load_variables(t_data)
    load_bdt(reader)

    histograms = []

    for i, n in enumerate(variables_dict.keys()):
        if n != "reco_energy":
            h = ROOT.TH1F("h_%s" % n, labels[n], binning[n][0], binning[n][1],
                          binning[n][2])
        else:
            h = ROOT.TH1F("h_%s" % n, labels[n], len(bins) - 1, bins)
        histograms.append(h)

    histo_dict = dict(zip(variables_dict.keys(), histograms))

    h_bdts = {}
    for bdt_name in bdt_types:
        h_bdts[bdt_name] = ROOT.TH1F(
            "h_bdt_%s_%s" % (bdt_name, tree_name),
            "BDT %s response; N. Entries / 0.04" % bdt_name, 50, -1, 1)

    passed_events = 0
    entries = int(t_data.GetEntries() / 1)

    # bdt_ntuple = ROOT.TNtuple(
    #     "bdt_ntuple", "bdt_ntuple", "single"+":".join(bdt_types) + ":category")
    f_clone = ROOT.TFile("root_files_sys/filtered_%s.root" % tree_name,
                         "RECREATE")
    clone = t_data.CloneTree(0)

    for i_evt in tqdm(range(entries)):
        t_data.GetEntry(i_evt)
        bdt_values = {}

        for bdt_name in bdt_types:
            bdt_values[bdt_name] = reader.EvaluateMVA("BDT%s" % bdt_name)

        numu = mode == "numu"

        if pre_cuts(variables_dict, numu):
            for bdt_name in bdt_types:
                h_bdts[bdt_name].Fill(bdt_values[bdt_name],
                                      t_data.event_weight)

            if apply_cuts(bdt_values, variables_dict, BDT, MANUAL, mode):
                passed_events += t_data.event_weight
                all_vars = variables + spectators
                clone.Fill()
                for name, var in all_vars:
                    for v in var:
                        if v == -999:
                            break
                        histo_dict[name].Fill(v, t_data.event_weight)

    clone.Write()
    f_clone.Close()

    f_bdt = ROOT.TFile("plots/h_bdt_%s.root" % tree_name, "RECREATE")
    for h in h_bdts:
        h_bdts[h].Write()
    f_bdt.Close()

    for h in histograms:
        f = ROOT.TFile(
            "%splots%s/%s_%s.root" % (detsyst, folder, h.GetName(), tree_name),
            "RECREATE")
        h.Write()
        f.Close()

    return passed_events
示例#2
0
def fill_histos(chain, histo_dict, h_bdt_types, option="", mode="nue"):
    ROOT.TMVA.Tools.Instance()
    reader = ROOT.TMVA.Reader(":".join(["!V", "!Silent", "Color"]))

    bdt_ntuple = ROOT.TNtuple("bdt_ntuple", "bdt_ntuple",
                              "single" + ":".join(bdt_types) + ":category")

    variables_dict = load_variables(chain)
    load_bdt(reader)

    passed_events = 0
    entries = int(chain.GetEntries() / 1)
    f = open("selected_events/%s_passed.txt" % option, "w")
    clone = chain.GetTree().CloneTree(0)
    for i in tqdm(range(entries)):
        chain.GetEntry(i)
        category = int(chain.category)

        # cuts_response = reader.EvaluateMVA("Cuts method", rectangular_cut)
        # likelihood_response = reader.EvaluateMVA("Likelihood method")

        bdts = {}
        for bdt_name in bdt_types:
            bdts[bdt_name] = reader.EvaluateMVA("BDT%s" % bdt_name)

        numu = mode == "numu"

        if pre_cuts(variables_dict, numu):
            for bdt_name in bdt_types:
                h_bdt_types[bdt_name][category].Fill(bdts[bdt_name],
                                                     chain.event_weight)
        else:
            continue

        bdt_ntuple.Fill(array("f", list(bdts.values()) + [chain.category]))

        if apply_cuts(bdts, variables_dict, BDT, MANUAL, mode):
            if not chain.true_nu_is_fidvol and category != 0 and category != 6 and category != 1 and category != 7:
                category = 5
            clone.Fill()

            print(int(chain.run),
                  int(chain.subrun),
                  int(chain.event),
                  int(category),
                  chain.reco_energy,
                  file=f)

            if option == "nue":
                if category == 2:
                    passed_events += chain.event_weight
            else:
                passed_events += chain.event_weight

            all_vars = variables + spectators
            var_dict = dict(all_vars)
            for name, var in all_vars:
                for i_v, v in enumerate(var):
                    if name == "interaction_type" and v == 10:
                        v = 4
                    if v == -999:
                        break

                    pdg_code = 99999

                    if "track" in name and name != "no_tracks":
                        pdg_code = int(var_dict["track_pdg"][i_v])
                        if option != "bnbext" and abs(pdg_code) == 2147483648:
                            pdg_code = int(var_dict["shower_pdg"][0])
                    elif "shower" in name:
                        pdg_code = int(var_dict["shower_pdg"][i_v])
                        if option != "bnbext" and abs(pdg_code) == 2147483648:
                            pdg_code = int(var_dict["track_pdg"][0])

                    if abs(pdg_code) in h_pdgs[name]:
                        if MANUAL and category == 2:
                            h_pdgs[name][abs(pdg_code)].Fill(
                                v, chain.event_weight * 3.3 / 2.9)
                        else:
                            h_pdgs[name][abs(pdg_code)].Fill(
                                v, chain.event_weight)
                    else:
                        h_pdgs[name][99999].Fill(v, chain.event_weight)

                    if MANUAL and category == 2:
                        histo_dict[name][category].Fill(
                            v, chain.event_weight * 3.3 / 2.9)
                    else:
                        histo_dict[name][category].Fill(v, chain.event_weight)

    f.close()
    f = ROOT.TFile("plots/bdt_ntuple_%s.root" % option, "RECREATE")
    clone.Write()
    bdt_ntuple.Write()
    f.Close()

    return passed_events
示例#3
0
def fill_histos(chain, histo_dict, h_bdt_types, option="", mode="nue"):
    ROOT.TMVA.Tools.Instance()
    reader = ROOT.TMVA.Reader(":".join(["!V", "!Silent", "Color"]))

    bdt_ntuple = ROOT.TNtuple("bdt_ntuple", "bdt_ntuple",
                              "single" + ":".join(bdt_types) + ":category")

    variables_dict = load_variables(chain)
    load_bdt(reader)

    passed_events = 0
    entries = int(chain.GetEntries() / 1)
    for i in tqdm(range(entries)):
        chain.GetEntry(i)
        category = int(chain.category)

        # cuts_response = reader.EvaluateMVA("Cuts method", rectangular_cut)
        # likelihood_response = reader.EvaluateMVA("Likelihood method")

        bdts = {}
        for bdt_name in bdt_types:
            bdts[bdt_name] = reader.EvaluateMVA("BDT%s" % bdt_name)

        numu = mode == "numu"

        if pre_cuts(variables_dict, numu):
            for bdt_name in bdt_types:
                h_bdt_types[bdt_name][category].Fill(bdts[bdt_name],
                                                     chain.event_weight)
        else:
            continue

        if apply_cuts(bdts, variables_dict, BDT, MANUAL, mode):
            if not chain.true_nu_is_fidvol and category != 0 and category != 6 and category != 1 and category != 7:
                category = 5

            if option == "nue":
                if category == 2:
                    passed_events += chain.event_weight
            else:
                passed_events += chain.event_weight

            all_vars = variables + spectators
            var_dict = dict(all_vars)
            for name, var in all_vars:
                for i_v, v in enumerate(var):
                    if v == -999:
                        break
                    if "track" in name and name != "no_tracks":
                        pdg_code = int(var_dict["track_pdg"][i_v])
                        if option != "bnbext" and abs(pdg_code) == 2147483648:
                            pdg_code = int(var_dict["shower_pdg"][0])
                    elif "shower" in name:
                        pdg_code = int(var_dict["shower_pdg"][i_v])
                        if option != "bnbext" and abs(pdg_code) == 2147483648:
                            pdg_code = int(var_dict["track_pdg"][0])
                    else:
                        pdg_code = int(var_dict["shower_pdg"][0])

                    if option != "bnbext" and abs(pdg_code) == 2147483648:
                        pdg_code = 99999

                    if abs(pdg_code) in h_pdgs[name]:
                        h_pdgs[name][abs(pdg_code)].Fill(v, chain.event_weight)
                    else:
                        h_pdgs[name][99999].Fill(v, chain.event_weight)

                    histo_dict[name][category].Fill(v, chain.event_weight)

    return passed_events
示例#4
0
chain = ROOT.TChain("mc_tree")
chain.Add("root_files/sys_mc_file.root")
# chain.Add("root_files/dirt.root")
chain.Add("root_files/sys_nue_file.root/nue_tree")

total_entries = int(chain.GetEntries() / 1)

h_sys = {}
h_2d = {}
h_cv = {}
h_covariance = {}
h_frac = {}
h_corr = {}

vars = load_variables(chain)

for n, b in vars.items():
    h_uni = []

    for u in range(N_UNI):
        if n == "reco_energy":
            h_uni.append(
                ROOT.TH1F("h_%s_%i" % (n, u), labels[n],
                          len(bins) - 1, bins))
        else:
            h_uni.append(
                ROOT.TH1F("h_%s_%i" % (n, u), labels[n], binning[n][0],
                          binning[n][1], binning[n][2]))

    h_sys[n] = h_uni