def is_benchmark_supported(benchmark : Benchmark): """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list""" if benchmark.is_pta() and benchmark.is_prism(): # The PTAs from Prism are not supported because either # modest can't apply digital clocks semantic due to open constraints, or # modest puts branch-rewards on the models (these are not supported by Storm) return False if benchmark.is_prism_inf() and benchmark.is_ctmc(): # Storm does not support the CTMCs with infinite state-spaces return False # do not include models with state space largern than 50 Mio if benchmark.get_num_states_tweak() is not None and benchmark.get_num_states_tweak() > 50000000: return False # do not select dfts with a file parameter "R" that is set to true if benchmark.is_galileo(): for p in benchmark.get_file_parameters(): if p["name"] == "R" and p["value"] == True: return False if benchmark.is_ctmc(): return True return False
def is_benchmark_supported(benchmark: Benchmark): """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list""" # list of input models ePMC does not support if benchmark.is_pta(): # PTAs are not supported by ePMC return False if benchmark.is_ma(): # MAs are not supported by ePMC return False # if benchmark.get_short_property_type() == "S": # # Steady state properties are not supported by ePMC # return False if benchmark.is_prism_inf(): # CTMCs with infinite state-spaces are not supported by ePMC return False # list of properties ePMC supports : unbounded and time-bounded probabilistic reachability; steady-state probability if (not benchmark.is_unbounded_probabilistic_reachability()) and ( not benchmark.is_time_bounded_probabilistic_reachability()) and ( not benchmark.is_steady_state_probability()) and ( not benchmark.is_steady_state_reward()) and ( not benchmark.is_unbounded_expected_reward()): return False return True
def get_invocations(benchmark: Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] short = benchmark.get_model_short_name() prop = benchmark.get_property_name() prop_type = benchmark.get_short_property_type() params = benchmark.get_parameter_values_string() instance = short + "." + params size = benchmark.get_num_states_tweak() invocations = [] benchmark_settings = "--props " + benchmark.get_property_name() if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " -E " + benchmark.get_open_parameter_def_string( ) default_base = "modes/modest modes --unsafe --max-run-length 0 " + benchmark.get_janifilename( ) + " " + benchmark_settings + " -O out.txt Minimal" # # Track "probably-epsilon-correct" # precision = "5e-2" default_cmd = default_base + " --width $PRECISION --relative-width" if benchmark.is_dtmc() or benchmark.is_ctmc(): add_invocations(invocations, "probably-epsilon-correct", default_cmd.replace("$PRECISION", precision)) # # Track "often-epsilon-correct" # precision = "1e-3" if benchmark.is_dtmc() or benchmark.is_ctmc(): add_invocations(invocations, "often-epsilon-correct", default_cmd.replace("$PRECISION", precision)) # # Track "often-epsilon-correct-10-min" # if benchmark.is_dtmc() or benchmark.is_ctmc(): default_cmd = default_base + " -N 2147483647" else: default_cmd = default_base + " --width 2e-2 --relative-width --lss Interruptible 1000000 -L 1000" if benchmark.is_pta(): default_cmd += " --digital-clocks" add_invocations(invocations, "often-epsilon-correct-10-min", default_cmd) # # Done # return invocations
def is_benchmark_supported(benchmark: Benchmark, trackId): """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list""" if benchmark.is_pta() and benchmark.is_prism(): # Some PTAs from Prism are not supported because either # modest can't apply digital clocks semantic due to open constraints, or # modest puts the time as branch-rewards on the models, which are not supported for time-bounded properties if benchmark.get_model_short_name() in [ "firewire-pta", "zeroconf-pta" ]: return "time-bounded" not in benchmark.get_property_type() else: return False if benchmark.is_prism_inf() and benchmark.is_ctmc(): # Storm does not support the CTMCs with infinite state-spaces return False # Time bounded queries on continuous time models can not be solved exactly if trackId in ["correct", "floating-point-correct"]: if "time-bounded" in benchmark.get_property_type() and ( benchmark.is_ma() or benchmark.is_ctmc()): return False return True
def get_invocations(benchmark: Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ # decide whether we want to use storm-dft (which supports galileo fault trees without repair) use_storm_dft = False if benchmark.is_galileo(): has_repair = False for p in benchmark.get_file_parameters(): if p["name"] == "R" and p["value"] == True: has_repair = True if not has_repair: use_storm_dft = True # Gather the precision settings for the corresponding track track_settings = dict() track_comments = dict() track_settings['correct'] = ' --exact ' track_comments['correct'] = 'Use exact arithmethic with rationals.' track_settings[ 'floating-point-correct'] = ' --exact floats --general:precision 1e-20 ' track_comments[ 'floating-point-correct'] = 'Use exact arithmethic with floats. The precision needs to be set to increase precision when printing the result to stdout ' track_settings['epsilon-correct'] = ' --sound --precision 1e-6 ' track_comments['epsilon-correct'] = 'Use sound model checking methods.' track_settings['probably-epsilon-correct'] = ' --sound --precision 5e-2 ' track_comments['probably-epsilon-correct'] = 'Use sound model checking.' track_settings['often-epsilon-correct'] = ' --timebounded:precision 1e-3 ' track_comments[ 'often-epsilon-correct'] = 'Use potentially unsound but fast solution methods. Use default precision (1e-6) everywhere except for timebounded queries, for which solution methods give epsilon guarantees.' track_settings[ 'often-epsilon-correct-10-min'] = ' --signal-timeout 60 --general:precision 1e-12 --gmm++:precision 1e-12 --native:precision 1e-12 --minmax:precision 1e-12 --timebounded:precision 1e-6 ' + ( "" if use_storm_dft else "--lra:precision 1e-12 ") track_comments[ 'often-epsilon-correct-10-min'] = 'Only force termination 60 seconds after receiving SIGTERM. Use potentially unsound but fast solution methods. Take a high precision to make sure that we make use of the 10 minutes. Time bounded queries can not be answered that precisely due to numerics.' invocations = [] for trackId in track_settings: if not is_benchmark_supported(benchmark, trackId): continue # Check whether this is a job for storm-dft if use_storm_dft: # We now have to obtain the correct property. # Unfortunately, this is necessary because the gallileo files do not contain any information of the property # The code below might easily break if we pick a different benchmark set benchmark_settings = "--dftfile {} ".format( benchmark.get_galileo_filename()) if benchmark.is_time_bounded_probabilistic_reachability(): time_bound = 1 for p in benchmark.get_parameters(): if p["name"] == "TIME_BOUND": time_bound = p["value"] benchmark_settings += "--timebound {} --max".format(time_bound) elif benchmark.is_unbounded_expected_time(): benchmark_settings += "--expectedtime --min" benchmark_settings += track_settings[trackId] default_inv = Invocation() default_inv.track_id = trackId default_inv.identifier = "default" default_inv.note = "Use Storm-dft with the requested property. " + track_comments[ trackId] default_inv.add_command( "~/storm/build/bin/storm-dft {}".format(benchmark_settings)) invocations.append(default_inv) continue # with next trackId # Gather options that are needed for this particular benchmark for any invocation of Storm preprocessing_steps = [] benchmark_settings = "" if (benchmark.is_prism() or benchmark.is_prism_ma()) and not benchmark.is_pta(): benchmark_settings = "--prism {} --prop {} {}".format( benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name()) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --constants {}".format( benchmark.get_open_parameter_def_string()) if benchmark.is_ctmc(): benchmark_settings += " --prismcompat" else: # For jani input, it might be the case that preprocessing is necessary using moconv moconv_options = [] features = benchmark.get_jani_features() for f in [ "arrays", "derived-operators", "functions", "state-exit-rewards" ]: if f in features: features.remove(f) if "nondet-selection" in features: moconv_options.append("--remove-disc-nondet") features.remove("nondet-selection") if len(features) != 0: print("Unsupported jani feature(s): {}".format(features)) if benchmark.is_pta(): moconv_options.append("--digital-clocks") if benchmark.get_model_short_name() == "wlan-large": # This is actually a stochastic timed automaton. Distributions have to be unrolled first moconv_options.append(" --unroll-distrs") if len(moconv_options) != 0: preprocessing_steps.append( "~/modest/modest convert {} {} --output {} --overwrite". format(benchmark.get_janifilename(), " ".join(moconv_options), "converted_" + benchmark.get_janifilename())) if benchmark.get_open_parameter_def_string() != "": preprocessing_steps[-1] += " --experiment {}".format( benchmark.get_open_parameter_def_string()) benchmark_settings = "--jani {} --janiproperty {}".format( "converted_" + benchmark.get_janifilename(), benchmark.get_property_name()) else: benchmark_settings = "--jani {} --janiproperty {}".format( benchmark.get_janifilename(), benchmark.get_property_name()) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --constants {}".format( benchmark.get_open_parameter_def_string()) benchmark_settings += track_settings[trackId] benchmark_settings += " --ddlib sylvan --sylvan:maxmem 6114 --sylvan:threads 4" benchmark_comment = "Use sylvan as library for Dds, restricted to 6GB memory and 4 threads. " + track_comments[ trackId] # default settings default_inv = Invocation() default_inv.identifier = "default" # default_inv.note = benchmark_comment default_inv.track_id = trackId for prep in preprocessing_steps: default_inv.add_command(prep) default_inv.add_command( "~/storm/build/bin/storm {}".format(benchmark_settings)) invocations.append(default_inv) # specific settings # Storm-static selects for each benchmark the best config among sparse, hybrid, ddbisim and exact (same for all tracks) # We obtained this via previous experiments: best_configs = dict() best_configs["beb.4-8-7.LineSeized"] = "hybrid" best_configs["beb.5-16-15.LineSeized"] = "N/A" best_configs["bitcoin-attack.20-6.P_MWinMax"] = "ddbisim" best_configs["bluetooth.1.time"] = "ddbisim" best_configs["cabinets.3-2-true.Unavailability"] = "sparse" best_configs["cabinets.3-2-true.Unreliability"] = "ddbisim" best_configs["cluster.128-2000-20.premium_steady"] = "sparse" best_configs["cluster.128-2000-20.qos1"] = "hybrid" best_configs["cluster.64-2000-20.below_min"] = "hybrid" best_configs["consensus.4-4.disagree"] = "sparse" best_configs["consensus.4-4.steps_min"] = "sparse" best_configs["consensus.6-2.disagree"] = "ddbisim" best_configs["consensus.6-2.steps_min"] = "ddbisim" best_configs["coupon.15-4-5.collect_all_bounded"] = "ddbisim" best_configs["coupon.15-4-5.exp_draws"] = "ddbisim" best_configs["coupon.9-4-5.collect_all_bounded"] = "ddbisim" best_configs["coupon.9-4-5.exp_draws"] = "ddbisim" best_configs["crowds.5-20.positive"] = "ddbisim" best_configs["crowds.6-20.positive"] = "ddbisim" best_configs["csma.3-4.all_before_max"] = "hybrid" best_configs["csma.3-4.time_max"] = "hybrid" best_configs["csma.4-2.all_before_max"] = "hybrid" best_configs["csma.4-2.time_max"] = "hybrid" best_configs["dpm.4-8-5.PmaxQueuesFullBound"] = "N/A" best_configs["dpm.6-6-5.PminQueue1Full"] = "sparse" best_configs["eajs.5-250-11.ExpUtil"] = "ddbisim" best_configs["eajs.6-300-13.ExpUtil"] = "ddbisim" best_configs["echoring.100.MaxOffline1"] = "sparse" best_configs["egl.10-2.messagesB"] = "ddbisim" best_configs["egl.10-2.unfairA"] = "hybrid" best_configs["egl.10-8.messagesB"] = "ddbisim" best_configs["egl.10-8.unfairA"] = "hybrid" best_configs["elevators.b-11-9.goal"] = "sparse" best_configs["embedded.8-12.actuators"] = "exact" best_configs["embedded.8-12.up_time"] = "exact" best_configs["exploding-blocksworld.10.goal"] = "N/A" best_configs["firewire-pta.30-5000.eventually"] = "sparse" best_configs["firewire.false-36-800.deadline"] = "ddbisim" best_configs["fms.8.productivity"] = "N/A" best_configs["ftpp.2-2-true.Unavailability"] = "N/A" best_configs["ftwc.8-5.TimeMax"] = "sparse" best_configs["ftwc.8-5.TimeMin"] = "sparse" best_configs["haddad-monmege.100-0.7.exp_steps"] = "exact" best_configs["haddad-monmege.100-0.7.target"] = "exact" best_configs["hecs.false-1-1.Unreliability"] = "sparse" best_configs["hecs.false-2-2.Unreliability"] = "sparse" best_configs["hecs.false-3-2.Unreliability"] = "N/A" best_configs["herman.15.steps"] = "ddbisim" best_configs["kanban.5.throughput"] = "hybrid" best_configs["majority.2100.change_state"] = "sparse" best_configs["mapk_cascade.4-30.activated_time"] = "sparse" best_configs["mapk_cascade.4-30.reactions"] = "hybrid" best_configs["nand.40-4.reliable"] = "hybrid" best_configs["nand.60-4.reliable"] = "hybrid" best_configs[ "oscillators.8-10-0.1-1-0.1-1.0.power_consumption"] = "sparse" best_configs["oscillators.8-10-0.1-1-0.1-1.0.time_to_synch"] = "sparse" best_configs["pacman.100.crash"] = "hybrid" best_configs["pacman.60.crash"] = "hybrid" best_configs["philosophers.16-1.MaxPrReachDeadlock"] = "hybrid" best_configs["philosophers.16-1.MaxPrReachDeadlockTB"] = "hybrid" best_configs["philosophers.16-1.MinExpTimeDeadlock"] = "hybrid" best_configs["philosophers.20-1.MaxPrReachDeadlock"] = "hybrid" best_configs["philosophers.20-1.MaxPrReachDeadlockTB"] = "N/A" best_configs["philosophers.20-1.MinExpTimeDeadlock"] = "N/A" best_configs["pnueli-zuck.10.live"] = "hybrid" best_configs["pnueli-zuck.5.live"] = "hybrid" best_configs["polling.18-16.s1_before_s2"] = "hybrid" best_configs["rabin.10.live"] = "hybrid" best_configs["readers-writers.40.exp_time_many_requests"] = "sparse" best_configs["readers-writers.40.prtb_many_requests"] = "hybrid" best_configs["rectangle-tireworld.11.goal"] = "exact" best_configs["resource-gathering.1300-100-100.expgold"] = "ddbisim" best_configs["resource-gathering.1300-100-100.expsteps"] = "sparse" best_configs["resource-gathering.1300-100-100.prgoldgem"] = "hybrid" best_configs["sms.3-true.Unavailability"] = "hybrid" best_configs["sms.3-true.Unreliability"] = "sparse" best_configs["speed-ind.2100.change_state"] = "sparse" best_configs["stream.1000.exp_buffertime"] = "sparse" best_configs["stream.1000.pr_underrun"] = "sparse" best_configs["stream.1000.pr_underrun_tb"] = "sparse" best_configs["tireworld.45.goal"] = "N/A" best_configs["triangle-tireworld.441.goal"] = "N/A" best_configs["vgs.5-10000.MaxPrReachFailedTB"] = "N/A" best_configs["vgs.5-10000.MinExpTimeFailed"] = "N/A" best_configs["wlan-large.2.E_or"] = "sparse" best_configs["wlan-large.2.P_max"] = "sparse" best_configs["wlan.4-0.cost_min"] = "hybrid" best_configs["wlan.4-0.sent"] = "hybrid" best_configs["wlan.5-0.cost_min"] = "hybrid" best_configs["wlan.5-0.sent"] = "hybrid" best_configs["wlan.6-0.cost_min"] = "hybrid" best_configs["wlan.6-0.sent"] = "hybrid" best_configs["zenotravel.4-2-2.goal"] = "hybrid" best_configs["zeroconf-pta.200.incorrect"] = "exact" best_configs["zeroconf.1000-8-false.correct_max"] = "sparse" best_configs["zeroconf.1000-8-false.correct_min"] = "sparse" try: config = best_configs[benchmark.get_identifier()] except KeyError: print( "Unable to find best config for {}. Is this a new benchmark?". format(benchmark.get_identifier())) config = "N/A" if config in ["N/A", "sparse"]: # This is like the default config and thus does not need a rerun continue elif config == "hybrid": benchmark_settings += " --engine hybrid" elif config == "ddbisim": benchmark_settings += " --engine dd-to-sparse --bisimulation" elif config == "exact": if trackId in ["correct", "floating-point-correct"]: benchmark_settings += " --engine sparse" else: benchmark_settings += " --engine sparse --exact" else: assert False, "Unhandled config" specific_inv = Invocation() specific_inv.identifier = "specific" specific_inv.track_id = trackId for prep in preprocessing_steps: specific_inv.add_command(prep) specific_inv.add_command( "~/storm/build/bin/storm {}".format(benchmark_settings)) invocations.append(specific_inv) return invocations
def get_invocations(benchmark : Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] # Gather options that are needed for this particular benchmark for any invocation of Storm preprocessing_steps = [] benchmark_settings = "" if benchmark.is_prism() or benchmark.is_prism_ma() and not benchmark.is_pta(): benchmark_settings = "{} {}".format(benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name()) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " -const {}".format(benchmark.get_open_parameter_def_string()) else: # For jani input, it might be the case that preprocessing is necessary using moconv moconv_options = [] features = benchmark.get_jani_features() for f in ["arrays", "derived-operators", "functions", "state-exit-rewards"]: if f in features: features.remove(f) if "nondet-selection" in features: moconv_options.append("--remove-disc-nondet") features.remove("nondet-selection") if len(features) != 0: print("Unsupported jani feature(s): {}".format(features)) if benchmark.is_pta(): moconv_options.append("--digital-clocks") if len(moconv_options) != 0: preprocessing_steps.append("mono /modest/moconv.exe {} {} --output {} --overwrite".format(benchmark.get_janifilename(), " ".join(moconv_options), "converted_" + benchmark.get_janifilename())) if benchmark.get_open_parameter_def_string() != "": preprocessing_steps[-1] += " --experiment {}".format(benchmark.get_open_parameter_def_string()) benchmark_settings = "--jani {} --janiproperty {}".format("converted_" + benchmark.get_janifilename(), benchmark.get_property_name()) else: benchmark_settings = "--jani {} --janiproperty {}".format(benchmark.get_janifilename(), benchmark.get_property_name()) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --constants {}".format(benchmark.get_open_parameter_def_string()) invocations = [] # default settings default_inv = Invocation() default_inv.identifier = "default" default_inv.track_id = "epsilon-correct" if len(preprocessing_steps) != 0: for prep in preprocessing_steps: default_inv.add_command(prep) default_inv.add_command("~/stamina/stamina/bin/stamina {}".format(benchmark_settings)) invocations.append(default_inv) # specific settings !!!!only information about model type, property type and state space size via benchmark.get_num_states_tweak() may be used for tweaking specific_inv = Invocation() specific_inv.identifier = "specific" specific_inv.track_id = "epsilon-correct" if len(preprocessing_steps) != 0: for prep in preprocessing_steps: specific_inv.add_command(prep) specific_inv.add_command("~/stamina/stamina/bin/stamina {}".format(benchmark_settings)) invocations.append(specific_inv) #### TODO: add default and specific invocations for other track_ids 'correct', 'probably-epsilon-correct', 'often-epsilon-correct', 'often-epsilon-correct-10-min' ### remember that different tracks have different precisions return invocations
def get_invocations(benchmark : Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] short = benchmark.get_model_short_name() prop = benchmark.get_property_name() prop_type = benchmark.get_short_property_type() params = benchmark.get_parameter_values_string() instance = short + "." + params size = benchmark.get_num_states_tweak() invocations = [] benchmark_settings = "" if benchmark.get_open_parameter_def_string() != "": benchmark_settings += "-E " + benchmark.get_open_parameter_def_string() + " " benchmark_settings += "--props " + benchmark.get_property_name() default_base = "mcsta/modest mcsta " + benchmark.get_janifilename() + " " + benchmark_settings + " -O out.txt Minimal --unsafe --es" specific_base = default_base + tweak_memory(benchmark) # specific settings default_base += " -S Memory" # # Track "floating-point-correct" # skip = False precision = "0" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S" or (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # long-run average or time-bounded on MA/CTMC: no fp-exact algorithm available skip = True elif prop_type == "P": # probabilistic reachability: try value iteration until fp-fixpoint default_cmd += " --p0 --p1 --epsilon 0 --absolute-epsilon" specific_cmd += " --p0 --p1 --epsilon 0 --absolute-epsilon" elif prop_type == "E": # expected reward: try value iteration until fp-fixpoint default_cmd += " --epsilon 0 --absolute-epsilon" specific_cmd += " --epsilon 0 --absolute-epsilon" elif prop_type == "Pb": # state elimination is fp-exact default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --epsilon 0 --absolute-epsilon" if not skip: add_invocations(invocations, "floating-point-correct", default_cmd, tweak(benchmark, specific_cmd)) # # Track "epsilon-correct" # skip = False precision = "1e-6" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S": # long-run average: default is the sound algorithm based on value iteration default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # time-bounded probability for CTMC and MA: default is sound Unif+ default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif benchmark.is_pta() and prop_type == "Pb": # time-bounded reachability for PTA: state elimination recommended default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" elif prop_type == "Pb": # reward-bounded probability: default is unsound VI, so need to change to II (SVI and OVI not yet implemented for this case) default_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" else: # unbounded probability or expected reward: default is unsound VI, so need to change to OVI default_cmd += " --alg OptimisticValueIteration --epsilon $PRECISION --width $PRECISION --relative-width" specific_cmd += " --alg OptimisticValueIteration --epsilon $PRECISION --width $PRECISION --relative-width" if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "probably-epsilon-correct" # skip = False precision = "5e-2" if not skip: add_invocations(invocations, "probably-epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "often-epsilon-correct" # skip = False precision = "1e-3" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S": # long-run average: default is the sound algorithm based on value iteration default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # time-bounded probability for CTMC and MA: default is sound Unif+ default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif benchmark.is_pta() and prop_type == "Pb": # time-bounded reachability for PTA: state elimination recommended default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" elif prop_type == "Pb": # reward-bounded probability: default is unsound VI, which is okay here pass else: # unbounded probability or expected reward: default is unsound VI, which is okay here if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "often-epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "often-epsilon-correct-10-min" # skip = False precision = "0" # so we just run for the full 10 minutes (or until we get an exact result) default_cmd = default_base specific_cmd = specific_base if prop_type == "S": skip = True elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): default_cmd += " --width 0" specific_cmd += " --width 0" elif prop_type == "Pb": # reward-bounded reachability for DTMC, MDP, and PTA default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --epsilon 0" else: default_cmd += " --epsilon 0" specific_cmd += " --epsilon 0" if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "often-epsilon-correct-10-min", default_cmd, tweak(benchmark, specific_cmd)) # # Done # return invocations
def get_invocations(benchmark: Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ # decide whether we want to use storm-dft (which supports galileo fault trees without repair) use_storm_dft = False if benchmark.is_galileo(): has_repair = False for p in benchmark.get_file_parameters(): if p["name"] == "R" and p["value"] == True: has_repair = True if not has_repair: use_storm_dft = True # Gather the precision settings for the corresponding track track_settings = dict() track_comments = dict() track_settings['correct'] = ' --exact ' track_comments['correct'] = 'Use exact arithmethic with rationals.' track_settings[ 'floating-point-correct'] = ' --exact floats --general:precision 1e-20 ' track_comments[ 'floating-point-correct'] = 'Use exact arithmethic with floats. The precision needs to be set to increase precision when printing the result to stdout ' track_settings['epsilon-correct'] = ' --sound --precision 1e-6 ' track_comments['epsilon-correct'] = 'Use sound model checking methods.' track_settings['probably-epsilon-correct'] = ' --sound --precision 5e-2 ' track_comments['probably-epsilon-correct'] = 'Use sound model checking.' track_settings['often-epsilon-correct'] = ' --timebounded:precision 1e-3 ' track_comments[ 'often-epsilon-correct'] = 'Use potentially unsound but fast solution methods. Use default precision (1e-6) everywhere except for timebounded queries, for which solution methods give epsilon guarantees.' track_settings[ 'often-epsilon-correct-10-min'] = ' --signal-timeout 60 --general:precision 1e-12 --gmm++:precision 1e-12 --native:precision 1e-12 --minmax:precision 1e-12 --timebounded:precision 1e-6 ' + ( "" if use_storm_dft else "--lra:precision 1e-12 ") track_comments[ 'often-epsilon-correct-10-min'] = 'Only force termination 60 seconds after receiving SIGTERM. Use potentially unsound but fast solution methods. Take a high precision to make sure that we make use of the 10 minutes. Time bounded queries can not be answered that precisely due to numerics.' invocations = [] for trackId in track_settings: if not is_benchmark_supported(benchmark, trackId): continue # Check whether this is a job for storm-dft if use_storm_dft: # We now have to obtain the correct property. # Unfortunately, this is necessary because the gallileo files do not contain any information of the property # The code below might easily break if we pick a different benchmark set benchmark_settings = "--dftfile {} ".format( benchmark.get_galileo_filename()) if benchmark.is_time_bounded_probabilistic_reachability(): time_bound = 1 for p in benchmark.get_parameters(): if p["name"] == "TIME_BOUND": time_bound = p["value"] benchmark_settings += "--timebound {} --max".format(time_bound) elif benchmark.is_unbounded_expected_time(): benchmark_settings += "--expectedtime --min" benchmark_settings += track_settings[trackId] default_inv = Invocation() default_inv.track_id = trackId default_inv.identifier = "default" default_inv.note = "Use Storm-dft with the requested property. " + track_comments[ trackId] default_inv.add_command( "~/storm/build/bin/storm-dft {}".format(benchmark_settings)) invocations.append(default_inv) continue # with next trackId # Gather options that are needed for this particular benchmark for any invocation of Storm preprocessing_steps = [] benchmark_settings = "" if (benchmark.is_prism() or benchmark.is_prism_ma()) and not benchmark.is_pta(): benchmark_settings = "--prism {} --prop {} {}".format( benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name()) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --constants {}".format( benchmark.get_open_parameter_def_string()) if benchmark.is_ctmc(): benchmark_settings += " --prismcompat" else: # For jani input, it might be the case that preprocessing is necessary using moconv moconv_options = [] features = benchmark.get_jani_features() for f in [ "arrays", "derived-operators", "functions", "state-exit-rewards" ]: if f in features: features.remove(f) if "nondet-selection" in features: moconv_options.append("--remove-disc-nondet") features.remove("nondet-selection") if len(features) != 0: print("Unsupported jani feature(s): {}".format(features)) if benchmark.is_pta(): moconv_options.append("--digital-clocks") if benchmark.get_model_short_name() == "wlan-large": # This is actually a stochastic timed automaton. Distributions have to be unrolled first moconv_options.append(" --unroll-distrs") if len(moconv_options) != 0: preprocessing_steps.append( "~/modest/modest convert {} {} --output {} --overwrite". format(benchmark.get_janifilename(), " ".join(moconv_options), "converted_" + benchmark.get_janifilename())) if benchmark.get_open_parameter_def_string() != "": preprocessing_steps[-1] += " --experiment {}".format( benchmark.get_open_parameter_def_string()) benchmark_settings = "--jani {} --janiproperty {}".format( "converted_" + benchmark.get_janifilename(), benchmark.get_property_name()) else: benchmark_settings = "--jani {} --janiproperty {}".format( benchmark.get_janifilename(), benchmark.get_property_name()) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --constants {}".format( benchmark.get_open_parameter_def_string()) benchmark_settings += track_settings[trackId] benchmark_settings += " --engine portfolio --ddlib sylvan --sylvan:maxmem 6114 --sylvan:threads 4" benchmark_comment = "Use Storm with protfolio engine. Use sylvan as library for Dds, restricted to 6GB memory and 4 threads. " + track_comments[ trackId] # default settings default_inv = Invocation() default_inv.identifier = "default" # Apparently, a note is not needed # default_inv.note = benchmark_comment default_inv.track_id = trackId for prep in preprocessing_steps: default_inv.add_command(prep) default_inv.add_command( "~/storm/build/bin/storm {}".format(benchmark_settings)) invocations.append(default_inv) # specific settings !!!!only information about model type, property type and state space size via benchmark.get_num_states_tweak() may be used for tweaking # Omitted because there is no significant benefit # if benchmark.get_num_states_tweak() is not None: # specific_inv = Invocation() # specific_inv.identifier = "specific" # specific_inv.track_id = trackId # for prep in preprocessing_steps: # specific_inv.add_command(prep) # specific_inv.add_command("~/storm/build/bin/storm {} --hints:states {}".format(benchmark_settings, benchmark.get_num_states_tweak())) # invocations.append(specific_inv) return invocations