def __init__(self, vertex_config, model_name): super().__init__() handle_list = list() for node_id in vertex_config.keys(): backend_config = vertex_config[node_id] with serve_reference.using_router(node_id): serve_reference.create_endpoint(node_id) config = serve_reference.BackendConfig(**backend_config) if node_id == "prepoc": min_img_size = 224 transform = transforms.Compose([ transforms.Resize(min_img_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ]) serve_reference.create_backend(Transform, node_id, transform, backend_config=config) elif node_id == "model": serve_reference.create_backend( PredictModelPytorch, node_id, model_name, True, backend_config=config, ) serve_reference.link(node_id, node_id) handle_list.append(serve_reference.get_handle(node_id)) self.chain_handle = ChainHandle(handle_list)
def test_e2e(serve_instance): serve_reference.init() # so we have access to global state serve_reference.create_endpoint("endpoint", "/api", methods=["GET", "POST"]) result = serve_reference.api._get_global_state().route_table.list_service() assert result["/api"] == "endpoint" retry_count = 5 timeout_sleep = 0.5 while True: try: resp = requests.get("http://127.0.0.1:8000/-/routes", timeout=0.5).json() assert resp == {"/api": ["endpoint", ["GET", "POST"]]} break except Exception as e: time.sleep(timeout_sleep) timeout_sleep *= 2 retry_count -= 1 if retry_count == 0: assert False, ("Route table hasn't been updated after 3 tries." "The latest error was {}").format(e) def function(flask_request): return {"method": flask_request.method} serve_reference.create_backend(function, "echo:v1") serve_reference.link("endpoint", "echo:v1") resp = requests.get("http://127.0.0.1:8000/api").json()["method"] assert resp == "GET" resp = requests.post("http://127.0.0.1:8000/api").json()["method"] assert resp == "POST"
def main(batch_size, num_warmups, num_queries, return_type): serve_reference.init() def noop(_, *args, **kwargs): bs = serve_reference.context.batch_size assert (bs == batch_size ), f"worker received {bs} which is not what expected" result = "" if return_type == "torch": result = torch.zeros((3, 224, 224)) if bs is None: # No batching return result else: return [result] * bs if batch_size: noop = serve_reference.accept_batch(noop) with serve_reference.using_router("noop"): serve_reference.create_endpoint("noop", "/noop") config = serve_reference.BackendConfig(max_batch_size=batch_size) serve_reference.create_backend(noop, "noop", backend_config=config) serve_reference.link("noop", "noop") handle = serve_reference.get_handle("noop") latency = [] for i in tqdm(range(num_warmups + num_queries)): if i == num_warmups: serve_reference.clear_trace() start = time.perf_counter() if not batch_size: ray.get( # This is how to pass a higher level metadata to the tracing # context handle.options(tracing_metadata={ "demo": "pipeline-id" }).remote()) else: ray.get(handle.enqueue_batch(val=[1] * batch_size)) # ray.get([handle.remote() for _ in range(batch_size)]) end = time.perf_counter() latency.append(end - start) # Remove initial samples latency = latency[num_warmups:] series = pd.Series(latency) * 1000 print("Latency for single noop backend (ms)") print(series.describe(percentiles=[0.5, 0.9, 0.95, 0.99])) _, trace_file = tempfile.mkstemp(suffix=".json") with open(trace_file, "w") as f: json.dump(serve_reference.get_trace(), f) print(f"trace file written to {trace_file}")
def __init__(self, max_batch_size, pipeline_length): self.plength = pipeline_length self.handles = list() for index in range(self.plength): node_id = f"service-{index}" with serve_reference.using_router(node_id): serve_reference.create_endpoint(node_id) config = serve_reference.BackendConfig( max_batch_size=max_batch_size, num_replicas=1) serve_reference.create_backend(noop, node_id, backend_config=config) serve_reference.link(node_id, node_id) self.handles.append(serve_reference.get_handle(node_id))
def main(): TAG = "Resnet18" min_img_size = 224 transform = transforms.Compose([ transforms.Resize(min_img_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ]) for num_replica in range(1, 9): # initialize serve serve_reference.init(start_server=False) serve_handle = None with serve_reference.using_router(TAG): serve_reference.create_endpoint(TAG) config = serve_reference.BackendConfig(max_batch_size=8, num_replicas=num_replica, num_gpus=1) serve_reference.create_backend( PredictModelPytorch, TAG, transform, "resnet18", True, backend_config=config, ) serve_reference.link(TAG, TAG) serve_handle = serve_reference.get_handle(TAG) img = base64.b64encode(open("elephant.jpg", "rb").read()) # warmup ready_refs, _ = ray.wait( [serve_handle.remote(data=img) for _ in range(200)], 200) complete_oids, _ = ray.wait(ray.get(ready_refs), num_returns=200) del ready_refs del complete_oids qps = throughput_calculation(serve_handle, {"data": img}, 2000) print(f"[Resnet18] Batch Size: 8 Replica: {num_replica} " f"Throughput: {qps} QPS") serve_reference.shutdown()
def test_no_route(serve_instance): serve_reference.create_endpoint("noroute-endpoint") global_state = serve_reference.api._get_global_state() result = global_state.route_table.list_service(include_headless=True) assert result[NO_ROUTE_KEY] == ["noroute-endpoint"] without_headless_result = global_state.route_table.list_service() assert NO_ROUTE_KEY not in without_headless_result def func(_, i=1): return 1 serve_reference.create_backend(func, "backend:1") serve_reference.link("noroute-endpoint", "backend:1") service_handle = serve_reference.get_handle("noroute-endpoint") result = ray.get(service_handle.remote(i=1)) assert result == 1
def test_scaling_replicas(serve_instance): class Counter: def __init__(self): self.count = 0 def __call__(self, _): self.count += 1 return self.count serve_reference.create_endpoint("counter", "/increment") # Keep checking the routing table until /increment is populated while ("/increment" not in requests.get("http://127.0.0.1:8000/-/routes").json()): time.sleep(0.2) b_config = BackendConfig(num_replicas=2) serve_reference.create_backend(Counter, "counter:v1", backend_config=b_config) serve_reference.link("counter", "counter:v1") counter_result = [] for _ in range(10): resp = requests.get("http://127.0.0.1:8000/increment").json() counter_result.append(resp) # If the load is shared among two replicas. The max result cannot be 10. assert max(counter_result) < 10 b_config = serve_reference.get_backend_config("counter:v1") b_config.num_replicas = 1 serve_reference.set_backend_config("counter:v1", b_config) counter_result = [] for _ in range(10): resp = requests.get("http://127.0.0.1:8000/increment").json() counter_result.append(resp) # Give some time for a replica to spin down. But majority of the request # should be served by the only remaining replica. assert max(counter_result) - min(counter_result) > 6
def test_batching_exception(serve_instance): class NoListReturned: def __init__(self): self.count = 0 @serve_reference.accept_batch def __call__(self, flask_request, temp=None): batch_size = serve_reference.context.batch_size return batch_size serve_reference.create_endpoint("exception-test", "/noListReturned") # set the max batch size b_config = BackendConfig(max_batch_size=5) serve_reference.create_backend(NoListReturned, "exception:v1", backend_config=b_config) serve_reference.link("exception-test", "exception:v1") handle = serve_reference.get_handle("exception-test") with pytest.raises(ray.exceptions.RayTaskError): assert ray.get(handle.remote(temp=1))
def test_batching(serve_instance): class BatchingExample: def __init__(self): self.count = 0 @serve_reference.accept_batch def __call__(self, flask_request, temp=None): self.count += 1 batch_size = serve_reference.context.batch_size return [self.count] * batch_size serve_reference.create_endpoint("counter1", "/increment") # Keep checking the routing table until /increment is populated while ("/increment" not in requests.get("http://127.0.0.1:8000/-/routes").json()): time.sleep(0.2) # set the max batch size b_config = BackendConfig(max_batch_size=5) serve_reference.create_backend(BatchingExample, "counter:v11", backend_config=b_config) serve_reference.link("counter1", "counter:v11") future_list = [] handle = serve_reference.get_handle("counter1") for _ in range(20): f = handle.remote(temp=1) future_list.append(f) counter_result = ray.get(future_list) # since count is only updated per batch of queries # If there atleast one __call__ fn call with batch size greater than 1 # counter result will always be less than 20 assert max(counter_result) < 20
def main(num_replicas, method): for node_id in ["up", "down"]: with serve_reference.using_router(node_id): serve_reference.create_endpoint(node_id) config = serve_reference.BackendConfig(max_batch_size=1, num_replicas=num_replicas) serve_reference.create_backend(noop, node_id, backend_config=config) serve_reference.link(node_id, node_id) with serve_reference.using_router("up"): up_handle = serve_reference.get_handle("up") with serve_reference.using_router("down"): down_handle = serve_reference.get_handle("down") start = time.perf_counter() oids = [] if method == "chain": for i in range(num_queries): r = up_handle.options(tracing_metadata={ "pipeline-id": i }).remote(sleep_time=0.01, data=image_data) r = down_handle.options(tracing_metadata={ "pipeline-id": i }).remote( sleep_time=0.02, data=r # torch tensor ) oids.append(r) elif method == "group": res = [ up_handle.options(tracing_metadata={ "pipeline-id": i }).remote(sleep_time=0.01, data=image_data) for i in range(num_queries) ] oids = [ down_handle.options(tracing_metadata={ "pipeline-id": i }).remote( sleep_time=0.02, data=d # torch tensor ) for i, d in enumerate(res) ] else: raise RuntimeError("Unreachable") print(f"Submission time {time.perf_counter() - start}") ray.wait(oids, len(oids)) end = time.perf_counter() duration = end - start qps = num_queries / duration print(f"Throughput {qps}") _, trace_file = tempfile.mkstemp(suffix=".json") with open(trace_file, "w") as f: json.dump(serve_reference.get_trace(), f) print(f"trace file written to {trace_file}")