示例#1
0
    def test_from_abcmat(self):
        """Test spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        weights = ParamSpatial.get_weight(groups)
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        amat = np.diag(avecs[0]) + np.diag(avecs[0]).dot(weights[0])
        bmat = np.diag(bvecs[0]) + np.diag(bvecs[0]).dot(weights[0])
        dmat = np.eye(nstocks) - np.diag(dvecs[1]).dot(weights[0])
        dmat_inv = scl.inv(dmat)
        cmat = dmat_inv.dot(np.diag(dvecs[0])).dot(dmat_inv)

        param = ParamSpatial.from_abcmat(avecs=avecs, bvecs=bvecs, cmat=cmat,
                                         groups=groups)


        npt.assert_array_equal(amat, param.amat)
        npt.assert_array_equal(bmat, param.bmat)
        npt.assert_array_equal(cmat, param.cmat)
        npt.assert_array_equal(avecs, param.avecs)
        npt.assert_array_equal(bvecs, param.bvecs)
        npt.assert_array_equal(None, param.dvecs)
        npt.assert_array_equal(weights, param.weights)
示例#2
0
    def test_get_weight(self):
        """Test construction of spatial weights from groups.

        """
        groups = [[(0, 1), (2, 3)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.zeros((1, 4, 4))
        weight_exp[0, 0, 1] = 1
        weight_exp[0, 1, 0] = 1
        weight_exp[0, 2, 3] = 1
        weight_exp[0, 3, 2] = 1

        npt.assert_almost_equal(weight, weight_exp)

        groups = [[(0, 1, 2)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.array([[[0, .5, .5], [.5, 0, .5], [.5, .5, 0]]])

        npt.assert_almost_equal(weight, weight_exp)

        groups = [[(0, 1), (2, 3)], [(0, 2), (1, 3)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.zeros((len(groups), 4, 4))
        weight_exp[0, :2, :2] = np.array([[0, 1], [1, 0]])
        weight_exp[0, 2:, 2:] = np.array([[0, 1], [1, 0]])
        weight_exp[1, 0:3:2, 0:3:2] = np.array([[0, 1], [1, 0]])
        weight_exp[1, 1:4:2, 1:4:2] = np.array([[0, 1], [1, 0]])

        npt.assert_almost_equal(weight, weight_exp)

        groups = [[(0, 1), (2, 3, 4)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.zeros((len(groups), 5, 5))
        weight_exp[0, :2, :2] = np.array([[0, 1], [1, 0]])
        weight_exp[0, 2:, 2:] = np.array([[[0, .5, .5], [.5, 0, .5],
                                          [.5, .5, 0]]])

        npt.assert_almost_equal(weight, weight_exp)
示例#3
0
    def test_from_abt(self):
        """Test spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        weights = ParamSpatial.get_weight(groups)
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        amat = np.diag(avecs[0]) + np.diag(avecs[0]).dot(weights[0])
        bmat = np.diag(bvecs[0]) + np.diag(bvecs[0]).dot(weights[0])
        dmat = np.eye(nstocks) - np.diag(dvecs[1]).dot(weights[0])
        dmat_inv = scl.inv(dmat)
        ccmat = dmat_inv.dot(np.diag(dvecs[0])).dot(dmat_inv)
        cmat = scl.cholesky(ccmat, 1)
        target = ParamSpatial.find_stationary_var(amat=amat, bmat=bmat,
                                                  cmat=cmat)
        cmat_new = ParamSpatial.find_cmat(amat=amat, bmat=bmat, target=target)

        npt.assert_array_almost_equal(cmat[np.tril_indices(nstocks)],
                                      cmat_new[np.tril_indices(nstocks)])

        param = ParamSpatial.from_abt(avecs=avecs, bvecs=bvecs, target=target,
                                      groups=groups, restriction='hetero')

        npt.assert_array_equal(amat, param.amat)
        npt.assert_array_equal(bmat, param.bmat)
        npt.assert_array_almost_equal(cmat, param.cmat)
        npt.assert_array_equal(avecs, param.avecs)
        npt.assert_array_equal(bvecs, param.bvecs)
#        npt.assert_array_equal(None, param.dvecs)
        npt.assert_array_equal(weights, param.weights)
示例#4
0
def try_spatial_combinations():
    """Try simulating spatial BEKK
    and estimating it with both spatial and standard.

    """
    use_target = False
    cfree = True
    restriction = 'full'
    nstocks = 3
    nobs = 2000
    groups = [(0, 1)]
    weights = ParamSpatial.get_weight(groups=groups, nitems=nstocks)
    ncat = weights.shape[0]
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .0
    # A, B, C - n x n matrices
    avecs = np.ones((ncat + 1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat + 1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.ones((ncat, nstocks)) * gamma**.5
    vvec = np.ones(nstocks)

    param_true = ParamSpatial.from_spatial(avecs=avecs,
                                           bvecs=bvecs,
                                           dvecs=dvecs,
                                           vvec=vvec,
                                           weights=weights)
    print(param_true)

    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    bekk = BEKK(innov)

    # -------------------------------------------------------------------------
    # Estimate spatial

    result = bekk.estimate(param_start=param_true,
                           use_target=use_target,
                           restriction=restriction,
                           cfree=cfree,
                           model='spatial',
                           weights=weights,
                           method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target,
                                      cfree=cfree,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               cfree=cfree,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)

    # -------------------------------------------------------------------------
    # Estimate standard

    param_true = ParamStandard.from_abc(amat=param_true.amat,
                                        bmat=param_true.bmat,
                                        cmat=param_true.cmat)

    result = bekk.estimate(param_start=param_true,
                           use_target=use_target,
                           restriction=restriction,
                           cfree=cfree,
                           model='standard',
                           weights=weights,
                           method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)
示例#5
0
def try_spatial_combinations():
    """Try simulating spatial BEKK
    and estimating it with both spatial and standard.

    """
    use_target = False
    cfree = True
    restriction = 'full'
    nstocks = 3
    nobs = 2000
    groups = [(0, 1)]
    weights = ParamSpatial.get_weight(groups=groups, nitems=nstocks)
    ncat = weights.shape[0]
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .0
    # A, B, C - n x n matrices
    avecs = np.ones((ncat+1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat+1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.ones((ncat, nstocks)) * gamma**.5
    vvec = np.ones(nstocks)

    param_true = ParamSpatial.from_spatial(avecs=avecs, bvecs=bvecs,
                                           dvecs=dvecs, vvec=vvec,
                                           weights=weights)
    print(param_true)

    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    bekk = BEKK(innov)

    # -------------------------------------------------------------------------
    # Estimate spatial

    result = bekk.estimate(param_start=param_true, use_target=use_target,
                           restriction=restriction, cfree=cfree,
                           model='spatial', weights=weights, method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target, cfree=cfree,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               cfree=cfree,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)

    # -------------------------------------------------------------------------
    # Estimate standard

    param_true = ParamStandard.from_abc(amat=param_true.amat,
                                        bmat=param_true.bmat,
                                        cmat=param_true.cmat)

    result = bekk.estimate(param_start=param_true, use_target=use_target,
                           restriction=restriction, cfree=cfree,
                           model='standard', weights=weights, method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)