示例#1
0
    def test_download_s3_object(self):

        download_s3_object(bucket=self.bucket,
                           key=self.key,
                           destination_path=self.destination_path)

        os._exists(self.destination_path)
示例#2
0
    def test_raw_to_features(self):

        download_s3_object(bucket=self.maccor_file_w_parameters_s3["bucket"],
                           key=self.maccor_file_w_parameters_s3["key"],
                           destination_path=self.maccor_file_w_parameters)

        dp = MaccorDatapath.from_file(self.maccor_file_w_parameters)
        dp.autostructure()
        processed_run_path = os.path.join(TEST_FILE_DIR,
                                          "processed_diagnostic.json")

        # Dump to the structured file and check the file size
        dumpfn(dp, processed_run_path)

        dp = loadfn(processed_run_path)

        for fclass in (
                DeltaQFastCharge,
                CycleSummaryStats,
                TrajectoryFastCharge,
                DiagnosticSummaryStats,
                HPPCResistanceVoltageFeatures,
        ):
            f = fclass(dp)
            self.assertTrue(f.validate()[0])
            f.create_features()

            if fclass.__class__.__name__ == "HPPCResistanceVoltageFeatures":
                self.assertAlmostEqual(f.features['r_c_0s_00'].iloc[0],
                                       -0.159771397, 5)
                self.assertAlmostEqual(f.features['r_c_0s_10'].iloc[0],
                                       -0.143679, 5)
                self.assertAlmostEqual(f.features['r_c_0s_20'].iloc[0],
                                       -0.146345, 5)
                self.assertAlmostEqual(f.features['D_6'].iloc[0], -0.167919, 5)
                self.assertAlmostEqual(f.features['D_7'].iloc[0], 0.094136, 5)
                self.assertAlmostEqual(f.features['D_8'].iloc[0], 0.172496, 5)
示例#3
0
    def test_raw_to_features(self):
        os.environ["BEEP_PROCESSING_DIR"] = TEST_FILE_DIR

        download_s3_object(bucket=self.maccor_file_w_parameters_s3["bucket"],
                           key=self.maccor_file_w_parameters_s3["key"],
                           destination_path=self.maccor_file_w_parameters)

        with ScratchDir("."):
            os.environ["BEEP_PROCESSING_DIR"] = TEST_FILE_DIR
            # os.environ['BEEP_PROCESSING_DIR'] = os.getcwd()
            dp = MaccorDatapath.from_file(self.maccor_file_w_parameters)
            dp.autostructure()
            processed_run_path = os.path.join(TEST_FILE_DIR,
                                              "processed_diagnostic.json")
            # Dump to the structured file and check the file size
            dumpfn(dp, processed_run_path)
            # Create dummy json obj
            json_obj = {
                "file_list": [processed_run_path],
                "run_list": [0],
            }
            json_string = json.dumps(json_obj)

            newjsonpaths = process_file_list_from_json(
                json_string, processed_dir=os.getcwd())

            reloaded = json.loads(newjsonpaths)

            import pprint
            pprint.pprint(reloaded)

            result_list = ['success'] * 7
            self.assertEqual(reloaded['result_list'], result_list)
            rpt_df = loadfn(reloaded['file_list'][0])
            self.assertEqual(
                np.round(rpt_df.X['m0_Amp_rpt_0.2C_1'].iloc[0], 6), 0.867371)
示例#4
0
    def test_get_diagnostic(self):
        maccor_file_w_parameters_s3 = {
            "bucket": "beep-sync-test-stage",
            "key": "big_file_tests/PreDiag_000287_000128.092"
        }

        maccor_file_w_parameters = os.path.join(TEST_FILE_DIR,
                                                "PreDiag_000287_000128.092")

        download_s3_object(bucket=maccor_file_w_parameters_s3["bucket"],
                           key=maccor_file_w_parameters_s3["key"],
                           destination_path=maccor_file_w_parameters)

        md = MaccorDatapath.from_file(maccor_file_w_parameters)

        (
            v_range,
            resolution,
            nominal_capacity,
            full_fast_charge,
            diagnostic_available,
        ) = md.determine_structuring_parameters()

        self.assertEqual(nominal_capacity, 4.84)
        # self.assertEqual(v_range, [2.7, 4.2]) # This is an older assertion, value changed when
        # different cell types were added

        self.assertEqual(v_range, [2.5, 4.2])
        self.assertEqual(
            diagnostic_available["cycle_type"],
            ["reset", "hppc", "rpt_0.2C", "rpt_1C", "rpt_2C"],
        )
        diag_summary = md.summarize_diagnostic(diagnostic_available)

        reg_summary = md.summarize_cycles(diagnostic_available)
        self.assertEqual(len(reg_summary.cycle_index.tolist()), 230)
        self.assertEqual(reg_summary.cycle_index.tolist()[:10],
                         [0, 6, 7, 8, 9, 10, 11, 12, 13, 14])

        # Check data types are being set correctly for diagnostic summary
        diag_dyptes = diag_summary.dtypes.tolist()
        diag_columns = diag_summary.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_summary"][col])

        self.assertEqual(
            diag_summary.cycle_index.tolist(),
            [
                1, 2, 3, 4, 5, 36, 37, 38, 39, 40, 141, 142, 143, 144, 145,
                246, 247
            ],
        )
        self.assertEqual(
            diag_summary.cycle_type.tolist(),
            [
                "reset",
                "hppc",
                "rpt_0.2C",
                "rpt_1C",
                "rpt_2C",
                "reset",
                "hppc",
                "rpt_0.2C",
                "rpt_1C",
                "rpt_2C",
                "reset",
                "hppc",
                "rpt_0.2C",
                "rpt_1C",
                "rpt_2C",
                "reset",
                "hppc",
            ],
        )
        self.assertEqual(diag_summary.paused.max(), 0)
        diag_interpolated = md.interpolate_diagnostic_cycles(
            diagnostic_available, resolution=1000)

        # Check data types are being set correctly for interpolated data
        diag_dyptes = diag_interpolated.dtypes.tolist()
        diag_columns = diag_interpolated.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_interpolated"][col])

        # Provide visual inspection to ensure that diagnostic interpolation is being done correctly
        diag_cycle = diag_interpolated[
            (diag_interpolated.cycle_type == "rpt_0.2C")
            & (diag_interpolated.step_type == 1)]
        self.assertEqual(diag_cycle.cycle_index.unique().tolist(),
                         [3, 38, 143])
        plt.figure()
        plt.plot(diag_cycle.discharge_capacity, diag_cycle.voltage)
        plt.savefig(
            os.path.join(TEST_FILE_DIR,
                         "discharge_capacity_interpolation.png"))
        plt.figure()
        plt.plot(diag_cycle.voltage, diag_cycle.discharge_dQdV)
        plt.savefig(
            os.path.join(TEST_FILE_DIR, "discharge_dQdV_interpolation.png"))

        self.assertEqual(len(diag_cycle.index), 3000)

        hppcs = diag_interpolated[(diag_interpolated.cycle_type == "hppc")
                                  & pd.isnull(diag_interpolated.current)]
        self.assertEqual(len(hppcs), 0)

        hppc_dischg1 = diag_interpolated[
            (diag_interpolated.cycle_index == 37)
            & (diag_interpolated.step_type == 2)
            & (diag_interpolated.step_index_counter == 3)
            & ~pd.isnull(diag_interpolated.current)]

        plt.figure()
        plt.plot(hppc_dischg1.test_time, hppc_dischg1.voltage)
        plt.savefig(os.path.join(TEST_FILE_DIR, "hppc_discharge_pulse_1.png"))
        self.assertEqual(len(hppc_dischg1), 176)

        # processed_cycler_run = cycler_run.to_processed_cycler_run()
        md.autostructure()
        self.assertNotIn(
            diag_summary.cycle_index.tolist(),
            md.structured_data.cycle_index.unique(),
        )
        self.assertEqual(
            reg_summary.cycle_index.tolist(),
            md.structured_summary.cycle_index.tolist(),
        )

        processed_cycler_run_loc = os.path.join(TEST_FILE_DIR,
                                                "processed_diagnostic.json")
        # Dump to the structured file and check the file size
        # File size had to be incteased as datapath dump includes ALL data now
        dumpfn(md, processed_cycler_run_loc)
        proc_size = os.path.getsize(processed_cycler_run_loc)
        self.assertLess(proc_size, 260000000)

        # Reload the structured file and check for errors
        test = loadfn(processed_cycler_run_loc)
        self.assertIsInstance(test.diagnostic_summary, pd.DataFrame)
        diag_dyptes = test.diagnostic_summary.dtypes.tolist()
        diag_columns = test.diagnostic_summary.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_summary"][col])

        diag_dyptes = test.diagnostic_data.dtypes.tolist()
        diag_columns = test.diagnostic_data.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_interpolated"][col])

        self.assertEqual(test.structured_summary.cycle_index.tolist()[:10],
                         [0, 6, 7, 8, 9, 10, 11, 12, 13, 14])

        plt.figure()

        single_charge = test.structured_data[
            (test.structured_data.step_type == "charge")
            & (test.structured_data.cycle_index == 25)]
        self.assertEqual(len(single_charge.index), 1000)
        plt.plot(single_charge.charge_capacity, single_charge.voltage)
        plt.savefig(
            os.path.join(TEST_FILE_DIR,
                         "charge_capacity_interpolation_regular_cycle.png"))

        os.remove(processed_cycler_run_loc)
示例#5
0
    def test_get_diagnostic(self):
        os.environ["BEEP_PROCESSING_DIR"] = TEST_FILE_DIR

        download_s3_object(bucket=self.maccor_file_w_parameters_s3["bucket"],
                           key=self.maccor_file_w_parameters_s3["key"],
                           destination_path=self.maccor_file_w_parameters)

        cycler_run = RawCyclerRun.from_file(self.maccor_file_w_parameters)

        (
            v_range,
            resolution,
            nominal_capacity,
            full_fast_charge,
            diagnostic_available,
        ) = cycler_run.determine_structuring_parameters()
        self.assertEqual(nominal_capacity, 4.84)
        self.assertEqual(v_range, [2.7, 4.2])
        self.assertEqual(
            diagnostic_available["cycle_type"],
            ["reset", "hppc", "rpt_0.2C", "rpt_1C", "rpt_2C"],
        )
        diag_summary = cycler_run.get_diagnostic_summary(diagnostic_available)

        # Check data types are being set correctly for diagnostic summary
        diag_dyptes = diag_summary.dtypes.tolist()
        diag_columns = diag_summary.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_summary"][col])

        self.assertEqual(
            diag_summary.cycle_index.tolist(),
            [
                1, 2, 3, 4, 5, 36, 37, 38, 39, 40, 141, 142, 143, 144, 145,
                246, 247
            ],
        )
        self.assertEqual(
            diag_summary.cycle_type.tolist(),
            [
                "reset",
                "hppc",
                "rpt_0.2C",
                "rpt_1C",
                "rpt_2C",
                "reset",
                "hppc",
                "rpt_0.2C",
                "rpt_1C",
                "rpt_2C",
                "reset",
                "hppc",
                "rpt_0.2C",
                "rpt_1C",
                "rpt_2C",
                "reset",
                "hppc",
            ],
        )
        self.assertEqual(diag_summary.paused.max(), 0)
        diag_interpolated = cycler_run.get_interpolated_diagnostic_cycles(
            diagnostic_available, resolution=1000)

        # Check data types are being set correctly for interpolated data
        diag_dyptes = diag_interpolated.dtypes.tolist()
        diag_columns = diag_interpolated.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_interpolated"][col])

        # Provide visual inspection to ensure that diagnostic interpolation is being done correctly
        diag_cycle = diag_interpolated[
            (diag_interpolated.cycle_type == "rpt_0.2C")
            & (diag_interpolated.step_type == 1)]
        self.assertEqual(diag_cycle.cycle_index.unique().tolist(),
                         [3, 38, 143])
        plt.figure()
        plt.plot(diag_cycle.discharge_capacity, diag_cycle.voltage)
        plt.savefig(
            os.path.join(TEST_FILE_DIR,
                         "discharge_capacity_interpolation.png"))
        plt.figure()
        plt.plot(diag_cycle.voltage, diag_cycle.discharge_dQdV)
        plt.savefig(
            os.path.join(TEST_FILE_DIR, "discharge_dQdV_interpolation.png"))

        self.assertEqual(len(diag_cycle.index), 3000)

        hppcs = diag_interpolated[(diag_interpolated.cycle_type == "hppc")
                                  & pd.isnull(diag_interpolated.current)]
        self.assertEqual(len(hppcs), 0)

        hppc_dischg1 = diag_interpolated[
            (diag_interpolated.cycle_index == 37)
            & (diag_interpolated.step_type == 2)
            & (diag_interpolated.step_index_counter == 3)
            & ~pd.isnull(diag_interpolated.current)]

        plt.figure()
        plt.plot(hppc_dischg1.test_time, hppc_dischg1.voltage)
        plt.savefig(os.path.join(TEST_FILE_DIR, "hppc_discharge_pulse_1.png"))
        self.assertEqual(len(hppc_dischg1), 176)

        processed_cycler_run = cycler_run.to_processed_cycler_run()
        self.assertNotIn(
            diag_summary.index.tolist(),
            processed_cycler_run.cycles_interpolated.cycle_index.unique(),
        )

        processed_cycler_run_loc = os.path.join(TEST_FILE_DIR,
                                                "processed_diagnostic.json")
        dumpfn(processed_cycler_run, processed_cycler_run_loc)
        proc_size = os.path.getsize(processed_cycler_run_loc)
        self.assertLess(proc_size, 47000000)

        test = loadfn(processed_cycler_run_loc)
        self.assertIsInstance(test.diagnostic_summary, pd.DataFrame)
        diag_dyptes = test.diagnostic_summary.dtypes.tolist()
        diag_columns = test.diagnostic_summary.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_summary"][col])

        diag_dyptes = test.diagnostic_interpolated.dtypes.tolist()
        diag_columns = test.diagnostic_interpolated.columns.tolist()
        diag_dyptes = [str(dtyp) for dtyp in diag_dyptes]
        for indx, col in enumerate(diag_columns):
            self.assertEqual(diag_dyptes[indx],
                             STRUCTURE_DTYPES["diagnostic_interpolated"][col])

        plt.figure()
        single_charge = test.cycles_interpolated[
            (test.cycles_interpolated.step_type == "charge")
            & (test.cycles_interpolated.cycle_index == 25)]
        self.assertEqual(len(single_charge.index), 1000)
        plt.plot(single_charge.charge_capacity, single_charge.voltage)
        plt.savefig(
            os.path.join(TEST_FILE_DIR,
                         "charge_capacity_interpolation_regular_cycle.png"))

        os.remove(processed_cycler_run_loc)