示例#1
0
def get_fitness(string):
    """ Run the simulation and return the fitness """
    state_machine = sm.StateMachine()
    behavior_tree = PyTree(string[:],
                           behaviors=behaviors,
                           world_interface=state_machine)

    # run the Behavior Tree
    behavior_tree.run_bt()

    return fitness_function.compute_fitness(state_machine, behavior_tree)
    def get_fitness(self, individual, save_video=False):
        """
        Run the simulation and return the fitness
        In case of error, restarts world_interface and tries again.
        """
        pytree = PyTree(individual[:],
                        behaviors=behaviors,
                        world_interface=self.world_interface,
                        verbose=self.verbose)

        status_ok = True
        fitness = None

        while fitness is None:
            if self.counter >= self.maximum_runs or not status_ok:
                self.world_interface.restart()
                self.counter = 0
            else:
                self.world_interface.reset()
            self.counter += 1

            if save_video:
                self.world_interface.start_video()

            ticks, status_ok = pytree.run_bt(max_ticks=200)
            count = 0
            while count < 50 and status_ok:  #Wait up to five seconds for everything to come to a resting state
                old_sensor_data = self.world_interface.get_sensor_data()
                status_ok = self.world_interface.get_feedback()
                if status_ok:
                    if self.world_interface.at_standstill(old_sensor_data):
                        break
                    self.world_interface.send_references()
                    count += 1

            if save_video:
                time.sleep(1)  #Needed for ros synch
                self.world_interface.stop_video()

            if status_ok:
                fitness = fitness_function.compute_fitness(self.world_interface, pytree, ticks, \
                                                           self.targets, self.fitness_coeff, self.verbose)
            else:
                self.world_interface.restart()
                self.counter = 0
                print("Failed:", individual)
                fitness = -9999999

        return fitness
示例#3
0
def plan(world_interface, behaviors, goals):
    """
    Main planner function
    Generates a behaviors tree to solve task given a set of goals
    and behaviors with preconditions and postconditions. Since the
    conditions are not always static, it actually runs the tree while evaluating
    the conditions.
    """
    tree = RSequence()

    for goal in goals:
        goal_condition, _ = behaviors.get_node_from_string(
            goal, world_interface, [])
        tree.add_child(goal_condition)
    print(pt.display.unicode_tree(root=tree, show_status=True))

    for i in range(60):
        tree.tick_once()
        print("Tick: ", i)
        print(pt.display.unicode_tree(root=tree, show_status=True))
        if tree.status is pt.common.Status.FAILURE:
            expand_tree(tree, behaviors, world_interface)

            print(pt.display.unicode_tree(root=tree, show_status=True))
        elif tree.status is pt.common.Status.SUCCESS:
            break

    pt.display.render_dot_tree(tree, name='Planned bt', target_directory='')

    print(PyTree('', behaviors, world_interface, tree).get_bt_from_root())
    def get_fitness(self, individual):
        """ Run the simulation and return the fitness """
        state_machine = sm.StateMachine(self.start_positions,
                                        self.random_events, self.sm_pars,
                                        self.mode)
        pytree = PyTree(individual[:],
                        behaviors=behaviors,
                        world_interface=state_machine,
                        verbose=self.verbose)

        # run the Behavior Tree
        ticks, _ = pytree.run_bt()

        return fitness_function.compute_fitness(state_machine, pytree, ticks,
                                                self.targets,
                                                self.fitness_coeff)
 def plot_individual(self, path, plot_name, individual):
     """ Saves a graphical representation of the individual """
     if self.static_tree is not None:
         pytree = PyTree(self.add_to_static_tree(individual),
                         behaviors=behaviors)
     else:
         pytree = PyTree(individual[:], behaviors=behaviors)
     pytree.save_fig(path, name=plot_name)
示例#6
0
def plot_individual(path, plot_name, individual):
    """ Saves a graphical representation of the individual """
    pytree = PyTree(individual[:], behaviors=behaviors)
    pytree.save_fig(path, name=plot_name)
示例#7
0
def paper_figures():
    # pylint: disable=import-outside-toplevel
    """ Creates the bt figures used in the paper """
    from behavior_tree_learning.py_trees_interface import PyTree
    import behavior_tree_learning.behaviors_figures as behaviors

    behavior_tree.load_settings_from_file('BT_SETTINGS_TOWER.yaml')
    # Tower planned
    tree = ['s(', 'f(', 'Green at A?', 's(', 'f(', 'picked Green?', 'pick Green!', ')', 'place at A!', ')', ')', \
            'f(', 'Blue at pos B?', 's(', 'f(', 'Blue on Green?', 's(', 'f(', 'picked Blue?', 'pick Blue!', ')', 'place on Green!', ')', ')', 'apply force Blue!', ')', ')',  \
            'f(', 'Red at pos C?', 's(', 'f(', 'Red on Blue?', 's(', 'f(', 'picked Red?', 'pick Red!', ')', 'place on Blue!', ')', ')', 'apply force Red!', ')', ')', ')']
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='tower_planned', svg=True)

    # Tower solved
    tree = ['s(', 'f(', 'Green at pos A?', 's(', 'pick Green!', 'place at A!', ')', ')', \
            'f(', 'Blue at pos B?', 's(', 'f(', 'Blue on Green?', 's(', 'pick Blue!', 'place on Green!', ')', ')', 'apply force Blue!', ')', ')',  \
            'f(', 'Red at pos C?', 's(', 'f(', 'Red on Blue?', 's(', 'pick Red!', 'place on Blue!', ')', ')', 'apply force Red!', ')', ')', ')']
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='tower_solved', svg=True)

    behavior_tree.load_settings_from_file('BT_SETTINGS_CROISSANT.yaml')
    # Croissant planned
    tree = ['s(', 'f(', 'Green at pos B?', 's(', 'f(', 'picked Green?', 'pick Green!', ')', 'place at B!', ')', ')', \
            'f(', 'Blue at pos D?', 's(', 'f(', 'Blue on Green?', 's(', 'f(', 'picked Blue?', 'pick Blue!', ')', 'place on Green!', ')', ')', 'apply force Blue!', ')', ')', \
            'f(', 'Red at pos A?', 's(', 'f(', 'picked Red?', 'pick Red!', ')', 'place at A!', ')', ')', \
            'f(', 'Yellow at pos C?', 's(', 'f(', 'picked Yellow?', 'pick Yellow!', ')', 'place at C!', ')', ')', ')']
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='croissant_planned', svg=True)

    # Croissant solved
    tree = ['s(', 'f(', 'Green at pos B?', 's(', 'pick Green!', 'place at B!', ')', ')', \
            'f(', 'Red at pos A?', 's(', 'pick Red!', 'place at A!', ')', ')', \
            'f(', 'Yellow at pos C?', 's(', 'pick Yellow!', 'place at C!', ')', ')', \
            'f(', 'Blue at pos D?', 's(', 'f(', 'Blue on Green?', 's(', 'pick Blue!', 'place on Green!', ')', ')', 'apply force Blue!', ')', ')', ')']
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='croissant_solved', svg=True)

    behavior_tree.load_settings_from_file('BT_SETTINGS_BALANCE.yaml')
    # Balance planned
    tree = [
        's(', 'f(', 'Green at pos B?', 's(', 'f(', 'Blue at pos A?',
        'put Blue at A!', ')', 'f(', 'Green on Blue?', 'put Green on Blue!',
        ')', 'apply force Green!', ')', ')', ')'
    ]
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='balance_planned', svg=True)

    # Balance solved
    tree = [
        'f(', 'Green at pos B?', 's(', 'put Red at A!', 'put Green on Red!',
        'apply force Green!', ')', ')'
    ]
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='balance_solved', svg=True)

    behavior_tree.load_settings_from_file('BT_SETTINGS_BLOCKING.yaml')
    # Blocking planned
    tree = ['s(', 'f(', 'Green at A?', 'put Green at A!', ')', \
            'f(', 'Blue at E?', 's(', 'f(', 'Blue on Green?', 'put Blue on Green!', ')', 'apply force Blue!', ')', ')', \
            'f(', 'Red at C?', 'put Red at C!', ')', ')']

    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='blocking_planned', svg=True)

    # Blocking solved
    tree = ['s(', 'put Blue on Green!', 'f(', 'Green at A?', 'put Red at D!', ')', \
            'put Green at A!', \
            'f(', 'Blue at E?', 'apply force Blue!', ')', \
            'put Red at C!', ')']
    pytree = PyTree(tree[:], behaviors=behaviors)
    pytree.save_fig('logs/paperfigures/', name='blocking_solved', svg=True)